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Abstract

Background: Ontologies are widely used across biology and biomedicine for the annotation of databases. Ontology
development is often a manual, time-consuming, and expensive process. Automatic or semi-automatic identification
of classes that can be added to an ontology can make ontology development more efficient.

Results: We developed a method that uses machine learning and word embeddings to identify words and phrases
that are used to refer to an ontology class in biomedical Europe PMC full-text articles. Once labels and synonyms of a
class are known, we use machine learning to identify the super-classes of a class. For this purpose, we identify lexical
term variants, use word embeddings to capture context information, and rely on automated reasoning over
ontologies to generate features, and we use an artificial neural network as classifier. We demonstrate the utility of our
approach in identifying terms that refer to diseases in the Human Disease Ontology and to distinguish between
different types of diseases.

Conclusions: Our method is capable of discovering labels that refer to a class in an ontology but are not present in an
ontology, and it can identify whether a class should be a subclass of some high-level ontology classes. Our approach
can therefore be used for the semi-automatic extension and quality control of ontologies. The algorithm, corpora and
evaluation datasets are available at https://github.com/bio-ontology-research-group/ontology-extension.
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Background
The biomedical community has spent significant
resources to develop biomedical ontologies which con-
tain and define the basic classes and relations that occur
within a domain. Biomedical ontologies are developed by
domain experts and are often developed in conjunction
with the needs arising in literature-based curation of
biological databases.
Manual curation of databases based on literature is a

very time-consuming task due to the massive amounts of
literature, and automated methods have been developed
early on to aid in curation [1]. One of the key tasks in
computational support for literature curation is the auto-
matic concept recognition of mentions of ontology classes
in text [2]. An ontology class is an intensionally defined
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entity that has a formal descriptionwithin an ontology and
axioms that determine its relation with other classes [3]. In
natural language, multiple terms and phrases can be used
to refer to an ontology class [4], and the formal depen-
dencies within an ontology further determine whether a
term refers to a class or not (i.e., whether a term refers to
a particular class may depend on background knowledge,
in particular subclass relations, contained in an ontol-
ogy). For example, the Disease Ontology (DO) [5] declares
Prediabetes syndrome (DOID:11716) to be a subclass
of Diabetes mellitus (DOID:9351), and based on this
information we assume that any reference to, or mention
of, Prediabetes syndrome is also a reference to Diabetes
mellitus (with respect to DO).
There are several text mining systems designed for

ontology concept recognition in text. These methods are
either based on lexical methods and therefore applicable
to a wide range of ontologies [6, 7] or they are domain-
specific and rely on machine learning [8]. Text mining
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based-methods can also be used to automatically or semi-
automatically construct and extend ontologies [9, 10]. For
example, Lee et al. [11] focus on text mining of relations
that are asserted in text between mentions of ontology
classes that has been used to refine ontology classes in the
Gene Ontology (GO) [12]. Text mining can also be used to
suggest new subclasses and sibling classes in ontologies,
for exampleWächter and Schroeder [13] carried out a text
mining based-system from different text sources which is
used for extending OBO ontologies by semi-automatically
generating terms, definitions and parent–child relations.
Xiang et al. [14] have developed a pattern-based system
for generating and annotating a large number of ontology
terms, following ontology design patterns and providing
logical axioms that may be added to an ontology. Recently,
clustering based on statistical co-occurrence measures
were also used to extend ontologies [15].
Here, we introduce a novel method relying on machine

learning to identify whether a word used in text refers
to a class that could be included in a particular ontol-
ogy. Essentially, our method classifies terms to determine
if they are usually mentioned in the same context as the
labels and synonyms of classes in an ontology (which are
used as seeds to train the classifier); this classifier can then
be applied to unseen terms. Furthermore, our method can
also be used to expand ontologies by suggesting terms that
are mentioned within the same context as specific classes
in an ontology.
We demonstrate the utility of our method in identi-

fying words referring to diseases from DO in full text
articles. We select the DO because the labels and syn-
onyms of DO classes are relatively easy to detect in text
and a large number of computational methods rely on
access to a comprehensive disease ontology [16–19]. Our
method achieves highly accurate (F-score > 90%) and
robust results, is capable of recognizing multiple different
classes including those defined formally through logical
operators, and combines dictionary-based and context-
based features; therefore, our method is also capable of
finding new words that refer to a class. We manually
evaluate the results and suggest several additions to the
DO.

Methods
Building a disease dictionary
We built a dictionary from the labels and synonyms
of classes in the Disease Ontology (DO), downloaded
on 5 February 2018 from http://disease-ontology.org/
downloads/. The dictionary consisted of 21,788 terms
belonging to 6,831 distinct disease classes from DO. We
utilized the dictionary with the Whatizit tool [20] and
annotated the ontology class mentions along with their
identifiers in approximately 1.6 million open access full-
text articles from the Europe PMC database [21] (http://

europepmc.org/ftp/archive/v.2017.06/) and generated a
corpus annotated with mentions of classes in DO. We
preprocessed the corpus by removing stop words such as
“the”, “a”, and “is” as well as some punctuation characters.

Generating context-based features
We use Word2Vec [22] to generate word embedding.
Specifically, we use a skip-gram model which aims to find
word representations that are useful for predicting the
surrounding words in a given sentence or a document
consisting of sequence of words; w1,w2, ...,wK . The objec-
tive is to maximize the average log probability using the
following formula:

V (w) = 1
K

K∑

k=1

K∑

−c≤j≤c;j �=0
log p(wK+j|wK ) (1)

where word vectors V (w) are computed by averaging over
the number of words K and c is the size of the training
context. We generated the word embedding by using the
default parameter settings of theWord2Vec gensim imple-
mentation: vector size (dimensionality) of 100, window
size 5, minimum occurrence count of 5, and we use a
skip-gram (sg) model.

Supervised training
We carried out a set of experiments to choose the optimal
training algorithm to design our model. In our experi-
ments we used default parameters for the training algo-
rithms but different hidden layers for Artificial Neural
Networks (ANNs) [23]. Our experiments show that the
ANN model outperforms an SVM model [24] (see Addi-
tional file 1: Table 1 for full details), and our model
performs best with 200 neurons in a single hidden layer
(we tested a single hidden layer with a size of 10, 50,
100, and 200 neurons). We report results accordingly to a
model with 200 neurons in the remainder of this work. In
ANNs, multiple neurons are organized in layers. Typically,
different layers perform different kinds of transforma-
tions on their inputs [25]. In our experiments, we used
an ANN with an input layer of different sizes, a single
hidden layer that uses a sigmoid activation function, and
an output layer that differs based on the experiment. We
train each classifier in a supervised manner, using 10-fold
stratified cross-validation. Additionally, we report testing
performance on an independent 20% testing set which
we generated by randomly removing data points before
training.

Recognizing ontology classes in text
We used two approaches to recognize the mention of
ontology classes in text. Our first approach relies solely on
labels and synonyms of the classes within a given ontol-
ogy O and can be used to determine whether a word refer
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to a class in O. We first obtain an ontology O in the Web
Ontology Language (OWL) [26] format and extract a list
of class labels and synonyms L from O; we further utilize
a text corpus T as input to our method. Then, we gener-
ate word embeddings (i.e., vector-space encodings of the
contexts in which a word occurs) for all words in our text
corpus T and train a supervised machine learning model
to classify whether a word refers to a class in O or not
(using the L’s words as positive training instances and all
others as negative instances).
Figure 1 illustrates the workflow of our first approach.

Our method is generic and can, in principle, be applied
to any ontology as long as the ontology provides labels
(or synonyms), these labels can be identified in text, and
the ontology from which the labels are extracted is more
or less limited to a single domain. For example, refer-
ence ontologies in the OBO Foundry [27] are usually
single domain ontologies and therefore suitable for our
method. Ontologies that would not be suitable are appli-
cation ontologies that cover multiple domains, such as the
Experimental Factor Ontology (EFO) [28] (although our
methods can be applied to parts of it). It is most useful to
extend an existing ontology with new labels, synonyms, or
classes.
In our second approach, we rely on annotations from

the Whatizit tool [20] to identify the mention of ontology
classes in text and determine their specific superclasses in
an ontology. Our approach takes an ontology O in OWL
format, a set of ontology classes S = {C1, ...,Cn}, and a
corpus of text T as inputs.
This approach first uses Whatizit as a named entity

recognition and normalization tool to normalize class

labels and synonyms in text by replacing all mentions
of a class with the class identifier (i.e., the class URI).
We annotate 15,183 distinct terms using Whatizit; the
total dictionary consists of 21,788 terms (derived from
the labels and synonyms of classes in DO). We then train
Word2Vec model that captures the context of the men-
tion of the class and generates a vector space embedding
for that class. Given such vector space embeddings for
a set of classes in O, we use the vector space embed-
dings as input to a machine learningmethod that classifies
whether another class appears in a similar context. We
use this method to determine if a class should belong the
superclass of C in O. Figure 2 illustrates the workflow of
this approach.
The main difference between the two approaches is that

the first approach broadly identifies terms or words that
refer to classes within a domain (as defined by the sum
of classes within an ontology) while the second approach
can determine whether a term or word refers to a class
that should appear as a subclass of a more specific ontol-
ogy class. Both methods generate “seed” words in text and
then use these seeds first to generate context-based fea-
tures (through Word2Vec) and use these context-based
features in a supervised machine learning classifier.

Manual analysis process
We manually evaluate some of our findings. The manual
evaluation is based on the medical expert knowledge of
the evaluator who is a trained clinician, and supplemented
by literature search to validate some findings or resolve
conflicts. Mainly, results were confirmed by searching
for review papers that characterize a condition. Overall,

Fig. 1 Label-based workflow. The workflow describes how words (in red) are classified as disease or “other”
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Fig. 2 Annotation-based workflow. In this workflow, we first normalize the mentions of disease classes in the corpus and then apply Word2Vec to
generate embeddings for classes, not merely words

manual curation following the suggestions by our classi-
fier took 10-15 min per sample (which included identify-
ing related classes in the DO and drafting an explanation
for cases which disagree with the DO).

Results
Broad classification of domain-specific terms: application
to diseases
Our method is a workflow that can be used to identify
whether a term or phrase commonly refers to a class
that may be included in a domain-specific ontology as a
label, synonym, or a new class. To achieve this goal, we
use the existing labels and synonyms within a domain-
ontology as “seeds” to train a machine learning classifier
that determines whether a new term is sufficiently similar
to an existing label or synonym and may therefore also be
included in the ontology. We represent terms primarily by
the context in which they occur within a large corpus of
text; we useWord2Vec [22] for this purpose.We then train
an Artificial Neural Network classifier in a supervised
manner to distinguish between the terms already included
within a domain ontology (and therefore expected to refer
to a particular kind of phenomena) and randomly chosen
terms not included in the ontology (and therefore most
likely not referring to a phenomenon within the domain
of the ontology).
We demonstrate our method using the Human Dis-

ease Ontology (DO) [5] and applying it to the terms
occurring in a large corpus of full-text biomedical articles
(see “Methods”). First, we tested whether our approach is

capable of identifying words that refer to the Disease class
(DOID:4), i.e., whether our method can detect terms
that refer to a disease. We generated word embeddings
for every disease terms and other words in our corpus of
full-text articles.
Figure 3 illustrates the distribution of the terms refer-

ring to a diseases in DO and other words mentioned in
our corpus which do not belong to DO using the t-SNE
dimensionality reduction [29]. We can see that the terms
are clearly different and should be separable through a
machine learning system.
Therefore, we trained a machine learning model to

recognize whether a word refers to the disease or not
using the word embeddings as input. We split the vec-
tor space embeddings into a training and testing dataset
and consider all embeddings referring to disease as pos-
itive instances and all others as negatives. We do not
apply any filtering before selecting the positive or negative
samples. We randomly select negatives equal to the num-
ber of positives (7,932 positives and 7,932 negatives). We
withhold 20% of randomly chosen positive and negative
instances for testing, train a model on the remaining 80%
through 10-fold cross validation, and report the perfor-
mance results on the 20% test set. Evaluated on the testing
set, we can distinguish between disease and non-disease
terms with an F-score of 95% and AUC of 96% (see Table 1
and Figure 4).
To better understand the source of errors and whether

our approach can be used to reliably extend ontolo-
gies (either with additional labels and synonyms, or new
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Fig. 3 a) The visualization of the embeddings using the t-SNE for binary-classification task b) The visualization of the embeddings using the t-SNE
for classifying infectious diseases. c) The visualization of the embeddings using the t-SNE for classifying anatomical diseases. d) The visualization of
the embeddings using the t-SNE for classifying the combination of infectious and anatomical diseases

classes), we performed a manual analysis on a set of 20
false positive samples out of 197 which are not the label or
synonym of a disease class DO but are classified as disease
by our classifier (see Table 2). We found that the majority
of the 20 false positive samples refer to either diseases or
phenotypes (where phenotypes are the observable char-
acteristics of an organism that may occur manifestations,
or signs and symptoms, of a disease, but do not constitute
a disease on its own). For example, Aphthosis is a pre-
diction of our method which refers to a human disorder
that is not currently in the DO; the majority of false pos-
itives are disease-related terms that do not explicitly refer
to a disease. For example, we predictedmal-absorption as

a disease term which may refer to a phenotype in some
contexts. Our findings indicate that an ANN classifier
can identify known terms referring to diseases, and can
further suggest novel terms which may prove useful for
ontology development and extension.

Fine-grained classification: distinguishing between groups
of diseases
As our method showed capability to identify terms refer-
ring to a disease, we next tested whether our method can
also distinguish between different types of diseases. For
this purpose, we used the embeddings generated from a
pre-processed corpus in which we normalize all mentions

Table 1 F-score and AUC for our four experiments using different hidden layer sizes

Classification Hidden layer sizes 10 50 100 200

Number of classes F-score AUC F-score AUC F-score AUC F-score AUC

Diseases 2 94.65% 95.31% 94.83% 95.97% 95.32% 96.06% 94.49% 95.99%

Infectious disease 5 95.65% 95.01% 96.01% 95.74% 95.43% 95.22% 95.68% 96.42%

Anatomical disease 13 69.18% 77.22% 70.15% 80.24% 70.20% 76.98% 72.00% 85.11%

Infectious + anatomical diseases 17 71.07% 84.75% 73.13% 84.03% 72.61% 84.98% 72.67% 83.66%

The values in bold represent the highest AUC and F-score within each experiments
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Fig. 4 ROC curves for each experiment (Diseases, Infectious disease, Anatomical disease and a combination of Infectious disease + Anatomical disease)

of a disease in our corpus using Whatizit tool. The dis-
ease dictionary that we utilized with Whatizit includes a
total of 21,788 terms (labels and synonyms) from DO. We
found that 15,183 of these 21,788 terms appeared in our
corpus and we generate an embedding vector for each of
them. We then first trained a neural network model to
recognize whether a disease-term refers to the Infectious
Disease (DOID:0050117) class or not, and furthermore
whether our method is able to distinguish between the
four different types of infectious disease in DO (i.e., bac-
terial, fungal, parasitic, or viral infectious disease). As
training data, we used the word embeddings generated for
DO classes, and we used the Elk reasoner to split them
into four types of infectious diseases, and an additional
class for diseases that are not a subclass of Infectious Dis-
ease in DO. We randomly select 20% of the disease in
DO as validation set and train the neural network classi-
fier using 10-fold cross-validation on the remaining 80%
to separate diseases into one of the five classes (non-
infectious, bacterial, fungal, parasitic and viral infections).

Table 1 shows the performance achieved on the validation
set.While the performance is less than predicting whether
a term refers to a disease, our classifier can distinguish
between specific disease classes.
We manually analyzed a set of 20 false positive samples

out of 38 which are not a subclass of Infectious disease in
the DO but are classified as infectious by our classifier (see
Table 3). We found that 7 of these 20 cases can be sug-
gested to be subclasses of the specific infectious disease
they have been classified with but do not have a subclass
relation asserted or inferred in DO. For example, the term
syphilitic meningitis (DOID:10073) is a disease that our
method classify as a bacterial infectious disease but it is
not classified as infectious in the DO.
Moreover, to test the strength of our method to distin-

guish between disease classes, we further trained a neural
network model to distinguish between the 12 different
subclasses of Disease of anatomical entity (DOID:7), as
well as an additional class for diseases not classified as
subclasses of Disease of anatomical entity. We used the
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Table 2 Manually analyzed disease terms predicted as disease

Term Manual analysis result Explanation for the suggested diseases

FACTO other -

leucoencephalopathy other -

Aphthosis Disease A disease refers to a condition with repetitive mucosal ulcers
[30, 31].

Desmoid other -

metapneumovirus other -

Tracheobronchomalacia Disease A rare condition with abnormal flaccidity of both the trachea
and the bronchi which results in possibility of narrowing or
collapse of the airway [32–34].

RESLES Disease A rare condition characterized by transient lesions in the cen-
tral part of the splenium of the corpus callosum (SCC), followed
by complete reversibility on follow-up magnetic resonance
imaging (MRI) after a variable period. It coincides with different
diseases [35, 36].

mal-absorption other -

acroparesthesias other -

limb-shaking other -

pineocytomas Disease A rare disease that has an Orphanet ID: ORPHA:251912. It is
one of the pineal parenchymal tumors and is considered the
least aggressive one [37, 38].

hypomineralisation other -

neurognathostomiasis Disease It is a severe form of human gnathostomiasis, DOID:11379,
which can lead to disease and death, it involves the nervous
system [39–41].

Metastasis other -

myelomatosis Disease A type of cancer that begins in plasma cells that produce anti-
bodies. It could be one of the synonyms of multiple myeloma
DOID:9538 [42, 43].

AMRF Disease An OMIM disease, OMIM:254900 [44].

arthralgia other -

fibrodentinoma Disease Fibrodentinoma is a benign odontogenic tumor that occurs
in children and young adults. The disease name usually is
represented as “Ameloblastic Fibrodentinoma” [45, 46].

infantile-ataxia other -

knowlesi other -

The terms in bold represent the correctly validated terms (by a clinician) that classified as diseases terms using our method (in Diseases classification experiment).

same method to split the classes in training and test set as
before. Results are shown in Table 1 and demonstrate that
our method can also be useful to classify diseases in their
anatomical sub-systems.
We manually analyzed a set of 20 false positive samples

out of 127 which are not a subclass of Anatomical dis-
ease in the DO but are classified as being a subclass of a
particular anatomical system disease by our classifier (see
Table 4). We found that 12 of the 20 false positives can be
suggested to be subclasses of the specific anatomical sys-
tem disease they have been classified with but do not have
such a subclass relation asserted or inferred in DO. For
example, we classify Narcolepsy (DOID:8986) as a Ner-
vous system anatomical disease, and this may be added as
a new subclass axiom to DO.

As it is often inconvenient to train separate classifiers,
we also combined both tasks and trained a multi-class
classifier to classify disease classes either as infectious or
anatomical, or as other disease. We evaluate the perfor-
mance of this combined model (see Table 1), and our
machine learning system achieves an AUC up to 84% (see
Figure 4). These results demonstrate it may be possible to
identify new subclasses, although the performance drops
when we increase the complexity of the classification
problem by distinguishing between more subclasses.

Discussion
We developed a method to automatically expand ontolo-
gies in the biomedical domain with new classes, syn-
onyms, or axioms. We demonstrate the utility of our
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Table 3 Sample of manually analyzed disease terms predicted as infectious disease

Disease terms Ontology class assigned
by ANN

Manual analysis result Suggested additional
classification

DOID Explanation

Pelizaeus-Merzbacher
disease

Viral infectious disease Non-infectious (inherited
disorder)

- - -

Kaposi’s sarcoma Viral infectious disease Viral infectious disease herpes simplex DOID:8566 The disease is caused by
Human herpesvirus 8
which is Herpesviridae
infection.

maxillary sinusitis Bacterial infectious disease Bacterial infectious disease
(usually start viral and
progress to either
bacterial or fungal)

- - It is an infection in the
maxillary sinuses which
could be due to different
etiology, one of them is
bacterial [47].

keratosis follicularis Bacterial infectious disease Non-infectious (genetic
disease)

- - -

chronic rheumatic
pericarditis

Viral infectious disease The condition is triggered
by autoimmune reaction
to infection, mainly group
A streptococci.

- - -

gastroparesis Viral infectious disease In most cases the nerve is
damaged by diabetes or
surgery, however, a viral
infection might be a cause

- - A condition in which the
stomach suffers from
paresis that affects the
food movement to the
small intestine [48, 49].

osmotic diarrhea Bacterial infectious disease symptom - - -

familial cold
autoinflammatory
syndrome

Viral infectious disease Non-infectious (inherited
disease)

- - -

angular cheilitis Fungal infectious disease Etiology is controversial,
most commonly fungal or
bacterial.

- - Ambiguous.

Binder syndrome Viral infectious disease Congenital disease - - -

hypohidrosis Bacterial infectious disease Multi-causal - - -

Sjogren’s syndrome Viral infectious disease autoimmune disease - - -

median rhomboid
glossitis

Fungal infectious disease Etiology is controversial,
however it is considered
as a variant of orallesion
associated with candida
infection [50].

- - Ambiguous.

Goodpasture syndrome Viral infectious disease autoimmune disease - - -

syphilitic meningitis Bacterial infectious disease Bacterial infectious disease syphilis DOID:4166 Considering the same
concept of etiology, both
diseases are caused by
bacterial infection
(Treponema pallidum).

acute diarrhea Viral infectious disease symptom - - -

WHIM syndrome Bacterial infectious disease Congenital disease - - -

erythrasma Fungal infectious disease Bacterial infection disease - - -

chronic wasting disease Parasitic infectious disease Neurodegenerative
disorder

- - -

scarlet fever Bacterial infectious disease Bacterial infectious disease rheumatic fever DOID:1586 The disease is caused by
Group A bacteria of the
genus Streptococcus,
same causative agent for
Rheumatic fever.

The terms in bold represent the correctly validated terms (by a clinician) that classified as infectious diseases terms using our method (in Infectious disease classification
experiment).
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Table 4 Sample of manually analyzed disease terms classified as affecting particular anatomical systems

Disease terms Ontology
class

Ontology
class
assigned by
ANN

Manual analysis
result

Suggested
additional
classification

DOID Explanation

Timothy
syndrome

genetic
disease

cardiovascular
system
disease

Cannot specify
(affect multiple
parts)

- - -

Familial periodic
paralysis

disease of
metabolism

cardiovascular
system
disease

musculoskeletal
system disease

- - -

Hyperprolactinemiadisease of
metabolism

endocrine
system
disease

endocrine system
disease

pituitary gland
disease

DOID:53 The pituitary gland is
the endocrine gland
responsible for
secreting prolactin.

Angiokeratoma
circumscriptum

disease of
cellular
proliferation

gastrointestinal
system
disease

cardiovascular
system disease

- - -

Zollinger-
Ellison
syndrome

syndrome gastrointestinal
system
disease

gastrointestinal
system disease

peptic ulcer disease DOID:750 It is a disease that
affects either
pancreas, duodenum,
or both of them. Both
organs are pats of the
GIT system. The
disease pathology
is mainly excessive
gastrin secretion with
subsequent peptic
ulcers.

Polycystic liver
disease

genetic
disease

gastrointestinal
system
disease

gastrointestinal
system disease

liver disease DOID:409 It is a genetic disorder
that affects primarily
the liver.

Bilirubin
metabolic
disorder

disease of
metabolism

hematopoietic
system
disease

hematopoietic
system disease

kernicterus due to
isoimmunization

DOID:12043 Bilirubin disorder
could be a result of
blood pathology,
same as for the
mentioned
classification
DOID:12043.

Alpha
thalassemia

genetic
disease

hematopoietic
system
disease

hematopoietic
system disease

hemoglobinopathy DOID:2860 The disease is mainly a
hemoglobin
disorder with
hematological
phenotypes.

Kabuki syndrome syndrome immune sys-
tem disease

Not anatomical
- multisystems

- - -

Amyloidosis disease of
metabolism

immune sys-
tem disease

Not anatomical -
multisystems

- - -

Fatty liver disease disease of
metabolism

musculoskeletal
system
disease

gastrointestinal
system disease

- - -

Renal-hepatic-
pancreatic
dysplasia

physical
disorder

musculoskeletal
system
disease

Cannot specify
(affect multiple
parts)

- - -

Radioulnar syn-
ostosis

physical
disorder

musculoskeletal
system
disease

musculoskeletal
system disease

bone development
disease/Synostosis

DOID:0080006/
DOID:11971

There is already an
entity in the DO for
synostosis under
bone development
disease.

Hypophosphatasia genetic
disease

musculoskeletal
system
disease

musculoskeletal
system disease

bone remodeling
disease

DOID:0080005 We could suggest
an additional
classification based
on the main affected
system. Our
suggestive
classification is
musculoskeletal since
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Table 4 Sample of manually analyzed disease terms classified as affecting particular anatomical systems (Continued)

the disease is mainly
affecting
mineralization of
the bone with
phenotypes similar to
those of Rickets
DOID:10609.

Narcolepsy disease of mental
health

nervous
system
disease

nervous system
disease

* * *

Aceruloplasminemia disease of metabolism nervous
system
disease

nervous system
disease

neurodegeneration
with brain iron
accumulation

DOID:0110734 The disease main
pathophysiology is
either the absence
or dysfunction of
ceruloplasmin with
subsequent iron
accumulation in
various organ, mainly
the brain.

Glomangiomatosis disease of cellular pro-
liferation

nervous
system
disease

cardiovascular
system disease

- - -

Deafness-dystonia-
optic neuronopathy
syndrome

disease of metabolism nervous sys-
tem disease

nervous system
disease

nervous system
disease; since it
covers many
subclasses to
which we can map
many aspects of
this disease

DOID:863 The disease’s
phenotypes reflect
neurological affection
ofmultiple parts in the
nervous system.

Trophoblastic
neoplasm

disease of cellular
proliferation

reproductive
system
disease

reproductive
system disease

Female
reproductive organ
cancer

DOID:120 The term refers to the
group of
malignant neoplasms
that consist of
abnormal
proliferation of
trophoblastic tissues
similar to
choriocarcinoma
DOID:3596 and
gestational
trophoblastic
neoplasia
DOID:3590.

Cryptorchidism physical disorder reproductive
system
disease

reproductive
system disease

testicular disease DOID:2519 The term refers to
undescended testicle.

*Nacrolepsy: is classified as a sleep disorder which is correct, however, the class itself is a subclass to mental disorders. Since there are some neurological disorders that have
shown a strong association with sleep disorder such as: neurodenegrative disorders such as tauopathy which involve Alzheimer’s diseases (DOID:10652) [51],
synucleinopathy which involve Parkinsonism (DOID:14330) [52], and Genetic neurodegenerative disorders such as Machado-Joseph disease (DOID:1440) [53] or
Huntington’s disease (DOID:12858) [54]. We suggest a new classification in which sleep disorders may also be a subclass of nervous system diseases (neurodegenerative
disorder) [55] The terms in bold represent the correctly validated terms (by a clinician) that classified as anatomical diseases terms using our method (in Anatomical disease
classification experiment).

approach on the DO [5] which is widely used in biomed-
ical research [56]. As case studies, we focused on two
high-level classes in the DO: Infectious Diseases and
Anatomical Diseases. We have evaluated our method both
using common performance measures in machine learn-
ing as well as through manually investigating some of the
predicted false positives.
When applying our method to the DO, our false positive

predictions often include phenotypes or, in some cases,
pathogens. It is well-established that it is challenging to

distinguish between diseases and phenotypes in litera-
ture [57–59], as evidenced by the large overlap between
disease ontologies and phenotype ontologies [19]. Simi-
larly, diseases and pathogens can often have very similar
names [60, 61], thereby making it challenging to distin-
guish between them. While a disease is defined as the
structural or functional disorder that usually results in
symptoms, signs and physical or chemical changes, phe-
notype refers to observable characteristics of an organism
and may be a part of a disease manifestation. Phenotype
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terms cover disease symptoms, signs and the investiga-
tional results that might be related to that disease. Some
phenotypic terms are more diverse; for example, con-
genital hemolytic anemia is a form of hemolytic anemia
with congenital onset. The term is included in both the
Human Phenotype Ontology (HP) (HP:0004804) and
disease ontology (DOID:589). From a clinical point of
view, it could be a type of disease under the umbrella
of hemolytic disorders with a congenital onset; however,
congenital hemolytic anemia may also be a phenotype for
certain diseases. For this reason, deciding on some terms
to be identified either as phenotypes or diseases can be
complex, challenging, and context-dependent.
Another limitation of our method is the use of theWha-

tizit tool [20] to detect and normalize mentions of ontol-
ogy classes in text. In our first use-case – the extension
of ontologies with new labels and synonyms – we classify
terms that occur in text without relying on any prior text
processing which has some drawbacks such as considering
a word as disease name within a general context. We use
Whatizit for our second use-case – the detection of sub-
class axioms – while the performance of Whatizit is less
than domain- and task-specific named entity recognition
and normalization tools [62], Whatizit’s key advantage
is that it is a lexical, rule-based method that does not
require any training and is able to recognize multi-word
terms.Whatizit can therefore be applied to a wide range of
ontologies without the need to generate a training dataset.
To evaluate the performance of Whatizit, we tested it on
the NCBI disease corpus [16] using their test set con-
taining 100 abstracts. In our evaluation, Whatizit has a
precision of 75% and recall of 15% and an F-score of 26%
with an accuracy of 90% (see Additional file 2). One of the
reasons for the low recall is the number of diseases which
are included in theMedical Subject Headings (MeSH) [63]
or the Online Mendelian Inheritance in Man (OMIM)
[64] vocabulary but not in DO. Furthermore, Whatizit
ignores many disease abbreviations since they are not
included in DO (and therefore in the vocabulary used by
Whatizit).

Conclusions
We presented a general method for semi-automatically
extending ontologies with new labels, synonyms, classes,
or some general subclass axioms. Our approach is based
on machine learning algorithms utilizing vector repre-
sentation of the ontology classes generated from full text
articles. We demonstrated the utility of our approach on
the Human Disease Ontology (DO), specifically by find-
ing new candidate classes, labels, and synonyms to add
to DO such as Aphthosis, and by identifying new axioms
that relate disease classes to their infectious agent or
anatomical systems. Our method can help to improve
the quality and coverage of ontologies in the ontology

development process by automatically suggesting terms
to include (either as labels of new classes or synonyms of
existing classes) and suggesting missing subclass axioms.
In the future, we plan to expand our study to other
ontologies and to defined classes to further analyze its
robustness.
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