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Abstract 

Background:  Effective mosquito control approaches incorporate both adult and larval stages. For the latter, physi‑
cal, biological, and chemical control have been used with varying results. Successful control of larvae has been 
demonstrated using larvicides including insect growth regulators, e.g. the organophosphate temephos, as well as 
various entomopathogenic microbial species. However, a variety of health and environmental issues are associated 
with some of these. Laboratory trials of essential oils (EO) have established the larvicidal activity of these substances, 
but there are currently no commercially available EO-based larvicides. Here we report on the development of a new 
approach to mosquito larval control using a novel, yeast-based delivery system for EO.

Methods:  Food-grade orange oil (OO) was encapsulated into yeast cells following an established protocol. To 
prevent environmental contamination, a proprietary washing strategy was developed to remove excess EO that is 
adsorbed to the cell exterior during the encapsulation process. The OO-loaded yeast particles were then character‑
ized for OO loading, and tested for efficacy against Aedes aegypti larvae.

Results:  The composition of encapsulated OO extracted from the yeast microparticles was demonstrated not to 
differ from that of un-encapsulated EO when analyzed by high performance liquid chromatography. After lyophiliza‑
tion, the oil in the larvicide comprised 26–30 percentage weight (wt%), and is consistent with the 60–65% reduction 
in weight observed after the drying process. Quantitative bioassays carried with Liverpool and Rockefeller Ae. aegypti 
strains in three different laboratories presented LD50 of 5.1 (95% CI: 4.6–5.6) to 27.6 (95% CI: 26.4–28.8) mg/l, for L1 and 
L3/L4 mosquito larvae, respectively. LD90 ranged between 18.9 (95% CI: 16.4–21.7) mg/l (L1 larvae) to 76.7 (95% CI: 
69.7–84.3) mg/l (L3/L4 larvae).

Conclusions:  The larvicide based on OO encapsulated in yeast was shown to be highly active (LD50 < 50 mg/l) 
against all larval stages of Ae. aegypti. These results demonstrate its potential for incorporation in an integrated 
approach to larval source management of Ae. aegypti. This novel approach can enable development of affordable 
control strategies that may have significant impact on global health.
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Background
Mosquito-borne diseases are a global threat to human 
health, implicated in over 1.2 million deaths annually 
[1]. Among these, those increasing at the fastest rate 
are the arboviruses dengue, chikungunya and Zika. In 
the absence of vaccines and effective treatment, public 
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health responses have focused on preventing transmis-
sion by reducing vector populations. Unfortunately, these 
arboviruses are transmitted by the Aedes aegypti mos-
quito, a vector presenting formidable challenges to dis-
ease control. Aedes aegypti feeds during daylight hours, 
does not feed to repletion, and is primarily anthropo-
philic with preference for urban and exurban areas. Cur-
rent approaches to control adult Ae. aegypti relying on 
insecticide spraying in urban areas pose risks to human 
and environmental health, and often select for mosquito 
resistance, making them ineffective and unsustainable 
[2].

Mosquito control using larvicides offers a potential 
solution to regional patterns of mosquito-borne disease 
transmission. Compared to sprayed insecticides target-
ing adult mosquitoes, larvicides are simpler and safer 
to implement. High kill rates can be achieved as larvae 
are confined to aquatic environments and are unable to 
evade control measures. However, synthetic larvicides 
currently in use, including carbamates, pyrethroids, 
organophosphates and organochlorides, exhibit one or 
more of four disadvantages: (i) toxicity to humans and 
other non-target species; (ii) degradation of the aquatic 
environment; (iii) high annual cost; and (iv) vulnerabil-
ity to the evolution of target resistance. Alternatively, an 
ideal larvicide would have the following attributes: (i) 
non-toxic to humans and other non-target species; (ii) 
able to offer high kill rates over a short period of time; 
(iii) ecologically appropriate in application, with minimal 
alteration of the aquatic breeding environment; (iv) capa-
ble of retarding and/or responding to evolution of target 
species resistance; (v) inexpensive, and readily scalable; 
and (vi) designed to provide protection to the most vul-
nerable populations in areas with the highest rates of 
mosquito-borne diseases.

Essential oils (EO) are volatile oils with strong aromatic 
components imparting distinctive flavors or scents, and 
have a long history of commercial use, ranging from 
pharmaceuticals to flavor additives for foods [3]. While 
recognized as non-toxic to humans, these secondary 
metabolites are produced by plants for protection against 
pathogenic microorganisms and predator insects. EOs 
are highly complex natural mixtures, often containing 
between 20–60 components. Of these, 2 or 3 compo-
nents are present at distinctly high concentrations and, 
generally, it is these components that determine biologi-
cal activity of the EO. Terpenes or terpenoids are com-
mon primary constituents of EOs, as are aromatic or 
aliphatic molecules.

In recent years, larvicidal activities of EOs from a 
number of plants [4, 5], including Citrus essential oils 
[6–9], Cryptomeria japonica (Japanese cedar) [10], Lip-
pia sidoides (pepper-rosmarin) [11], Cinnamomum 

osmophloeum (cinnamon) [12], Syzygium aromaticum 
(clove) [13] and Cymbopogon citratus (lemongrass) [13, 
14] have been reported. EOs have been shown to exert 
larvicidal effects through at least three different mecha-
nisms: neurotoxicity [15, 16], growth inhibition, and 
interruption of metabolic pathways [17–19]. However, it 
should be noted that the relationship between larvicidal 
activity and the complex chemical composition of a par-
ticular EO can be difficult to determine, as interactions 
among compounds within each EO likely contribute to 
its killing properties. Further, the combined action of 
all the components within a particular EO may not only 
provide a synergistic increase in effectiveness, but likely 
also prevents the evolution of resistance [18].

Although the efficacy of EOs against larvae of many 
mosquito species has been demonstrated, there are cur-
rently no commercial EO-based larvicides available. 
While non-toxic to humans and other non-target species 
at low concentration [20], introduction of large amounts 
of EO into an aquatic larval environment is likely to dis-
rupt the microbial environment and harm non-target 
species. In addition, dispersed oils are vulnerable to rapid 
degradation by UV radiation. The challenge is to deliver 
essential oils to environments containing mosquito lar-
vae in an efficient, efficacious, and sustainable manner 
that does not adversely impact the aquatic ecosystem.

Saccharomyces cerevisiae (bakers’ yeast) has long been 
recognized as a viable biocompatible and biodegradable 
container for a variety of exogenous compounds [21]. 
Both hydrophobic and hydrophilic food ingredients and 
pharmaceuticals have been encapsulated into yeast cells 
for protection, masking, and targeted drug delivery. 
Incorporating EOs into yeast is accomplished through 
a simple process using heat and agitation [22]. Once the 
EO enters the cell, the yeast becomes nonviable. The 
thick outer envelope of the yeast cell, however, remains 
intact, and sequesters the oil from the surrounding envi-
ronment. In this respect S. cerevisiae is an ideal field 
delivery vehicle: it preserves the activity of its payload 
(EO) while losing the capacity to replicate, and thus to 
impact aquatic ecosystems. The efficacy of this approach 
is further facilitated by the fact that mosquito larvae can 
readily digest S. cerevisiae [23]. The cell wall of yeast cells 
is rich in β-1,3-glucan, a polysaccharide. Larvae have 
intestinal enzymes specialized for the digestion of β-1,3-
glucans and are able to rapidly break down ingested yeast 
cell membranes [23]. Further, one of the WHO recom-
mended food sources for rearing of mosquito larvae in 
laboratory settings is S. cerevisiae [24].

In this article we describe the development of a novel 
larvicide consisting of food-grade orange oil (OO) encap-
sulated into yeast cells. This approach opens a new per-
spective for the development of a more environmentally 
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friendly larvicide. The defining feature of this formulation 
is a proprietary washing protocol developed to remove 
excess EO on the outside of these particles, thereby lim-
iting the amount of EO dispersed into the environment. 
The microparticles were characterized for EO loading 
and tested for their efficacy against Ae. aegypti larvae.

Methods
Larvicide synthesis
Larvicide was synthesized by encapsulation of Citrus sin-
ensis EO (orange oil, California origin, Sigma-Aldrich, St. 
Louis, USA) in S. cerevisiae (Red Star fresh baker’s yeast). 
The encapsulation method is based on an existing pro-
cess [22, 25], but was optimized to increase encapsula-
tion efficiency for each of the EO tested. A proprietary 
method (U.S. Provisional Application No 62/752,512) 
was developed to effectively wash all residual oil from the 
outside of the microcapsules.

The components used in synthesis of the EO-based lar-
vicide used in this study are orange oil, fresh yeast, and 
water at ratios of 1:5:16 by weight. Components were 
placed in a baffled flask and agitated overnight at 40 °C. 
The solution was then centrifuged, and the supernatant 
discarded. The larvicide was washed to remove resid-
ual oils, then frozen and lyophilized. Larvicide aliquots 
were rehydrated before use. Similar protocols were used 
for the encapsulation of essential oils from Australian 
white cypress, cinnamon leaf, clove bud, lemongrass and 
thyme.

Analysis of encapsulated oil
Oil composition analysis and quantification of encapsu-
lated OO was carried out using high performance liq-
uid chromatography (HPLC) on an Agilent 1100 with a 
temperature-controlled column and UV detector using 
an Agilent ZORBAX Rx 80 Å C18 column (4.6 × 250 mm 
with 5  µm particle size). Analysis was performed iso-
cratically at 40  °C using 80% acetonitrile and 20% water 
mobile phase with flow rate of 1.0 ml/min and UV detec-
tion at 214 nm. Full separation of EO components using 
these conditions were obtained after 14 mins of runtime. 
Between analyses, the column was washed at 1.5 ml/min 
with methanol for 4  min, rinsed using a linear gradient 
from aqueous 1% acetic acid to acetonitrile over 5  min, 
followed by equilibration at the isocratic analysis ratio for 
10  min. For quantification of OO, standard calibration 
curves for myrcene (Sigma-Aldrich), γ-terpinene (Sigma-
Aldrich), and d-limonene (Sigma-Aldrich) at concentra-
tions of 5–1000 mg/l were generated. Retention times for 
each component were 9.7  min, 11.8  min and 12.3  min, 
respectively.

Encapsulated oils were extracted from microcap-
sules by bead milling. Two hundred and fifty mg of 

rehydrated microcapsules were combined with 300–
330 mg of 0.5 mm glass beads and 1.0 ml ethanol in a 
15 ml conical vial. The sample was vortexed vigorously 
for 2  min, centrifuged, and supernatant recovered. A 
second extraction with another 1.0  ml of ethanol was 
then performed. The two extracts were combined and 
filtered through a 0.2 μm PTFE membrane syringe filter 
(VWR) before HPLC analysis.

Imaging
Imaging was performed on microcapsules labeled with 
Nile Red (Sigma-Aldrich). Labeling was performed by 
adding 0.1 ml of 1 mg/ml Nile Red in DMSO to 1 ml of 
larvicide suspension (diluted to 10% microcapsules by 
weight) with shaking at 37  °C for 30 min. Labeled lar-
vicide was washed twice with 10 ml distilled (DI) water 
after labeling. Wet mounts with labeled cells were pre-
pared using Fluoromount™ (Thermo Fisher Scientific, 
Waltham, USA) and imaged on a Zeiss AxioObserver 
microscope equipped with a Hamamatsu Flash4.0v2 
sCMOS Camera. Bright field, differential interference 
contrast (DIC), and fluorescence images were captured.

Larvicide testing
Larvicidal activity was tested at the University of New 
Mexico (UNM) and Uniformed Services University 
of the Health Sciences (USU) using Ae. aegypti (Liv-
erpool strain) larvae. Similar experiments were per-
formed at Laboratório de Bioquímica e Fisiologia de 
Insetos, Instituto Oswaldo Cruz (IOC-Fiocruz) using 
Ae. aegypti (Rockefeller strain) larvae (eggs provided 
by Laboratório de Fisiologia e Controle de Artrópodes 
Vetores, IOC-Fiocruz). Eggs were hatched in deion-
ized water (DI) 28  °C with fish food provided ad libi-
tum. Once they reached the desired stage, larvae were 
placed into cups containing 100 ml DI water and meas-
ured concentrations of larvicide. Larvicide quantitative 
bioassays were performed using 1st (L1), 2nd (L2), 3rd 
(early L3 and L3) and late 3rd/early 4th (L3/L4) instar 
larvae at three different insectaries. Each cup contains 
25 larvae and each dose was replicated on 4 cups for a 
total of 100 larvae per trial. Larvicide tests were per-
formed at 28  °C. Live and dead larvae were counted 
after 24 h of larvicide exposure to determine mortal-
ity rate at each concentration. All experiments were 
performed a minimum of 3 times at each site. Mortal-
ity curves and lethal doses (LD) values were calculated 
using the logit generalized linear model implemented 
in R. All lethal doses are presented with confidence 
interval at 95% (95% CI).
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Results
Larvicide analysis
Micrographs of larvicide particles labeled with Nile Red 
show that the individual cells are intact and EO is incor-
porated within the cells (Fig.  1). Cells without encapsu-
lated oil showed no fluorescence when imaged using a 
TRITC filter (Ex/Em 557/576) under the same exposure 
settings as cells with encapsulated oil. Average diameter 
of the yeast cells was 6.2  μm. Following OO encapsula-
tion, this diameter decreased to an average of 4.4 μm.

Analysis of OO by HPLC before encapsulation yielded 
a composition of 89.6% d-limonene, 2.4% myrcene, and 
1.6% γ-terpinene with 8.2% other minor components, 
which is consistent with previously reported composi-
tions [26, 27]. After encapsulation, the extracted oil com-
position was similar: 89.7% d-limonene, 2.2% myrcene, 
and 1.7% γ-terpinene, as seen in Fig. 2. After encapsula-
tion and washing, but before drying, the oil loading in 
the larvicide was measured to be from 9.4–10.6 wt%, 
exhibiting a small amount of batch to batch variability. 
After lyophilization, the oil loading in the larvicide was 
26–30 wt%, which is consistent with the 60–65% reduc-
tion in weight observed after the drying process. No 
significant changes in oil loading, oil composition or 

larvicidal efficacy were observed with lyophilized sam-
ples stored at 4 °C for 6 months.

Larvicide efficacy
Mortality at 24 h was observed to be dose dependent at 
every instar, with lethal dose (LD) as shown in Fig. 3 and 
Table  1. The LD50 and LD90 increased sharply as larvae 
matured, e.g. from 5.1 and 18.9  mg/l, respectively, for 

Fig. 1  Micrographs of cells with and without encapsulated orange oil (OO). DIC images of cells with (a) and without oil (b). c Fluorescence of cells 
with oil using the TRITC filter. Cells without oil exhibited no visible fluorescence under these imaging conditions (not shown). Scale-bars: 10 μm

Fig. 2  HPLC chromatogram of orange oil (OO) before encapsulation 
and after extraction from yeast microparticles
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Fig. 3  Mortality curves for Ae. aegypti larvae. Each point represents one cup with 25 larvae. Efficacy of larvicide was tested at three sites, University 
of New Mexico (UNM), Uniformed Services University (USU) and Instituto Oswaldo Cruz (IOC-Fiocruz), using larvae at 1st (L1), 2nd (L2), early 3rd 
(early L3) and late 3rd/early 4th (L3/L4) instar stages. Graphs show larvae mortality following 24 hours of exposure
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L1 larvae to 27.6 and 76.7  mg/l, respectively, for L3/L4 
larvae (Table  1). Variation seen between LD50 and LD90 
values may be attributed to the two different laboratory 
strains of Ae. aegypti used at the three study locations. 
Overall however, these values show a maximum differ-
ence of 1.85-fold (LD50 for early L3 larvae) between sites 
(Table 1). 

Encapsulated Australian white cypress, cinnamon leaf, 
clove bud, lemongrass and thyme oils were also tested 
for larvicidal activities. The efficacy of this selection of 
EOs were previously reported by others [4, 28]. Qualita-
tive microscopy examination of these EO encapsulated 
cells suggested that similar volumes of encapsulated EO 
were incorporated into the yeast cells. Larvae were fed 
encapsulated EO corresponding to 3× the LD90 for OO. 
After 24  h of treatment, mortality of less than 10% was 
observed with each of these encapsulated EO (data not 
shown).

Discussion
The larvicide based on yeast-encapsulated OO was 
highly active (LD50 < 50 mg/l) against all Ae. aegypti larval 
instars (Table 1). LD50 is the standard measure for larvi-
cidal activity of natural products such as EO, but effect 
thresholds can vary [29]. The LD50 from bioassays carried 
out in the three laboratories involved in this study are 
consistent and ranged from 5.1 to 27.6 mg/l for L1 to L3/
L4 larvae respectively. These results confirm our prepara-
tion as an active larvicide, with a reproducible mode of 
delivery [30–32]. This is particularly important due to 
the high variation in cidal activity of orange oil described 
in previous studies, including variations in LD50 from 
< 100 mg/l against mosquito larvae [5, 7, 30, 33] to a com-
plete lack of larvicidal activity [6, 8, 34]. In some studies, 
these differences may be attributed to the methodology 
used for extraction of the EO, as in the case of larvicidal 
activities reported for hexane extracts of Citrus limetta 
compared to petroleum ether extracts of the same plant 
[35].

These results of our bioassays were obtained using two 
laboratory strains of mosquitoes (Liverpool and Rockefel-
ler) that have been used as reference strains for resistance 
assays, and as such, may be more sensitive to xenobiot-
ics than insects found in the wild [36]. The efficacy of 
the OO-yeast particles on larvae progeny (F < 10) from 
strains of field-caught mosquitoes resistant or susceptible 
to a variety of commercially used larvicides are currently 
being evaluated in the laboratory as well as under semi-
field conditions at various sites in Brazil. The persistence 
and impact of this larvicide on non-target organisms, 
including Artemia, Daphnia and Macrobrachium ama-
zonicum (Amazon River prawn), are also being assessed 
in the laboratory.

At the onset of our studies, multiple oils were screened 
for larvicidal activities to determine the best candidate(s) 
for encapsulation optimization and activity trials. Aus-
tralian white cypress, cinnamon leaf, clove bud, lem-
ongrass and thyme oils were selected as their primary 
components differ from those of orange oil. Further, 
the reported LD50 for each of these EO ranges between 
0.7–69 mg/l [4]. Their lack of efficacy when administered 
as encapsulated consumables (data not shown) may be 
related to different mechanisms of action for these com-
pounds when ingested by larvae, as opposed to being 
used as contact agents, as in all previous studies [15–19]. 
Investigation into the mechanism of action after inges-
tion of encapsulated OO by larvae is ongoing.

Our initial bioassays demonstrated high variability of 
LD50 for all encapsulated EO in a single trial. We hypoth-
esized that presence of EO on the exterior surface of the 
microcapsules allowed two known properties of these 
materials to manifest: (i) acting as contact agents which 
rapidly kill larvae; and (ii) acting as repellents prevent-
ing the larvae from eating the microcapsules, even in the 
absence of other food sources. In response, we developed 
a washing protocol to remove residual oil for the outside 
of the yeast particles. Upon implementing this protocol 
results for larvicidal activity became reproducible both 

Table 1  Computed LD50 and LD90 values of yeast-encapsulated orange oil against various Ae. aegypti larval stages

Notes: Testing was performed using Ae. aegypti Rockefeller strain larvae at Instituto Oswaldo Cruz (IOC-Fiocruz), and on Ae. aegypti Liverpool strain at the Uniform 
Services University (USU) and the University of New Mexico (UNM). Variation in LD values may reflect difference between the two larval strains used. LD values are 
in mg/l of orange oil. This table is a compilation of all experiments performed at the three sites, with n representing the total number of insects tested at each larval 
stage. While there were some differences between the LD50 and LD90 values measured in different research institutes, these measurements fall in the same order of 
magnitude

Insect stage

L1 L2 Early L3 Early L3 L3 L3 L3/L4

Testing institution Fiocruz Fiocruz Fiocruz USU Fiocruz UNM Fiocruz

LD50 (95% CI) 5.1 (4.6–5.6) 8.4 (7.9–9.0) 10.4 (10.1–10.8) 5.6 (5.0–6.3) 11.6 (10.9–12.3) 17.3 (16.3–18.3) 27.6 (26.4–28.8)

LD90 (95% CI) 18.9 (16.4–21.7) 17.8 (16.2–19.7) 21.0 (20.0–21.9) 15.3 (13.6–17.2) 28.4 (26.2–30.9) 40.3 (37.2–43.7) 76.7 (69.7–84.3)

n 1234 2016 4210 1200 1772 1600 2409
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within individual replicates and across different batches. 
Importantly, results obtained in three different research 
institutes across the Americas evinced high reproducibil-
ity. After our optimized washing process, HPLC analysis 
of supernatant from concentrated larvicide solution (50 
wt% cells ~ 50,000 mg/l encapsulated OO) showed no 
evidence of d-limonene, myrcene, or γ-terpinene (data 
not shown).

Interestingly, higher LD50 and LD90 was observed in 
L3/L4 larvae. Lower mortality rates in later stage insects 
may be related to reduced feeding in late L4 mosquito 
larvae. It has been reported that Ae. aegypti larvae, after 
reaching a critical body mass, stop eating and start prep-
aration to metamorphosis if exposed to stressing factors, 
like xenobiotics or food with low nutritional value [37]. 
In this respect, the EO-yeast particles might be induc-
ing pupation in L4 larvae, and that is consistent with the 
hypothesis that ingestion of the larvicide is an important 
step in its mechanism of action.

In integrated mosquito control programs, larval source 
management (LSM) is recognized as successful when it 
prevents completion of immature mosquito development 
[38]. The highly anthropophilic Ae. aegypti is an urban 
mosquito living in close proximity to humans and breed-
ing predominantly in human-made containers. These 
“container-inhabiting” mosquitoes, will breed in almost 
any aquatic receptacle, from puddles found in flower 
pots, tires, bottles, gutters to pools of water in commu-
nal cisterns and catch basins. Efforts to eliminate Ae. 
aegypti breeding sites are often labor intensive and may 
require coordination of large numbers of workers, as well 
as substantial public engagement to sustain community 
participation in the control efforts [39, 40]. This is further 
complicated by the fact that eggs of Ae. aegypti can with-
stand desiccation, surviving without water for several 
months and hatching following the next rainfall [41]. As 
an alternative, application of organophosphate-based lar-
vicides is costly, harmful to the environment and many 
strains of Ae. aegypti exhibit well documented resistance 
to these compounds [42]. Similarly, the bioinsecticides 
Bacillus thuringiensis israelensis (Bti) and Bacillus spha-
ericus (Bs) are effective against different species of mos-
quito larvae under laboratory and environmental settings 
[42], but their stability is reduced under sunlight and heat 
exposure [43, 44]. Thus, development of new insecticides 
effective in tropical climate where mosquito-transmit-
ting diseases are important public health problems, is an 
urgent need.

The use of insect growth regulators (e.g. pyriproxyfen), 
entomopathogenic fungi [45] and EO [4] as larvicides 
have also been reported. However, environmental dis-
semination of these larvicides continues to be a major 
obstacle. For pyriproxyfen, this appears to be feasible 

through auto-dissemination by adult mosquitoes [46, 
47]. For EOs, one of the main issues faced for its suc-
cessful application relates to its’ solubility in an aqueous 
environment. Ferreira et al. [48], for example, overcame 
this issue by entrapping orange oil into an in situ gel-
ling nanostructured surfactant system, which allowed 
for improved solubility and contact larvicide activity. To 
control aphid infestations, Akvetsou et al. [49] encapsu-
lated pennyroyal EO into plasmolyzed yeast cells. These 
investigators demonstrated a “burst” release of trapped 
EO from these ruptured yeast cells into the surround-
ing environment within 30  mins of application. Here, 
we report on the development of OO laden yeast parti-
cles as an ingested larvicide, thereby limiting its impact 
on non-yeast consuming species. Moreover, the primary 
components for the synthesis of our larvicide (fresh bak-
er’s yeast and orange oil) are certified food-grade and 
recognized as environmentally friendly. This technology 
has the additional advantage of easy adaptability to new 
formulations depending on the local context e.g. use of 
alternative essential oils.

Conclusions
Our novel larvicide based on orange oil encapsulated in 
yeast was effective against L1–L4 Ae. aegypti larvae. Here 
we have demonstrated an approach that sequesters the 
cidal compound from the environment and delivers it 
unmodified to a target species. This approach may pro-
vide a solution to the long-standing problem of control-
ling vector populations with minimal harm to non-target 
organisms. While the approval and eventual deployment 
of this larvicide is dependent upon multiple variables, 
our low-cost product has the potential to function as an 
initial step in the development of a more environmentally 
friendly platform technology for the control of multiple 
vector species.
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