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Abstract

Background: Genome wide association studies (GWAS) were conducted on 7,853,211 imputed whole genome
sequence variants in a population of 3354 to 3984 animals from multiple beef cattle breeds for five carcass merit
traits including hot carcass weight (HCW), average backfat thickness (AFAT), rib eye area (REA), lean meat yield
(LMY) and carcass marbling score (CMAR). Based on the GWAS results, genetic architectures of the carcass merit
traits in beef cattle were elucidated.

Results: The distributions of DNA variant allele substitution effects approximated a bell-shaped distribution for all
the traits while the distribution of additive genetic variances explained by single DNA variants conformed to a
scaled inverse chi-squared distribution to a greater extent. At a threshold of P-value < 107, 51, 33, 46, 40, and 38
lead DNA variants on multiple chromosomes were significantly associated with HCW, AFAT, REA, LMY, and CMAR,
respectively. In addition, lead DNA variants with potentially large pleiotropic effects on HCW, AFAT, REA, and LMY
were found on chromosome 6. On average, missense variants, 3'UTR variants, 5'UTR variants, and other regulatory
region variants exhibited larger allele substitution effects on the traits in comparison to other functional classes. The
amounts of additive genetic variance explained per DNA variant were smaller for intergenic and intron variants on
all the traits whereas synonymous variants, missense variants, 3'UTR variants, 5'UTR variants, downstream and
upstream gene variants, and other regulatory region variants captured a greater amount of additive genetic
variance per sequence variant for one or more carcass merit traits investigated. In total, 26 enriched cellular and
molecular functions were identified with lipid metabolisms, small molecular biochemistry, and carbohydrate
metabolism being the most significant for the carcass merit traits.
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carcass merit traits in beef cattle.

Carcass merit traits, Beef cattle,

Conclusions: The GWAS results have shown that the carcass merit traits are controlled by a few DNA variants with
large effects and many DNA variants with small effects. Nucleotide polymorphisms in regulatory, synonymous, and
missense functional classes have relatively larger impacts per sequence variant on the variation of carcass merit
traits. The genetic architecture as revealed by the GWAS will improve our understanding on genetic controls of
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Background

Carcass merit traits are important to beef production as
they directly determine carcass yield, grade, and consumer
preferences for meat consumption, and therefore profitabil-
ity. Genetic improvement of carcass merit traits has been
made possible by recording pedigree and/or performance
data to predict genetic merit of breeding candidates. How-
ever, carcass merit traits are expressed at later stages of ani-
mal production and are mostly assessed at slaughter, which
sacrifices potential breeding stock although real-time ultra-
sound imaging technologies can be used to measure some
carcass traits such as backfat thickness, longissimus dorsi
muscle area, and marbling score on live animals [1]. With
the discovery of DNA variants and development of a 50 K
SNP panel that covers the whole genome for cattle [2],
utilization of DNA markers in predicting genetic merit such
as genomic selection holds great promise to accelerate the
rate of genetic improvement by shortening the gener-
ation interval and/or by increasing the accuracy of
genetic evaluation [3, 4]. However, the accuracy of
genomic prediction for carcass traits in beef cattle
still needs to be improved for wider industry applica-
tion of genomic selection [5-7]. Although collection
of more data on relevant animals to increase the
reference population size will improve the genomic
prediction accuracy, better understanding on genetic
architecture underlying complex traits such as carcass
merit traits will help develop a more effective gen-
omic prediction strategy to further enhance feasibility
of genomic selection in beef cattle [8, 9].

Early attempts to understanding the genetic control of
quantitative traits in beef cattle were made with the de-
tection of chromosomal regions or quantitative trait loci
(QTL) [10, 11]. However, these QTLs are usually local-
ized at relatively large chromosomal regions due to rela-
tively low density DNA marker panels used at the time
[8, 12, 13]. With the availability of the bovine 50 K SNP
chips [2] and high density (HD) SNPs (Axiom™
Genome-Wide BOS 1 Bovine Array from Affymetrix®,
USA, termed “HD” or “AffyHD” hereafter), identification
of significant SNPs associated with carcass merit traits
have led to better fine-mapped QTL regions. All these

studies have resulted in multiple QTL candidates for
carcass traits in beef cattle, and an extensive QTL data-
base has been created and is available at the Cattle QTL
database [14]. In addition, identification of causative mu-
tations underlying the QTL regions has been attempted
through association analyses between selected positional
and functional candidate gene markers and the traits
[10, 15-21]. These identified QTLs and candidate gene
markers have improved our understanding on the gen-
etic influence of DNA variants on carcass traits in beef
cattle. However, the genetic architecture including causal
DNA variants that control the carcass traits still remains
largely unknown.

The recent discovery and functional annotation of tens
of millions of DNA variants in cattle has offered new op-
portunities to investigate whole genome wide sequence
variants associated with complex traits in beef cattle
[22]. The whole genome sequence (WGS) variants repre-
sent the ideal DNA marker panel for genetic analyses as
they theoretically contain all causative polymorphisms.
Although whole genome sequencing on a large number
of samples may be impractical and cost prohibitive at
present, imputation of SNPs from genotyped lower-
density DNA panels such as the 50 K SNP panel up to
the WGS level may provide a valuable DNA marker
panel for genetic analyses including GWAS due to its
high DNA marker density. In a companion study, we
imputed the bovine 50 K SNP genotypes to whole gen-
ome sequence (WGS) variants for 11,448 beef cattle of
multiple Canadian beef cattle populations and retained
7,853,211 DNA variants for genetic/genomic analyses
after data quality control of the imputed WGS variants
[23]. We also reported the GWAS results for feed effi-
ciency and its component traits based on the 7,853,211
DNA variants in a multibreed population of Canadian
beef cattle [23]. The objective of this study was to fur-
ther investigate the effects of the imputed 7,853,211
WGS DNA variants (or termed as 7.8 M DNA variants
or 7.8 M SNPs in the text for simplicity) on carcass
merit traits including hot carcass weight (HCW), average
backfat thickness (AFAT), rib eye area (REA), lean meat
yield (LMY), and carcass marbling score (CMAR).
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Results

Descriptive statistics and heritability estimates for carcass
merit traits

Means and standard deviations of raw phenotypic values
for the five carcass merit traits in this study (Table 1)
are in line with those previously reported in Canadian
beef cattle populations [24, 25]. Heritability estimates of
the five carcass merit traits based on the marker-based
genomic relationship matrix (GRM) constructed with
the 50 K SNP panel ranged from 0.28 + 0.03 for AFAT
to 0.40 £ 0.03 for HCW (Table 1). With the GRMs of
the imputed 7.8 M DNA variants, we observed increased
heritability estimates for all the five investigated traits,
ranging from 0.33 £ 0.03 to 0.35 + 0.04 (or 6.1% increase)
for LMY and from 0.40 + 0.03 to 0.49 + 0.03 (or 22.5%
increase) for HCW without considering their SE. These
corresponded to an increase in additive genetic variances
explained by the 7.8 M DNA variants from 5.7% for
LMY to 24.0% for HCW, which indicated that the im-
puted 7.8 M DNA variants were able to capture more
genetic variance than the 50 K SNP panel, with different
scales of increment depending on the trait. DNA
marker-based heritability estimates for all five traits
using both 50 K SNPs and imputed 7.8 M DNA variants
are slightly smaller than the pedigree based heritability
estimates that were obtained from a subset of animals
from the population [24], suggesting that neither the 50
K SNP panel nor the 7.8 M DNA variants may capture
the full additive genetic variance.

Comparison of GWAS results between 7.8 M and 50 K SNP
panels

At the suggestive threshold of P-value <0.005 as pro-
posed by Benjamin et al. [26], the GWAS of the imputed
7.8 M SNPs detected a large number of SNPs in associ-
ation with the traits, ranging from 42,446 SNPs for LMY
to 45,303 SNPs for AFAT (Table 2). The numbers of
additional or novel significant SNPs detected by the 7.8
M DNA panel in comparison to the 50 K SNP GWAS
were presented in Table 2, ranging from 31,909 for REA
to 34,227 for AFAT. The majority of the suggestive
SNPs identified by the 50 K SNP panel GWAS for the

Page 3 of 22

five carcass merit traits (ranging from 85% for AFAT to
91% for CMAR) were also detected by the imputed 7.8
M SNP GWAS at the threshold of P-value < 0.005. Fur-
ther investigation showed that all of these suggestive sig-
nificant SNPs detected by the 50 K SNP panel GWAS
were also significant by the 7.8 M SNP GWAS if the sig-
nificance threshold was relaxed to P-value < 0.01, indi-
cating that the imputed 7.8 M SNP panel GWAS was
able to detect all the significant SNPs of the 50 K SNP
panel. The small discrepancy in P-values of each SNP
between the two DNA variant panels is likely due to the
different genomic relationship matrices used. This result
is expected as the 7.8 M DNA variant panel included all
SNPs in the 50K panel and this study used a single
marker based model for GWAS. These additional or
novel significant SNPs detected by the 7.8 M DNA
marker panel corresponded to the increased amount of
additive genetic variance captured by the 7.8 M DNA
variants in comparison to the 50 K SNP panel, indicating
that the imputed 7.8 M DNA variants improved the
power of GWAS for the traits. Therefore, we will focus
on the GWAS results of the 7.8 M DNA variants in
subsequent result sections.

DNA marker effects and additive genetic variance related
to functional classes

Plots of the allele substitution effects of imputed 7,853,
211 WGS variants showed a bell-shaped distribution for
all the traits (Additional file 1: Figure S1). Distributions
of additive genetic variances explained by single DNA
variants followed a scaled inverse chi-squared distribu-
tion for all the five traits to a greater extent (Additional
file 1: Figure S1). When the DNA marker or SNP effects
of the 9 functional classes were examined, differences in
their average squared SNP allele substitution effects
were observed as shown in Table 3. In general, missense
variants, 3UTR, 5’'UTR, and other regulatory region var-
iants exhibited a larger effect on all five carcass merit
traits investigated in comparison to DNA variants in
other functional classes. Intergenic variants and intron
variants captured a greater amount of total additive
genetic variance for all five carcass traits. However, the

Table 1 Descriptive statistics of phenotypic data, additive genetic variances and heritability estimates based on the 50 K SNP and
the imputed 7.8 M whole genome sequence (WGS) variants in a beef cattle multibreed population for carcass merit traits

Traits® n mean (sd) 50K 0% & SE 50K h?+ SE 78M 0% £ SE 78 M h? £ SE
HCW 3984 337.26 (35.42) 335.77 £ 2339 040 + 0.03 41626 + 3560 049 + 0.03
AFAT 3354 1111 (4.70) 315+035 028 + 003 352+050 032+ 004
REA 3979 8546 (11.92) 2815+ 219 036 + 003 3296 + 334 042 + 003
LMY 3367 5743 (5.02) 349 £ 034 033+ 003 369 £ 049 035+ 004
CMAR 3928 406 (89) 113698 + 10448 029 + 003 132630 + 156.30 034 + 003

@HCW hot carcass weight in kg, AFAT average backfat thickness in mm, REA rib eye area in cm?, LMY lean meat yield in %, CMAR carcass marbling score from 100
(trace marbling) to 499 (more marbling). mean (SD) = mean of raw phenotypic values and standard deviation (SD), 0, + SE = additive genetic variance + standard

error (SE), h? + SE = heritability estimate + SE
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Table 2 A summary of number of significant DNA variants detected by the 7.8 M WGS variant GWAS for carcass merit traits in a

beef cattle multibreed population

Trait® HCW AFAT REA LMY CMAR
Suggestive (p < 0.005) 42,612 (32,240) 45,303 (34,227) 42,544 (31,909) 42,446 (33,305) 44,654 (33,211)
Lead Suggestive 3927 (3621) 3922 (3598) 3993 (3705) 3906 (3606) 4158 (3827)
Significant (p < 107°) 1413 (374) 260 (162) 1171 (254) 312 (198) 256 (145)

Lead Significant 51(27) 33 (23) 46 (25) 40 (31) 38 (28)

FDR (FDR < 0.10) 1997 (374) 183 (97) 1255 (254) 168 (86) 107 (59)

Lead FDR (FDR <0.10) 51 (27) 15 (9) 46 (25) 16 (11) 12 (8)

2HCW hot carcass weight in kg, AFAT average backfat thickness in mm, REA rib eye area in cm?, LMY lean meat yield in %, CMAR carcass marbling score from 100
(trace marbling) to 499 (more marbling). FDR = genome-wise false discovery rate (FDR) calculated from the Benjamini-Hochberg procedure [27]. The numbers of
additional or novel significant SNPs in comparison to the 50 K SNP panel were presented in the parentheses

relative proportion of additive genetic variance explained
per sequence variant by intergenic and intron variants
was smaller than those of other functional classes. Rela-
tively, missense variants captured a greater amount of
additive genetic variance per sequence variant for REA,
LMY, and CMAR while 3UTR explained more additive
genetic variance per DNA variant for HCW, AFAT, and
REA. DNA variants in 5UTR and other regulatory
region variants also showed a greater amount of additive
genetic variance explained per sequence variant for
CMAR and for CMAR and REA, respectively. Although
synonymous variants had relatively smaller averages of
squared SNP allele substitution effects, a single DNA
variant in the synonymous functional class accounted
for more additive genetic variance for AFAT, REA, LMY
and CMAR. In addition, both the downstream and
upstream gene variants were found to capture more additive
genetic variance per sequence variant for HCW (Table 3).

Top significant SNPs associated with carcass merit traits
The suggestive lead SNPs associated with HCW, AFAT,
REA, LMY, and CMAR in Table 2 were distributed
across all the autosomes as shown in the Manhattan
plots of 7.8 M DNA variant GWAS (Fig. 1). The num-
bers of lead SNPs were dropped to 51, 33, 46, 40, and 38
for HCW, AFAT, REA, LMY, and CMAR, respectively,
at a more stringent threshold of P-value < 10, of which
51, 15, 46, 16, and 12 lead significant SNPs reached a
FDR<0.10 for HCW, AFAT, REA, LMY, and CMAR,
respectively (Table 2).

The lead significant SNPs at the nominal P-value <10~ °
for the five carcass merit traits were distributed on multiple
autosomes (Fig. 2). In general, SNP with larger effects were
observed on BTA6 for HCW, AFAT, LMY, and REA. For
CMAR, SNPs with relatively larger effects were located on
BTA1 and BTA2 (Additional file 2). To show lead SNPs on
each chromosome, Table 4 lists top significant lead SNPs
with larger phenotypic variance explained on each chromo-
some. The top lead variant Chr6:39111019 for HCW on
BTA6 was an INDEL located 118,907 bp from gene LCORL
and explained 4.79% of the phenotypic variance. SNP

rs109658371 was another lead SNP on BTA6 and it ex-
plained 4.65% of phenotypic variance for HCW. Addition-
ally, SNP rs109658371 was located 102,547 bp upstream of
the top SNP Chr6:39111019 and it is 221,454 bp away from
the nearest gene LCORL. Outside BTA6, two other SNPs
rs109815800 and rs41934045 also had relatively large effects
on HCW, explaining 3.41 and 1.47% of phenotypic variance
and are located on BTA14 and BTA20, respectively. SNPs
rs109815800 is 6344 bp away from gene PLAGI whereas
SNP rs41934045 is located in the intronic region of gene
ERGICI. For AFAT, two lead SNPs explaining more than
1% of phenotypic variance included SNP rs110995268 and
SNP rs41594006. SNP rs110995268 is located in the
intronic region of gene LCORL on BT A6, explaining 2.87%
of phenotypic variance. SNP rs41594006, which explained
1.07% of phenotypic variance, is 133,040 bp away from gene
MACCI on BTA4. SNPs rs109658371 and rs109901274 are
the two lead SNPs on different chromosomes that ex-
plained more than 1% of phenotypic variance for REA.
These two lead SNPs are located on BTA6 and BTA?7, re-
spectively. SNP rs109658371 accounted for 3.32% of pheno-
typic variance for REA and is 221,454 bp away from gene
LCORL while SNP rs109901274 is a missense variant of
gene ARRDC3, explaining 1.11% of phenotypic variance for
REA. For LMY, SNPs rs380838173 and rs110302982 are
the two lead SNPs with relatively larger effects. Both SNPs
are located on BTA®6, explaining 2.59 and 2.53% of pheno-
typic variance respectively. SNP 15380838173 is 128,272 bp
away from gene LCORL while SNP rs110302982 is only
5080 bp away from gene NCAPG. For CMAR, two lead
SNPs rs211292205 and rs441393071 on BTA1 explained
1.20 and 1.04% of phenotypic variance. SNP rs211292205 is
50,986 bp away from gene MRPS6 while SNP rs441393071
was an intron SNP of gene MRPS6. The rest of the lead
significant SNPs for CMAR accounted for less than 1% of
phenotypic variance (Table 4).

Enriched molecular and cellular and gene network

With a window of 70kbp extending upstream and down-
stream of each of the lead SNPs at FDR < 0.10, 319 can-
didate genes for HCW, 189 for AFAT, 575 for REA, 329
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(a) HCW

(b) AFAT

(¢) REA

(d) LMY

(e) CMAR

Fig. 1 Manhattan plots of GWAS results based on the imputed 7.8 M
DNA variant panel for (a) hot carcass weight (HCW), (b) average
backfat thickness (AFAT), (c) rib eye area (REA), (d) lean meat yield
(LMY), and (e) carcass marbling score (CMAR). The vertical axis
reflects the —log;o (P) values and the horizontal axis depicts the
chromosomal positions. The blue line indicates a threshold of

P-value < 0.005 while the red line shows the threshold of Pvalue < 10™°

for LMY, and 198 for CMAR were identified based on
annotated Bos taurus genes (23,431 genes on autosomes
in total) that were downloaded from the Ensembl Bio-
Mart database (accessed on 8 November, 2018) (Add-
itional file 1: Figure S4b). Of the identified candidate
genes, 308, 180, 557, 318, and 188 genes were mapped
to IPA knowledge base for HCW, AFAT, REA, LMY,
and CMAR, respectively. In total, we identified 26
enriched molecular and cellular functions for AFAT,
CMAR, and REA, and 25 functions for HWC and LMY
at a P-value < 0.05 as presented in Additional file 1: Fig-
ure S2. Of all the five traits, lipid metabolism was among
the top five molecular and cellular functions for AFAT,
REA, LMY, and CMAR. For HCW, lipid metabolism was
the sixth highest biological function involving 46 of the
candidate genes. Across the five traits, the lipid related
genes are primarily involved in the synthesis of lipid,
metabolism of membrane lipid derivatives, concentration
of lipid, and steroid metabolism processes as shown in
the gene-biological process interaction networks (Add-
itional file 1: Figure S3). Interestingly 18 genes involved
in lipid synthesis including ACSL6, CFTR, NGEFR,
ERLINI, TFCP2L1, PLEKHA3, ST8SIAI, PPARGCIA,
MAPKI, PARD3, PLA2G2A, AGMO, MOGAT2, PIGP,
PIK3CB, NR5A1, CNTFR, and BMP7 are common for all
the four traits. It is also worth noting that 18 (AGMO,
BID, BMP7, CFTR, CLEC11A, GNAIL, MOGAT2, MRAS,
NGFR, NRS5SAI, P2RY13, PDK2, PIK3CB, PLA2G2A,
PPARGCIA, PPARGCIB, PTHLH, and ST8SIA1) of the
31 genes involved in lipid metabolism for AFAT have
roles in lipid concentration.

Additionally, our results also revealed small molecular
biochemistry and carbohydrate metabolism as other
important molecular and cellular processes for AFAT,
CMAR, HCW, and LMY (Additional file 1: Figure S3).
Some of the major enriched subfunctions or biological
processes related to carbohydrate metabolism included
uptake of carbohydrate, synthesis of carbohydrate, and
synthesis of phosphatidic acid as shown in the gene-
biological process interaction networks (Additional file 1:
Figure S3). For REA, cell morphology, cellular assembly
and organization, cellular function and maintenance are
the top enriched molecular processes in addition to lipid
metabolism and molecular transport. The major enriched
biological processes and subfunctions related within cell
morphology function included transmembrane potential,
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Fig. 2 Distribution of lead SNPs at P-value < 10™ > on Bos taurus autosomes (BTA) for hot carcass weight (HCW), average backfat thickness (AFAT),
rib eye area (REA), lean meat yield (LMY), and carcass marbling score (CMAR). The blue dots indicate a threshold of P-value < 10™° while the red
dots show the threshold of both P-value < 10™° and genome-wise false discovery rate (FDR) < 0.10

transmembrane potential of mitochondria, morphology of
epithelial cells, morphology of connective tissue cells, and
axonogenesis as presented in (Additional file 1: Figure S3).
For cellular function and maintenance, the genes are
mainly involved in organization of cellular membrane,
axonogenesis, the function of mitochondria, and trans-
membrane potential of the cellular membrane. The genes
involved in these processes and subfunctions are also
shown in Additional file 1: Figure S3. Table 5 lists all the
genes involved in each of the top five enriched molecular
processes for each trait while examples of the gene net-
work for lipid metabolism and carbohydrate metabolism
are presented in Additional file 1: Figure S3.

Discussion

The value of the imputed 7.8 M whole genome sequence
variants on GWAS

With the 50 K SNPs (N =30,155) as the base genotypes,
a reference population of 4059 animals of multi-breeds

genotyped with the Affymetrix HD panel, and a panel of
1570 animals with WGS variants from run 5 of the 1000
Bull Genomes Project, we achieved an average imput-
ation accuracy of 96.41% on 381,318,974 whole genotype
sequence variants using FImpute 2.2 [28]. This average
imputation accuracy is comparable to the imputation ac-
curacy previously obtained in beef cattle [29] but slightly
lower than that in dairy cattle [30, 31]. However, the
imputation accuracy over a validation dataset of 240
animals varied among individual DNA variants, with a
range from 0.42 to 100% (data not shown). To ensure a
higher quality of imputed WGS DNA variants, we
removed imputed WGS DNA variants with an average
imputation accuracy less than 95% of the 5-fold cross-
valuation at each individual DNA variant, MAF < 0.5%,
and deviation from HWE at P-value <10~ >, leaving 7,
853,211 DNA variants for GWAS. With this WGS DNA
panel, we demonstrated that the additive genetic vari-
ance and corresponding heritability estimates increased
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Table 5 Five topmost significantly enriched biological functions for carcass merit traits, and genes involved in the specific function

Trait?

Biological Function

Genes Involved in the biological function

HCW

AFAT

REA

LMY

Gene expression (23)
Carbohydrate metabolism
(26)

Nucleic acid metabolism (18)

Small molecule biochemistry
(54)

Molecular transport (45)

Carbohydrate metabolism
22)

Nucleic acid metabolism (10)
Small molecule biochemistry
(36)

Lipid metabolism (31)

Cell morphology (25)

Cell morphology (71)

Cellular assembly and
organization (58)

Cellular function and
maintenance (51)

Lipid metabolism (77)

Molecular transport (105)

Gene expression (23)

Lipid metabolism (47)

BMP7, BTRC, CTCFL, DTX1, HIF3A, IRF9, KAT7, KDM8, LGALS1, MAPK1, MRAS, MS4A15, NFIA, NR5AT, PARD3, PCTP,
PEG10, PPARGCIA, RNF4, RXRB, SIAH1, TADA3, TFCP2L1

AGMO, ALPI, BID, BMP7, CMAS, CYP2J2, FCGR2B, GRPR, KDMS, LGALS1, MAPKT, MRAS, NGFR, PARD3, PCTP, PDK2,
PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGCIA, PRKCB, PTHLH, ST8SIA1, UGT2B17, VDACI

ADCY4, ATP5PF, BMP7, CFTR, CMAS, GART, GNAI1, GRPR, MAPK1, NUDTS, OLA1, PDK2, PPARGCIA, PRKCB, PTHLH,
SLC25A5, ST8SIAT, VDACT

ACSL6, AGMO, AKR1C3, AKR1C4, ALPl, ANGPTL4, ATP5PF, BID, BMP7, CFTR, CLECT1A, CMAS, CNTFR, CYP2J2, DHRS4,
ELOVL4, ERLINT, FCGR2B, GBA3, GNAIT, GRPR, INHA, KCNE2, KCNETB, LGALS1, MAPKI, MOGAT2, MRAS, NGFR, NR5AT,
P2RY13, PARD3, PCCB, PCSK2, PCTP, PDK2, PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGCIA, PPARGC1B, PRKCB, PTHLH,
RXRB, SLC22A6, STSSIAT

TFCP2L1, TGM1, TTR, UGT2B11, UGT2B17, UPK2, VDACI

ACSL6, AGMO, ALPI, ANGPTL4, ATP10A, ATP6VIE], ATP6V1GI, BID, BMP7, CA4, CCS, CFTR, CLECT1A, CLIC4, CNTFR,
COQ7, FCGR2B, GNAIT, GRPR, HBA1/HBA2, INHA, KCNE2, KCNE1B, KCNK2, LGALS1, MAPKT, MOGAT2, MRAS, NGFR,
NR5A1, P2RY13, PCTP, PDK2, PIK3CB, PLA2G2A, PPARGCI1A, PPARGCI1B, PRKCB, PTHLH, SLC20A2, SLC22A6, STSSIAT,
TTR, UPK2, VDACI

AGMO, BID, BMP7, CMAS, GRPR, KDM8, LGALS1, MAPK1, MRAS, NGFR, PARD3, PDK2, PIK3CB, PLA2G2A, PPARGCIA,
PPARGCIB, PTHLH, ST8SIA1, UGT2B17

BID, BMP7, CMAS, GART, GNAI1, GRPR, MAPK1, PDK2, STSSIAT, UGT2B17

ACSL6, AGMO, BID, BMP7, CFTR, CLECT1A, CMAS, CNTFR, DHRS4, ERLINT, GART, GBA3, GNAI1, GRPR, KDM8, LGALS],
MAPK1, MOGAT2, MRAS, NGFR, NR5A1, P2RY13, PARD3, PDK2, PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGCIA,
PPARGCIB, PTHLH, SLC22A6, ST8SIAT, TFCP2L1, TGM1, UGT2B17

ACSL6, AGMO, BID, BMP7, CFTR, CLECT1A, CNTFR, DHRS4, ERLINT, GBA3, GNAI1, LGALS1, MAPK1, MOGATZ2, MRAS,
NGFR, NR5A1, P2RY13, PARD3, PDK2, PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGCIA, PPARGCIB, PTHLH, ST8SIAT,
TFCP2L1, TGM1, UGT2B17

BID, BMP7, BTRC, CFTR, CLECT1A, CLIC4, CNTFR, FSCN1, GDF3, KCNK2, LGALS1, MAPK1, MRAS, NDUFABIT, NGFR,
NR5A1, PCSK2, PLA2G2A, PLXNB2, PPARGCIA, PPARGC1B, PTHLH, SERPINA3, ST8SIA1, UPK2

BID, CAMP, CCND1, CD4, CERS5, CFTR, CHL1, CLECT1A, CLIC4, CNTFR, CSTB, CUL3, DVL1, EPO, FGLI1, GDF3, GSDMD,
HAND1, HAUS4, HELLS, INHA, INTU, KCNK2, KIFT1, KIFC1, LGALS]T, LIF, LIMK2, MAPK1, MAPT, NDUFAB1, NEFH, NFIA,
NGFR, NTRK2, OSMR, P2RY12, PALLD, PCTP, PEG10, PLXNB2, PPARGCIA, PPARGC1B, PTHLH, PTPN1, RNF4, SCYLI,
SERPINA3, UCP1, UPK2

AMPH, ARHGAP32, ARPC4, ATG4B, ATG4C, ATLI1, BID, CAMP, CBLB, CCND1, CD4, CFTR, CLECT1A, CLIC4, CLTB, CSTB,
CTDNEP1, DRP2, DVL1, EPO, EXO5, HAND1, IDE, KCNK2, KIF11, KIF13B, KIFC1, KLHDC8B, LANCLI, LGALST, LIF, MAPT,
NDUFAB1, NDUFS2, NEFH, NFIA, NGFR, NLGNT, NR5A1, NTRK2, OLA1, P2RY12, PALLD, PARD3, PLXNB2, POLG,
PPARGCIA, PPARGCIB, REPS2, SERPINA3, SLC25A5, SNX9, SRCINT, TP53INP1, TRAK2, TIR, UCPI1, VDACT

ARHGAP32, ARMC4, ATLI, BID, CAMP, CCDC103, CCDC39, CCND1, CD4, CELSR2, CLECT1A, CLIC4, COQ7, CSTB, DVLI,
EPO, FCGR2B, HANDI, IDE, IFNA2, KCNK2, KIF11, KIF13B, KIFC1, LANCLI1, LGALST, LIF, MAPT, NDUFAB1, NDUFS2,
NEFH, NFIA, NGFR, NLGNT, NMNAT3, NTRK2, PARD3, PLXNB2, POLG, PPARGC1A, PPARGCIB, SCYLI1, SERPINA3, SS18,
ST8SIAT, TCF7L1, TFCP2L1, TP53INP1, TRAK2, UCP1, VDACI

ABHD3, ACSL6, AGMO, AKR1C3, AKR1C4, AKR1C1/AKR1C2, ALPI, ANGPTL4, ANGPTL6, ATP5PF, BID, BMP7, C3AR1,
CAMP, CD4, CERSS, CFTR, CLDN16, CLECT1A, CNTFR, CTDNEP1, CYP2C18, CYP2J2, CYP7B1, DEGS2, DHRS4, ELOVL4,
EPO, ERLINT, FCGR2B, FGLI, GBA3, GNAIT, GPC3, IL1RN, INHA, KCNETB, KIF13B, KLF15, LGALST, LIF, MAPKI1, MAPT,
MOGAT2, MRAS, NGFR, NONO, NR5A1, NTRK2, OSMR, P2RY12, P2RY13, PARD3, PCTP, PDK2, PIGP, PIK3CB, PLA2G2A,
PLEKHA3, POLG, PPARGCIA, PPARGCIB, PRKCB, PTHLH, PTPN1, RENBP, RGS2, RXRB, SERPINEZ2, STSSIAT, TFCP2L1,
TRHR, TTR, UCP1, UGT2B4, UGT2B11, UGT2B17

ACSL6, AGMO, AKR1C4, AKR1CI1/AKR1C2, ALPl, ANGPTL4, ANGPTL6, AOC3, APPBP2, ATP10A, ATP6VIEI, ATP6VIGI,
BID, BMP7, C3AR1, CA4, CAMP, CBLB, CCS, CD4, CERS5, CFTR, CLDN16, CLECT1A, CLIC4, CNTFR, COQ7, CTDNEPI,
DIO3, DUOXA2, DVL1, ELOVL4, EPO, FCGR2B, FGL1, GCNT4, GNAIT, GPC3, GRPR, HBAT/HBA2, IL1RN, INHA, IP6K1,
KCNABI, KCNE2, KCNE1B, KCNK2, KDMS, KIF13A, KIF13B, KLF15, LGALS1, LIF, MAPK1, MAPT, MOGATZ2, MRAS, NDCI,
NGFR, NONO, NR5AT, NTRK2, OGG1, OSMR, P2RY12, P2RY13, PCSK2, PCTP, PDK2, PIK3CB, PKN1, PLA2G2A, POLG,
PPARGCIA, PPARGCI1B, PRKCB, PTGERI, PTHLH, PTPN1, RENBP, RXRB, SCN9A, SLC16A4, SLC20A2, SLC22A6, SLC37A2,
SLC39A7, SLC6A7, SLC8B1, SMG6, SNX9, SRCINT, ST8SIAT, STRADA, STRADB, SVBP, SYNDIG1, TMED2, TP53INPI,
TRAK2, TRHR, TTR, UCP1, VDACI, ZFP36L1

BMP7, BTRC, CTCFL, DTX1, HIF3A, IRF9, KAT7, KDM8, LGALS1, MAPK1, MRAS, MS4A15, NFIA, NR5AT, PARD3, PCTP,
PEG10, PPARGCIA, RNF4, RXRB, SIAHI, TADA3, TFCP2L1

ACSL6, AGMO, AKR1C3, AKR1C4, ALP|, ANGPTL4, ATP5PF, BID, BMP7, CFTR, CLECTIA, CNTFR, CYP2J2, DHRS4, ELOVL4,
ERLINT, FCGR2B, GBA3, GNAI1, INHA, KCNE1B, LGALST, LIF, MAPK1, MOGATZ2, MRAS, NGFR, NR5A1, P2RY13, PARD3,
PCCB, PCTP, PDK2, PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGCITA, PPARGCI1B, PRKCB, PTHLH, RXRB, ST8SIA1, TFCP2LI,
TTR, UGT2B11, UGT2B17
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Table 5 Five topmost significantly enriched biological functions for carcass merit traits, and genes involved in the specific function

(Continued)

Trait®  Biological Function

Genes Involved in the biological function

Small molecule biochemistry

ACSL6, AGMO, AKR1C3, AKR1C4, ALP|, ANGPTL4, ATP5PF, BID, BMP7, CFTR, CLECT1A, CMAS, CNTFR, CYP2J2, DHRS4,

(55) ELOVL4, ERLINT, FCGR2B, GBA3, GNAI1, GRPR, INHA, KCNE1B, KCNE2, LGALS1, LIF, MAPK1, MOGAT2, MRAS, NGFR,
NR5A1, P2RY13, PARD3, PCCB, PCSK2, PCTP, PDK2, PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGC1A, PPARGCIB, PRKCB,
PTHLH, RXRB, SLC22A6, ST8SIA1, TFCP2L1, TGM1, TTIR, UGT2B11, UGT2B17, UPK2, VDACI

Vitamin and mineral

metabolism (17) UGT2B17, VDACT

Carbohydrate metabolism

AKR1C3, AKR1C4, BMP7, CFTR, CYP2J2, DHRS4, INHA, LIF, NR5A1, P2RY13, PCTP, PPARGCIA, ST8SIA1, TTR, UGT2B11,

AGMO, ALPI, BID, BMP7, CMAS, CYP2J2, FCGR2B, GRPR, KDMS8, LGALS1, MAPKI1, MRAS, NGFR, PARD3, PCTP, PDK2,

(26) PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGCIA, PRKCB, PTHLH, ST8SIA1, UGT2B17, VDACI

CMAR  Carbohydrate Metabolism

AGMO, BID, BMP7, CMAS, GNAIT, GRPR, KDMS8, LGALS1, MAPKI1, MRAS, NGFR, PARD3, PCTP, PDK2, PIGP, PIK3CB,

(23) PLA2G2A, PLEKHA3, PPARGCIA, PPARGCIB, PTHLH, ST8SIA1, UGT2B17

Nucleic acid metabolism (10)

Small molecule biochemistry

BID, BMP7, CMAS, GART, GNAI1, GRPR, MAPK1, PDK2, ST8SIAT, UGT2B17
ACSL6, AGMO, AKR1C3, AKR1C4, BID, BMP7, CFTR, CLECT1A, CMAS, CNTFR, DHRS4, ERLINT, GART, GBA3, GNAI1,

(40) GRPR, KDM8, LGALS1, MAPK1, MOGATZ2, MRAS, NGFR, NR5A1, P2RY13, PARD3, PCSK2, PCTP, PDK2, PIGP, PIK3CB,
PLA2G2A, PLEKHA3, PPARGCIA, PPARGCIB, PTHLH, SLC22A6, ST8SIAT, TFCP2L1, TGM1, UGT2B17

Cellular development (24)

AKR1C3, B9D1, BID, BMP7, CBLB, CLECT 1A, CLIC4, FSCNT, ITGAT1, ITIH4, KCNK2, LGALST, MAPK1, MRAS, NASP, NGFR,

NR5A1, PIK3CB, PPARGCIA, PTHLH, TGM1, UGT2B17, UPK2, ZFP36L1

Lipid metabolism (33)

ACSL6, AGMO, AKR1C3, AKR1C4, BID, BMP7, CFTR, CLECT1A, CNTFR, DHRS4, ERLINT, GBA3, GNAII, LGALS1, MAPK],

MOGAT2, MRAS, NGFR, NR5A1, P2RY13, PARD3, PCTP, PDK2, PIGP, PIK3CB, PLA2G2A, PLEKHA3, PPARGCIA,
PPARGCIB, PTHLH, ST8SIAT, TFCP2L1, UGT2B17

2HCW hot carcass weight in kg, AFAT average backfat thickness in mm, REA rib eye area in cm?, LMY lean meat yield in %, CMAR carcass marbling score from 100

(trace marbling) to 499 (more marbling)

by 6.1 to 22.5% for all the five carcass traits in compari-
son to the 50 K SNP panel (Table 1). Moreover, the 7,
853,211 DNA variant based GWAS identified additional
significant DNA variants for all five carcass merit traits
in comparison to the 50 K SNPs. In a companion study,
we also observed that the imputed 7.8 M DNA variants
accounted for more additive genetic variance and led to
identification of additional DNA variants that are asso-
ciated with feed efficiency and growth traits in beef
cattle [23], indicating that the imputed 7.8 M WGS
variants can improve the power of GWAS analyses for
beef cattle quantitative traits.

DNA marker effect distributions

The distributions of DNA marker allele substitution ef-
fects and the amounts of additive genetic variances ex-
plained by single DNA markers support the assumptions
of a normal distribution for SNP effects and a scaled
inverse-chi squared distribution for SNP additive genetic
variance used in previous studies [32, 33], although these
DNA marker effect distributions may be biased as
greater LD between DNA markers in the 7.8 M DNA
variant panel is expected and a single DNA marker
GWAS was used in this study. The 7.8 M DNA variant
GWAS also demonstrated that the majority of the vari-
ants had zero or near zero effects on all the five
carcass merit traits, and only a small fraction (< 0.1%) of
the 7,853,211 WGS variants passed the suggestive
threshold of P-value <0.005. This seems to correspond
well to a m value of approximately 99% that was com-
monly used as an assumption to shrink proportions of

SNPs to no effects in genetic analyses with high density
SNPs [34]. Another important aspect of quantitative trait
genetic architecture is whether the trait is affected by
many genes with small effects or by a few of genes with
large and/or modest effects plus genes with small effects.
The GWAS results based on the 7.8 M DNA variants
showed that HCW, LMY, and REA are likely influenced
by a few of genes with larger effects, explaining up to
4.79% phenotypic variance, and many genes with small
effects. However, for AFAT and CMAR, a few of genes
with modest effects and many genes with small effects
likely contribute to the variation of the traits (Table 4).

DNA marker effects related to SNP functional classes

Annotation of DNA variants into functional classes
allows for further dissection of DNA marker effects
on the trait to DNA variant functionality. The im-
puted 7.8 M DNA variants include a proportionally
larger number of DNA polymorphisms in each of the
functional classes, ranging from 3309 for 5UTR vari-
ants to 5,251,680 for intergenic region in comparison
to the lower density SNP panels such as the bovine
50 K SNPs, which was reported in the Additional files
of Zhang et al. (2019) [23]. For convenience, the an-
notation information of various DNA variant panels
has been provided in Additional file 3: Tables S1-S3
of this article. We used both the average squared al-
lele substitution effects of each functional class and
the additive genetic variance captured by a single
DNA variant within the functional class to assess
their relative importance in affecting the trait. For the
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average squared allele substitution effects, missense
variants, 3'UTR, 5’'UTR, and other regulatory region
variants exhibited a relatively larger allele substitution
effect on all five carcass merit traits in general in
comparison to variants in other functional classes. Al-
though the LD between DNA markers of different
functional classes and the singe DNA marker GWAS
used in this study may lead to biased estimates of the
DNA marker effect on the traits, the results are in
agreement with the expectation that missense variants
alter the peptide sequence of a protein, and greater
roles of 3’'UTR, 5’'UTR, and other regulatory variants
play in influencing gene expression and gene transla-
tion [35-37].

To provide further insight into relative importance of
each functional class, we fitted the GRM of the func-
tional class and GRM constructed from DNA variants of
all other functional classes simultaneously to estimate
the additive genetic variance captured by each functional
class. For each functional class, the sum of the additive
genetic variances captured by the two GRMs (Table 3)
was almost the same as the additive genetic variance ob-
tained by the GRM with all the imputed 7.8 M DNA var-
iants for all the traits (Table 1), indicating a reliable
partition of additive genetic variance for each function
class variants for the carcass merit traits. Although inter-
genic variants and intron variants captured a greater
amount of total additive genetic variance for all five
carcass merit traits, their relative proportion of additive
genetic variance explained per sequence variant was
smaller than other functional classes. These results con-
cur with the report by Koufariotis et al. [38] that the in-
tron and intergenic variants explained the lowest
proportion of the genetic variance per SNP for milk and
fertility traits in dairy cattle. Relatively smaller amount
of additive genetic variance captured per sequence vari-
ant in intron and intergenic regions were also observed
for feed efficiency related traits in beef cattle [23], which
is likely due to much larger numbers of DNA variants in
the class and the majority of them have small or zero ef-
fects on the traits. Of other functional classes, 3UTR ex-
plained more additive genetic variance per DNA variant
for HCW, AFAT, and REA while DNA variants in
5UTR and other regulatory variants also showed a
greater amount of additive genetic variance explained
per sequence variant for CMAR and for CMAR and
REA, respectively. It was found that missense variants
captured a greater amount of additive genetic variance
per sequence variant for REA, LMY, and CMAR. Al-
though synonymous variants had relatively small average
squared SNP allele substitution effects, a single DNA
variant in the functional class accounted for more addi-
tive genetic variance for AFAT, REA, LMY, and CMAR.
In addition, both the downstream and upstream gene
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variants were found to capture more additive genetic
variance per sequence variant for HCW (Table 3). These
results suggest that the relative contribution per DNA
variant of the functional classes to the additive genetic
variance might vary across different traits. Indeed, in a
study by Koufariotis et al. [39], functional classes includ-
ing splice sites, 3UTR, 5’'UTR, and synonymous variants
explained relatively a larger proportion of genetic vari-
ance per sequence variant for milk production traits but
not for fertility related traits.

It was observed that most top lead SNPs with larger
effects are located between genes or located in intronic
regions, although their average SNP effects or variances
captured by individual DNA variants were relatively
smaller than missense and regulatory DNA variants in-
cluding 3’'UTR and 5’UTR variants (Table 4). However,
there were cases for each trait where support SNPs had
either larger allele substitution effects or explained a lar-
ger percentage of phenotypic variance than those of their
lead SNPs but with a larger P-value. For instance, a mis-
sense variant rs42661323 at 4,916,731 bp on BTA20 had
an allele substitution effect of 10.73 on HCW, which was
larger than that (b=10.14) of its nearby lead SNP
rs41574252 located at 4863507 bp. However, the P-value
of the missense variant rs42661323 was 8.10 x 10~ ® and
was slightly larger than that (P-value=4.85x10"%, or
4.85E-08) of its lead SNP (Additional file 2). A similar
instance was found for missense variant rs379314731 of
gene ENSBTAG00000012585 (RAB3GAP2) at 24,332,
917bp on BTA16 for AFAT. The missense variant
rs379314731 had an allele substitution effect of - 0.64
on AFAT with a P-value of 8.76 x 10~ 7. However, its
nearby downstream gene SNP rs381910687 was selected
as the lead SNP due to its lower P-value of 5.89 x 10™’
although its allele substitution effect was slightly smaller
(i.e. b=-10.63). Therefore, support SNPs that are located
in more important functional classes such as missense
and regulatory variants are also worth further investiga-
tion. Additionally, as the imputed 7.8 M DNA variants
represent a proportion of whole genome DNA polymor-
phisms, the intergenic or intronic SNPs with larger ef-
fects may also be in LD with the causative DNA
variant(s) that are not present in the 7.8 M DNA variant
panel. In this case, fine mapping of QTL in the region of
lead SNPs is needed to identify the causative DNA vari-
ants for the trait.

QTLs for carcass merit trait in beef cattle

Mapping QTLs via linkage or association analyses are
subject to a false positive rate. Therefore, validation of
QTL or DNA variants associated with a trait in inde-
pendent studies provides confidence on the identified
candidate QTLs or DNA variants. We compared our
lead significant SNPs with the QTL regions reported in
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the Cattle QTL database (https://www.animalgenome.
org/cgi-bin/QTLdb/index, accessed on 22 August 2018)
[14]. With a window centered at the lead SNPs extend-
ing 70 kb upstream and downstream, 33, 17, 20, 3, and 0
were overlapped with reported QTL for HCW, AFAT,
REA, LMY, and CMAR, respectively (Additional file 3:
Table S4). With a window of 1 Mb, 41 of the 51 lead
SNPs for HCW, 20 of the 33 lead SNPs for AFAT, 31 of
the 46 lead SNPs for REA, 15 of the 40 lead SNPs for
LMY, and 2 of the 39 lead SNPs for CMAR were found
to be overlapped with the reported QTL in the Cattle
QTL database (Additional file 3: Table S4). These over-
lapped lead SNPs provide additional evidence that the
QTL regions may harbor causative DNA variants affect-
ing the carcass merit traits. The non-overlapped lead
SNPs, however, may suggest unique QTLs that were seg-
regating in the investigated beef cattle population for the
trait, in particular for the lead SNPs with multiple sup-
port SNPs (Table 4).

To investigate potential pleotropic effects of SNPs or
QTL regions on the carcass merit traits, we also com-
pared lead significant SNPs among the five carcass merit
traits. It was found that CMAR did not share any lead
significant SNPs with HCW, AFAT, REA, or LMY.
HCW, AFAT, REA, and LMY, however, shared a com-
mon significant lead SNP “rs109696064", which was a
downstream gene variant that is 3164 bps away from the
nearest gene LCORL on chromosome 6 (Additional
file 2). AFAT and HCW also shared four lead signifi-
cant SNPs located on chromosome 6, including one
intronic variant (rs109355965) that is within gene
ENSBTAG00000005932 (FAM184B), one intronic variant
(rs110995268) of gene LCORL, one downstream gene
variant (rs109843602) that was in proximity to genes
NCAPG and DCAFI6, and one downstream gene variant
(rs109696064) located within 70 kb of genes LCORL and
NCAPG. The region that harbors genes NCAPG-LCORL
on BTAG6 is likely to be a candidate QTL region with
pleiotropic effects for carcass merit traits including HCW,
AFAT, REA, and LMY. The lead significant SNPs located
on BTA 6 in the region of 37.9 Mb to 39.9 Mb were also
found to have relatively larger effects on HCW, AFAT,
REA, and LMY as shown in the Manhattan plots (Fig. 1).
The chromosome region (i.e 6_37 to 6_39) was previously
reported to have large pleiotropic effects on traits includ-
ing carcass weight, rib eye muscle area, and carcass fat
thickness in multiple US cattle breeds [40]. In our 7.8 M
DNA variant GWAS for feed efficiency related traits, this
chromosomal region also showed the largest effects on
DMI, ADG, and MWT, explaining from 3.04 to 5.80%
phenotypic variance for the traits as reported by Zhang
et al. in our companion paper [23]. All these results
strengthen the evidence that there are likely causative
DNA variants in the chromosomal region with major
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pleiotropic effects on beef cattle growth related traits [40].
Genes NCAPG and LCORL are the two major nearest
genes to the chromosomal region. DNA markers within
or in proximity to genes NCAPG (Non-SMC Condensin I
Complex Subunit) and LCORL (ligand-dependent nuclear
receptor co-repressor like) were found to have significant
associations with feed intake and body weight gain in beef
cattle [41]. In our study, the annotation of the imputed
7.8 M DNA marker panel identified a total of 185 WGS
variants within NCAPG including 4 synonymous variants,
177 intronic variants, 2 missense variants, and 2 other
regulatory region variants. Also a total of 409 WGS vari-
ants were within gene LCORL, including 404 intronic vari-
ants, 1 missense variant, and 4 3’'UTR variants. At P-value
less than 10™°, 17 SNPs (including 15 intronic variants
and 2 missense variants) within gene NCAPG were found
to be in significant association with HCW but none of
them were identified to be a lead SNP. The intronic SNP
rs110175987 of NCAPG was significantly associated with
HCW (ie. AC_000163.1:g.38783305C >T, P-value=
1.14x10"* and FDR=1.51x10"1), accounting for
4.18% of the phenotypic variance, and it was the largest
proportion of phenotypic variance explained by a single
DNA marker among the 17 within-gene variants (Add-
itional file 2). This SNP was also significantly associated
with AFAT (P-value = 542 x 10~ ** and FDR = 1.33 x 10 ),
REA (P-value =134 x 10" *® and FDR=3.99 x 10" 1% and
LMY (P-value=120x10"'" and FDR=292x10"°),
explaining 2.72, 3.19, and 2.41% of the phenotypic variance,
respectively (Additional file 2). A missense variant
rs109570900 at 38,777,311 bp on BTA6, which induces a
Ile-442-Met substitution in amino acid within NCAPG, was
also identified to be in significant association with HCW
(P-value = 2.10 x 10~ ° and FDR = 4.65 x 10~ °) and REA
(P-value =5.09 x 10" % and FDR =9.39 x 10™ %) accounting
for 1.45 and 1.18% of phenotypic variance, respectively.
Previous studies reported that this missense variant had
strong association with fetal growth and birth weight in
Holstein and Charolais crossbreed [42]. The missense
variant was also in association with body frame size at
puberty in Japanese black and Charolais x Holstein [43]
and with carcass weight, longissimus muscle area, and
subcutaneous fat thickness in Japanese Black and Brown
cattle [44]. Sahana et al. [45] proposed the missense as a
strong candidate responsible for calf size at birth and con-
sequently calf birth survival. In our companion paper by
Zhang et al. [23], the SNP within NCAPG was also found
to be associated with ADG, DMI, and MWT, respectively.

For gene LCORL, the intronic SNP rs110995268 at
38,914,196 bp was significantly associated with AFAT
(P-value = 1.64 x 10”'* and FDR = 9.39 x 10~ ), explaining
2.87% of the phenotypic variance (Table 4). The SNP
was also significantly associated with HCW (P-value =
4.2x107% and FDR=6.76x 10" '%), REA (P-value=
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1.80 x 10 ** and FDR = 4.12 x 10~ 19), and LMY (P-value =
6.15x10" " and FDR=292x10 "), explaining 4.33,
3.19, and 2.50% of the phenotypic variance, respectively
(Additional file 2). A total of 80, 15, 47, and 15 SNPs
within gene LCORL were identified to be significantly as-
sociated with HCW, AFAT, REA, and LMY respectively.
However, they were all intronic variants. The intronic
SNP rs110995268 belongs to a group of 15 common sig-
nificant intronic variants within LCORL that had effects
on HCW, AFAT, REA, and LMY. Out of the 15 within-
gene intronic SNPs, proportions of phenotypic variance
ranged from 4.30 to 4.37% for HCW, from 2.82 to 2.87%
for AFAT, from 3.10 to 3.24% for REA, and 2.44 to 2.50%
for LMY (Additional file 2).

The NCAPG-LCORL region also encompassed two
additional interesting genes including DCAFI6 and
FAMI184B. In addition, gene SNPs under other lead sig-
nificant QTL regions with relatively larger effects were
also examined and some significant lead SNPs were
found to be missense or located within regulatory re-
gions (Table 4), which may suggest their roles as causa-
tive mutations due to the functional annotation. For
instance, a missense variant rs109901274 within gene
ENSBTAG00000007116 (ARRDC3) at 93,244,933 bp on
chromosome 7 was a lead SNP in significant association
(P-value =5.28 x 10~ %) with REA, explaining 1.11% of
phenotypic variance (Table 4). The SNP rs109901274
was also found to be a significant support SNP in asso-
ciation with HCW, with a P-value of 8.84x 10 ® and
accounted for 1.07% of phenotypic variance (Additional
file 2). Gene ARRDC3, which harbours SNP
rs109901274, belongs to an arrestin superfamily and
plays a role in regulating body mass in mice [46] and hu-
man males [47]. In our companion paper by Zhang et al.
[23], SNP rs109901274 was also reported to be a lead
SNP in significant association with ADG and MWT. A
previously study by Saatchi et al. reported that SNPs in
proximity to ARRDC3 were associated with birth weight,
carcass weights, and body weights in US cattle breeds
[40]. However, the physiological roles of ARRDC3 in cat-
tle remain unknown.

It was commonly observed that SNPs from the in-
tronic region of the genes or between genes showed sig-
nificant effects on the carcass merit traits as lead SNPs.
For instance, one of the most significant lead SNPs
(rs109815800, AC_000171.1:g.25015640G > T, P-value =
1.26 x 10~*! and FDR =5.82 x 10~ ') in association with
HCW on chromosome 14 at 25015,640 bp was mapped
to the intergenic region (6344 bp upstream) of PLAGI
(Table 4). This SNP was previously reported as one of
the eight candidate QTNs with major effects on bovine
stature by Karim et al. [48]. The SNP was also the most
significant DNA marker reported by Fink et al. [49] in
expression QTL mapping of PLAGI, and the most
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significant SNP in meta-analysis of GWAS for cattle
stature by Bouwman et al. [50]. This SNP (ie.
rs109815800) accounted for 3.41% of phenotypic vari-
ance of HCW in this study (Table 4). Additionally, SNP
rs109815800 was a support SNP in significant asso-
ciation with REA, reaching a P-value of 2.02 x 10~ ® and
explained 0.84% of phenotypic variance (Additional file
2). These intronic DNA variants significantly associated
with the traits may also warrant further investigation for
their effects on the traits. In addition, the significant in-
tronic and intergenic DNA variants may also in high LD
with the causative DNA variant(s) that are not present
in the imputed 7.8 M DNA variant panel. Therefore, fur-
ther fine mapping of the QTL regions will lead to identi-
fication of causative variants for the carcass merit traits
in cattle, in particular for QTL regions where lead SNPs
are supported by multiple significant DNA markers.

Genetic networks compared with RNAseq

The IPA analyses based on the candidate genes identi-
fied via a window of 70 k bp of the lead SNPs with FDR <
0.10 detected lipid metabolism was among the top 5
enriched molecular process for four of the carcass merit
traits (AFAT, CMAR, LMY, and REA), and 6th for
HCW, followed by carbohydrate metabolisms and small
molecule biochemistry. In studies using RNAseq on bo-
vine liver samples, lipid metabolism, and small molecule
biochemistry were also among the top enriched molecu-
lar processes for marbling score in Charolais steers [51,
52]. In this study, all the animals with carcass data were
finished for meat production. The goal of the fattening
stage with a finishing diet is to allow beef cattle to grow
muscle and to accumulate intramuscular fat, i.e. marb-
ling, for better carcass quality. Therefore, genes involved
in lipid metabolism and carbohydrate metabolism likely
play a more important role in determining the carcass
merit traits, as shown both in this and previous studies
[51, 52]. The identification of top and other enriched
molecular processes and their corresponding genes will
not only improve our understanding on genetic mecha-
nisms that influence the carcass traits but also help
prioritize candidate genes for identification of causative
gene polymorphisms responsible for the phenotypic
variation.

Conclusions

The imputed 7,853,211 DNA variants explained more
genetic variance than the 50 K SNP panel and led to
identification of additional QTL regions in associations
with carcass merit traits in Canadian multi-breed beef
cattle. The DNA marker allele substitution effects on the
carcass traits based on the imputed 7,853,211 DNA vari-
ants approximated a bell-shaped distribution, and the
additive genetic variances explained by single DNA
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variants followed a scaled inverse chi-squared distribu-
tion to a greater extent. On average, missense variants,
3'UTR variants, 5’UTR variants, and other regulatory re-
gion variants exhibited larger allele substitution effects
in comparison to DNA variants that are located between
genes and in intronic regions. Intergenic and intronic
variants also accounted for a smaller amount of additive
genetic variance per DNA variant for the carcass traits
whereas single regulatory, synonymous, and missense
variants had relatively larger impacts on the variation of
carcass merit traits. The five carcass merit traits appear
to be controlled by a few DNA variants with relatively
larger or modest effects complementary by DNA vari-
ants with small effects. Lipid metabolism, small molecu-
lar biochemistry, and carbohydrate metabolism were the
top biological processes for the carcass merit traits. The
genetic architecture as revealed by the 7.8 M DNA
variant GWAS will improve our understanding on the
genetic control of carcass merit traits in beef cattle.

Methods

Animal populations and phenotype data

The populations used in this study, i.e., Angus, Charo-
lais, Kinsella Composite, Elora crossbred, PG1, and
TXX, were described previously [23, 53-56]. Briefly,
Angus, Charolais, and Kinsella Composite herds are lo-
cated at Roy Berg Kinsella Research Ranch, University of
Alberta, with Angus and Charolais being maintained as
purebreds while the Kinsella Composite herd had been
influenced mainly by Angus, Charolais, Galloway, and
Hereford. The Elora crossbred animals were from the
Elora Beef Research Centre, University of Guelph and it
was made by crossing Angus, Simmental, Charolais, and
other cattle breeds. Both the commercial crossbred PG1
and terminal crossbred TXX animals were from multiple
commercial herds in Alberta. The top beef breeds that
were used in commercial crossbred beef production in
Alberta included Angus, Charolais, Herefore, Simmental,
Limousin, Gelbvieh, while the TXX animals were pro-
duced from 2- or 3-way crossbreeding systems involving
terminal composite bulls (TX/TXX) and crossbred cows
of multiple beef breeds. Animals used in this study were
finishing steers and heifers born between 1998 and 2006
for the Elora crossbred, between 2002 and 2015 for Kin-
sella Composite, between 2004 and 2015 for Angus and
Charolais, between 2008 and 2011 for PG1 and TXX
populations.

The animals were initially measured for feed intake
using the GrowSafe system (GrowSafe Systems Ltd.,
Airdrie, Alberta, Canada) at their respective feedlot test
station under multiple projects, which were described
previously [55, 57-59]. After the feedlot tests, animals
were slaughtered either at a commercial plant or at the
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Lacombe Research and Development Centre (LRDC) ab-
attoir when a majority of them reached >8 mm back-
fat  thickness as predicted from  ultrasound
measurements. For slaughter, animals were first stunned
by captive bolt and then exsanguinated. Collection of
carcass data was previously described [53, 55, 59-62].
Briefly, hot carcass weight (HCW) in kg was obtained by
summing up the weight of each side of the carcass that
was split during dressing, about 45 min post-mortem.
Average backfat thickness (AFAT) in mm, rib eye area
(REA) in squared centimeters, and carcass marbling
score (CMAR) at the grading site between the 12th and
13th ribs was assessed by trained personnel. Carcass
marbling score was measured as a continuous variable
from 100 (trace marbling or less) to 499 (abundant or
more marbling) to reflect the amount of fat deposit in-
terspersed between the muscle fibers (i.e., intramuscular
fat) of the longissimus thoracis. Lean meat yield (LMY)
was calculated as LMY, % =57.96 + (0.202 x REA, ¢cm?)
- (0.027 x HCW, kg) - (0.703 x AFAT, mm) as described
by Basarab et al. [57] as an estimate of saleable meat in
the carcass. The phenotype data obtained from each data
source were examined and phenotypic values beyond 3
standard deviations of the trait value mean were
excluded from further analyses.

SNP data consolidation, imputation, and functional
annotation

All animals entering the feedlot tests were genotyped
with bovine 50 K SNP panels under multiple projects.
SNP data consolidation and imputation was described in
the companion paper [23]. Briefly, raw 50 K SNP geno-
type profile data were obtained from each source and
SNP genotypes were then called in each of the four dif-
ferent SNP formats, i.e. forward strand, top strand, de-
sign strand, and AB format. The SNP genotype data
were then combined by the same SNP format and each
SNP was examined to ensure it had only two alleles after
merging. In total, 50 K SNP genotypes of 11,448 beef
cattle were compiled. A SNP quality check was applied
for each data source, where SNPs that had a minor allele
frequency less than 5%, or had a missing rate larger than
5%, or were significantly deviated from exact test of
Hardy-Weinberg equilibrium (HWE) (P-value <10~ %),
or on sex chromosomes were filtered out. SNPs removed
from one data source were also excluded from all other
data sources. In addition, animals with more than a 5%
missing rate of total SNP genotypes were deleted. After
SNP data editing, 33,321 SNPs were retained for further
analyses. Sporadic missing SNP genotypes in the SNP
data set (<0.065%) were then imputed via the
population-based algorithm implemented in Beagle 3.3.2
[63]. Population admixture analyses were also conducted
for all the 11,448 beef cattle based on the 33,321 SNPs
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to predict breed composition for each animal, which was
described in the companion paper [23].

SNP imputation was conducted using Flmpute 2.2
[28] in a two-step procedure: (1) from the 50 K SNPs
(i.e. 33,321 SNPs) to the Affymetrix Axiom Genome-
Wide BOS 1 Array (Affymetrix, Inc., Santa Clara); (2)
from imputed HD to the full whole-genome sequence
(WGS) variants in run 5 of the 1000 Bull Genomes Pro-
ject [22]. Details of SNP imputation and average imput-
ation accuracy for each chromosome were provided in
the companion paper [23]. Initially, 38,318,974 imputed
WGS variant genotypes were obtained for all the ani-
mals. Quality control was then performed on the im-
puted WGS variant genotypes to ensure better quality of
imputed genotype data, where DNA variant genotypes
with less than 95% imputation accuracy, or being homo-
zygous, or with a minor allele frequency (MAF) less than
0.005 in either population/breed, or with significant de-
viations from Hardy—Weinberg exact test at significance
levels of P-value <107 ° in either population/breed were
excluded from further analyses. The post-imputation
quality control resulted in 7,853,211 DNA variant geno-
types that contain 30,155 SNPs from the 50 K SNP geno-
types on all the animals. The 7,853,211 DNA variants
included 7,497,128 SNPs and 356,083 INDELs (termed
7.8 M DNA variants or 7.8 M DNA variant panel or 7.8
M SNP panel in the text). The imputed 30,155 SNPs in
the 7.8 M DNA variant panel were replaced by their ac-
tual genotypes to facilitate comparison of the 50 K SNP
panel and the 7.8 M DNA variants panel.

Functional annotation of SNPs or DNA variants on
the 30,155 SNPs and on the 7,853,211 DNA variants was
provided in the companion paper [23]. The WGS DNA
variants were annotated through run 5 of the 1000 Bull
Genomes Project, which included 379 full genome se-
quences from the Canadian Cattle Genome Project [64].
DNA variants were then assigned to a functional class
based on their overlap with gene features described in
the Ensembl database (release 81), using an updated
version of the NGS-SNP annotation system [65]. These
SNPs were grouped into 9 broader functional classes,
which consisted of intergenic region variants, down-
stream gene variants, upstream gene variants, synonym-
ous variants, intron variants, missense variants, 3° UTR
variants, 5° UTR variants, and other regulatory region
variants that includes splice regions in intron variants,
disruptive in-frame deletion, and splice region variants,
etc. (Additional file 3: Table S1-S3).

Genome wide association analyses

Animals with carcass data were merged with their im-
puted genotype data in the 7.8 M DNA variant panel,
resulting in a sample size of n =3354 for AFAT to n =
3984 for HCW (Table 1). For the GWAS analyses,
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phenotypic values of the five carcass traits were adjusted
for animal birth year, sex type, a combination of feedlot
test location and pen, breed composition fraction of each
postulated ancestral breed predicted using the 50 K SNP
panel and Admixture [66], and animal age at slaughter.
The GWAS analyses were performed using a single
SNP-based mixed linear model association (MLMA) as
implemented in GCTA software [67, 68], and the linear
mixed model can be described as follows:

Yy =#+bjxi + a; + e

where y;; is the adjusted phenotypic value of the ith ani-
mal with the jth SNP (i.e. the ijth animal, bj is the allele
substitution effect of SNPj, x;; is the jth SNP genotype of
animal i, and it was coded as 0, 1, 2 for genotypes A4,
A;A;5 and AyA,, respectively, aj is the additive polygenic
effect of the ijth animal ~ N(0, Go?2), and e;; is the ran-
dom residual effect ~ N(0,102). The genomic relation-
ship matrix G (GRM) was constructed using GCTA-
GRM as implemented in GCTA software and defined in
Yang et al. [67, 69], which is essentially the same as the
G matrix calculated by the second method of VanRaden
[70]:

1 M (%5-2p;) (xi—2p;)
A= 72’:1 219;(1—17;‘) l

Where Aj is off-diagonal element for animal j and ani-
mal k or represents the diagonal element if j =k, with
genotype codes of x;; =0, 1, 2 for A14;, A1A;, and A,A,,
respectively. p; is the allele frequency of A, at locus j cal-
culated based on SNP genotype data of the population
and M is the number of SNPs in the panel. The G
matrix was constructed using all DNA variants in the
7.8 M DNA variant panel, i.e. mixed linear model with
candidate marker included (MLMi) so that the G matrix
was constructed based on all 30,155 SNPs for the 50 K
SNP GWAS and on all the 7,853,211 DNA variants for
the 7.8 M SNP panel GWAS.

For each SNP or DNA variant, the allele substitution
effect and its P-value were estimated using the GCTA
package [67, 68]. The phenotypic variance explained by

a single SNP was calculated by Var (%) = 21’;—‘72/’)24400%,
where p and g denote the minor frequency and major
frequency for the SNP, respectively, f is the SNP allele
substitution effect, and 2pgf> is the additive genetic vari-
ance, and S? is phenotypic variance. DNA variants (or
SNPs) that have a nominal P-value < 0.005 were consid-
ered as suggestive QTLs as proposed by Benjamin et al.
[26], while SNPs with a nominal P-value <10 ° were
classified as significant QTLs based on the recommenda-
tion of the Wellcome Trust Case Control Consortium
[71]. SNPs that have a nominal P-value <10~ ° were
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further examined for the genome-wise false discovery
rate (FDR), which was calculated following the
Benjamini-Hochberg procedure for each SNP [27]. At
each significance threshold when multiple SNPs within a
window of 70 kb upstream and downstream are signifi-
cantly associated with a trait, the SNP with the lowest
nominal P-value was identified as the lead SNP whereas
the remaining SNPs were classified as support SNPs. A
70 kb window was chosen for this study as this was the
chromosomal length within which a high LD phase cor-
relation (>0.77) was maintained in a Canadian multi-
breed population [54].

Heritability of a trait was estimated using GREML-LDMS
[72, 73] for both the 50 K SNP panel and the 7.8 M DNA
variant panel. In GREML-LDMS, DNA variants were strati-
fied into four groups by their mean LD scores within a slid-
ing window, representing the first, second, third, and fourth
quartiles of the mean LD score distribution. A GRM was
subsequently constructed with DNA variants in each group.
The GRMs were then fitted simultaneously into the above
statistical model without the single DNA variant effect and
the variance components were estimated via a restricted
maximum likelihood (REML) as implemented in the GCTA
package [67, 69, 74, 75]. The genomic heritability of a trait
was calculated as a ratio of the total additive genetic vari-
ance over the phenotypic variance of the trait.

Inference of genetic architecture based on GWAS results
Distribution of SNP effects of each carcass trait was gen-
erated by plotting squared allele substitution effects of
all DNA variants in the 7.8 M DNA variant panel, and
by plotting the amount of additive genetic variances ex-
plained by single DNA variants in the panel. The average
of squared allele substitution effects was obtained for
each of the 9 broad functional classes (Table 3) by sum-
ming all squared allele substitution effects within the
broad functional class divided by the total number of
DNA variants within the functional class. The additive
genetic variance accounted for by each of the 9 func-
tional classes was estimated by fitting the GRM con-
structed based on the DNA variants of the functional
class and the GRM constructed based on the DNA vari-
ants of all other functional classes simultaneously in the
statistical model using the GCTA package. The amount
of additive genetic variance explained per sequence
variant within a functional class was obtained by the
additive genetic variance captured by the functional class
divided by the number of DNA variants in the class.

Candidate gene identification and functional enrichment
analyses

Lead SNPs with a FDR <0.10 were selected to search for
candidate genes. Subsequently, genes located within 70 kb
upstream and downstream of the lead SNP were considered
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candidate genes associated with the trait based on SNP an-
notation information from the UMD3.1 bovine genome as-
sembly from the Ensembl genome browser (https://www.
ensembl.org/). Ingenuity Pathway Analysis (IPA) (Ingenu-
ity” Systems, Redwood City, CA; https://www.qiagenbioin-
formatics.com/products/ingenuity-pathway-analysis/) (IPA
Spring 2019 release) was used for the functional enrich-
ment analyses of the candidate genes identified via the
GWAS. Briefly, for the genes with known human ortholo-
gues from Ensembl, their gene IDs were replaced with their
human orthologous gene IDs, whereas those without
human orthologues their bovine gene IDs were maintained
in the gene list. These Ensembl gene IDs were then used as
input gene identifiers in IPA and a core analysis was per-
formed on the genes that were mapped to the IPA know-
ledge base database. With the list of candidate genes and
genes mapped to the human orthologues, enhanced
molecular processes and gene network were inferred using
IPA. Molecular, cellular, and biological processes or func-
tions were significantly enriched if the P-value for the over-
lap comparison test between the input gene list and the
IPA knowledge base database for a given biological function
was less than 0.05. Additionally, genes and biological pro-
cesses or sub-functions’ interaction networks within the
most significant molecular and cellular function were pro-
duced to show possible biological networks for the trait.
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