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Summary

Nervous systems have evolved to combine environmental information with internal state to select 

and generate adaptive behavioral sequences. To better understand these computations and their 

implementation in neural circuits, natural behavior must be carefully measured and quantified. 

Here, we collect high spatial resolution video of single zebrafish larvae swimming in a naturalistic 

environment and develop models of their action selection across exploration and hunting. 

Zebrafish larvae swim in punctuated bouts separated by longer periods of rest called interbout 

intervals. We take advantage of this structure by categorizing bouts into discrete types and 

representing their behavior as labeled sequences of bout-types emitted over time. We then 

construct probabilistic models – specifically, marked renewal processes – to evaluate how bout-

types and interbout intervals are selected by the fish as a function of its internal hunger state, 
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behavioral history, and the locations and properties of nearby prey. Finally, we evaluate the models 

by their predictive likelihood and their ability to generate realistic trajectories of virtual fish 

swimming through simulated environments. Our simulations capture multiple timescales of 

structure in larval zebrafish behavior and expose many ways in which hunger state influences their 

action selection to promote food seeking during hunger and safety during satiety.

BLURB:

Johnson et al. use a moving camera system to observe naturalistic larval zebrafish behavior and 

develop probabilistic models to predict and simulate behavioral sequences. Their simulations 

capture behavioral dynamics spanning multiple timescales, from reactions to prey to hunger-

dependent changes in action selection across hunting and exploration.

Introduction

Methods to quantify freely-moving animal behavior are quickly advancing as cameras, pose 

estimation algorithms, and behavioral models improve. Modern behavioral analysis 

pipelines [1] commonly involve: (1) acquiring behavioral video, (2) extracting low-

dimensional time series representations of postural dynamics, and (3) annotating each image 

frame with a behavioral state label (e.g. “head-grooming”, “rearing”). Variations of this 

pipeline have been used to discover sets of stereotyped actions generated by worms [2, 3, 4, 

5], flies [6, 7, 8], fish [9, 10, 11, 12, 13], and mice [14]. Importantly, these methods produce 

statistical behavioral summaries to facilitate comparison of nervous system function across 

animals.

Larval zebrafish are convenient to use in behavioral studies due to their simple body plan, 

temporally discrete behavior, and stereotyped locomotor repertoire. With their compact 

shape and limited flexibility, automatic posture tracking [15, 16, 17] of larval zebrafish is 

uncomplicated. Since larvae swim in punctuated bouts, temporal segmentation of their 

behavior into bout and interbout epochs is also straightforward. Together, the anatomy and 

movement of zebrafish larvae simplify behavioral analyses, allowing swim bouts to be 

represented as points in a high-dimensional posture or kinematic parameter space. Several 

studies have leveraged these properties to categorize swim bouts. The most comprehensive 

effort [13] identified 13 basic types used during hunting [18, 19], taxis behaviors [20, 21, 22, 

23], escape maneuvers [24, 25, 26], social interactions [27], and spontaneous swimming in 

light and dark.

While larval zebrafish locomotor patterns have been well studied, much less is known about 

the complex generative processes underlying their natural behavioral sequences. How do 

external inputs (e.g. prey positions and properties) and internal inputs (e.g. behavioral 

history and hunger state) combine to influence action selection? To address this general 

problem, we use a moving camera system to collect high spatial resolution video of 

individual larvae swimming in a large arena with abundant prey. This approach eliminates a 

rigid trade-off between spatial resolution and arena size, allowing us to observe hundreds of 

consecutive swim bouts without interference from arena boundaries. We then use this data to 

construct probabilistic behavioral models – building on point process models with a long 
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history in computational neuroscience [28, 29, 30, 31] – to evaluate how internal and 

external inputs shape behavior. By sampling from these models, we simulate larval 

trajectories capturing behavioral dynamics spanning multiple timescales, from reactions to 

prey (< 100 milliseconds), across stretches of hunting and exploration (seconds to minutes), 

and throughout changing hunger state (minutes to hours).

Results

Acquiring Behavioral Data with BEAST

We constructed BEAST (Behavioral Evaluation Across SpaceTime, Figure 1A, Video S1) to 

observe 7-8 days-post-fertilization nacre zebrafish larvae (n=130) one at a time. To evaluate 

how hunger influences behavior, each fish was given abundant paramecia (fed group, n=73) 

or deprived of food for 2.5-5 hours (starved group, n=57) prior to observation. Previous 

studies show that brief food deprivation robustly increases larval zebrafish food intake [32, 

33] and that hunger increases their likelihood to approach, rather than avoid, prey-like visual 

stimuli [34, 35]. We therefore expect our fed and starved fish groups to display different 

behavioral patterns and aim to construct models to quantify these effects.

We place each fish in the arena and repeatedly recruit it to the center to initiate up to 18 

observational trials. We leverage the optomotor response [23] to guide fish to the center by 

projecting optic flow stimuli onto a screen embedded in the tank bottom. Once at the center, 

a static natural scene replaces the gratings and the fish is recorded for up to 3 minutes or 

until it reaches the arena edge or tracking fails. Swim paths from 3 representative trials are 

shown (Figure 1B) and the fish’s heading direction throughout a portion of one trial is 

plotted (Figure 1C). Swim bouts are seen as brief fluctuations in heading direction over time 

and the timing of bout and interbout epochs is determined from this signal (Figure 1D). We 

translate and rotate each image frame to register the video to the fish’s reference frame 

(Figure 1E) and encode fish posture by estimating eye vergence angles [19] and tail shape 

[36] (Figures 1F, S1). Larvae can accelerate rapidly (e.g. during escape swims), sometimes 

causing online tracking failure. Offline pose estimation is also occasionally compromised 

due to motion blur (during very high speed swims) or body roll (causing one eye to occlude 

the other in the image). We retain only video segments in which all postural features are 

accurately extracted in every frame for further analysis.

The processed dataset contains 40 hours of behavioral data (4002 video segments) parsed 

into bout and interbout epochs (Figure 1G). Across all swim bouts (n=200,559), heading 

angle change per bout is narrowly and symmetrically distributed (Figure 1H). The arena 

contains abundant prey (mostly paramecia, some rotifers) and the fish tend to hunt prey near 

the water surface. Larvae converge their eyes during hunts to pursue prey with binocular 

vision. While not hunting, larvae keep their eyes more diverged, increasing visual coverage 

of the environment which should improve threat detection. Larvae therefore experience a 

natural trade-off between seeking food and seeking safety. These opposing states are seen in 

the bimodal distribution of eye position measurements during interbout intervals (Figure 1I). 

We maintain a large circular field of view centered around the fish head (Figure 1J) with 

sufficient image sharpness to extract positions, sizes, shapes, and motion patterns of objects 
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near the water surface (Figure 1K). We later use this information to construct compressed 

representations of environmental state to predict the type of the next swim bout.

Exploring and Hunting Bout-Type Categorization

To quantify behavioral sequence structure and compare across fed and starved groups, we 

first aim to categorize swim bouts into discrete types. We represent each swim bout as a 10-

frame (167 ms) postural sequence beginning at bout initiation, giving a 220-D egocentric 

representation of every bout (Figure 2A). We embed these observations in 2-D space with 

tSNE [37, 38] (Figure 2B) and use density-based clustering [7, 39] to isolate 5 major classes 

of swim bouts (Figure S2). These classes consist of hunting bouts (here called J-turn, 
pursuit, abort, strike) and non-hunting bouts (here called exploring). Zebrafish larvae 

typically initiate hunts by converging their eyes and orienting toward prey with a J-turn [19], 

close distance to prey while maintaining eye convergence with pursuits [40] (also called 

approach [13] swims), and end hunts with eye divergence during a strike (also called capture 

[13] swim) or abort [41].

To improve analytical sensitivity, we further subdivide the 3 largest bout-classes to yield 10 

exploring and 8 hunting bout-types (Figure 2C). Each bout-type is symmetric with nearly 

equal numbers of leftward and rightward bouts. We use 2 scalar kinematic measurements to 

subdivide bout-classes: ∣ Δ heading∣ and ∣ Δ tail-shape∣. ∣ Δ heading∣ is the magnitude of 

heading angle change per bout, and ∣ Δ tail-shape∣ is the sum of the magnitudes of frame-to-

frame changes in tail shape for each 10-frame bout representation (Methods), a metric 

correlating with distance traveled per bout and presumably energy expenditure. See Figure 

S2 for detailed bout-type descriptions.

With labels assigned, the distributions of interbout intervals preceding and following each 

bout-type are compared (Figures 2D). Larvae select longer intervals during exploration and 

shorter intervals during hunts. Distributions of intervals preceding (or following) left and 

right versions of each bout-type are approximately equal, showing how left-right symmetry 

organizes population-level behavior. Larvae alternate between exploring and hunting modes, 

as seen in an example bout sequence containing a successful hunt (Figure 2E-F, Video S2). 

We define a complete hunt as a bout sequence beginning with J-turn, ending with abort or 

strike, and padded with only pursuits (for hunts longer than 2 bouts). The full dataset 

contains 7230 complete hunts (19.6% end in strike). For comparison, the example hunt 

trajectory is shown with 999 other complete hunts ending in strike (Figure 2G).

Hunger Regulates Eye Position and Action Selection

Feeding state strongly regulates larval zebrafish behavior, seen by comparing eye position 

histograms (as in Figure 1I) across fed and starved fish groups in the first 10 minutes of 

testing (Figure 3A). The fraction of intervals during which eyes are converged (threshold: 

mean vergence angle = 24°) is increased 183% from 0.124 in fed fish to 0.351 in starved fish 

in this time window. Fed fish also maintain wider eye divergence during exploration, but not 

while actively hunting (Figure 3B).

By comparing bout-type abundances and interbout intervals across fish groups in the first 40 

minutes of testing, we find hunger affects larval zebrafish action selection in previously 
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unreported ways. Fed fish upregulate use of low-energy exploring bouts (e1-3) relative to 

starved fish, with selection of the lowest-displacement forward swim e1 increased 107% 

(Figure 3C). Starved fish are more likely to start hunts, especially through high-angle J-turns 
(j1 up 35%, j2 up 70%), and increase use of pursuits (up 71%), aborts (up 34%), and strikes 
(up 96%). Fed fish also produce longer intervals than starved fish, especially following low-

energy exploring bouts (Figure 3D). Over ~40 minutes, behavioral patterns of fed and 

starved fish converge (Figure 3E) as their feeding states shift from opposing initial 

conditions (high hunger or high satiety) toward an intermediate state near nutrient 

equilibrium. To better quantify the behavioral sequences observed in this study, we next 

construct probabilistic models to predict the timing and type of swim bouts.

Probabilistic Models to Predict Interbout Intervals

We model the data as a marked renewal process [31, 42], a stochastic process generating a 

sequence of discrete events in time, each characterized by an associated “mark” (Figure 4A). 

These statistical models specify the conditional distribution of the time and type of the next 

event in a sequence given the history of preceding events. First, we consider bout timing. 

Our key question for model construction is, “what features of the event history carry 

predictive information about the timing of the next event?” We choose five interpretable 

features to represent behavioral history on multiple timescales (Figure 4B). On the shortest 

timescale, we model the interbout interval (in) as a function of preceding bout-type (bn–1) 

and preceding interbout interval (in–1). On an intermediate timescale, we use hunt dwell-
time (thunt) and explore dwell-time (texplore) features to encode how long the fish has been 

hunting or exploring immediately prior to in. On the longest timescale, we encode how long 

the fish has been in the tank (tank-time, ttank), relating how behavior changes with hunger. 

By comparing models composed from different features, we can learn how past actions 

predict future behavior.

Starved fish select shorter intervals than fed fish, but how else do patterns of bout timing 

differ? To interpret how feeding state influences relationships between behavioral history 

and interval selection, we consider 2 forms for each predictive feature: pooled and split. In 

pooled form, data from fed and starved fish are pooled to fit one set of weights relating that 

feature to in. In split form, separate weight sets are fit for each fish group. We use a 

generalized linear model [43] (GLM) with an exponential inverse link function to generate a 

probability distribution over in (Figure 4C). Briefly, the dot product of a basis function 

representation of the feature input with corresponding feature weights is computed and 

passed through an inverse link function to give the mean of a probability distribution over in 

(Methods S1). We considered 3 types of probability distributions over nonnegative counts: 

geometric, Poisson, and negative binomial (NB). We find the NB distribution fits observed 

data best and consider this form throughout the paper.

For each model, we use an empirical Bayes [44] hyperparameter selection method (Methods 

S1) to choose an appropriate prior variance on weights, number of basis functions, and a 

preferred feature form (pooled or split, indicated with star). To model in given preceding 
bout-type, separate NB distributions are fit for each possible value of bn–1 (2 examples 

shown, Figure 4D). In split form, the bn–1 feature captures subtle differences in intervals 
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produced by fed and starved fish (Figure 4E). For remaining features, we plot the predictive 

in mean for pooled and split models over a range of input values (Figure 4F). Each of these 

models include additional split-bias weights to capture overall differences in interval mean 

and variance across groups (2 extra free parameters per group: 1 for mean, 1 for variance). 

This design choice allows pooled feature models to capture basic group differences without 

using the more complex split features. On a short timescale, we find consecutive intervals 

are autocorrelated (column 1). On an intermediate timescale, intervals get shorter as hunt 

sequences get longer (column 2). By contrast, as exploring sequences get longer, intervals 

get longer (column 3). Aside from a shift in mean, the general relationship between these 

features and in is similar across groups. By contrast, fed and starved fish display opposing 

interval selection patterns on the longest timescale (column 4). Starved fish initially hunt 

more, producing shorter intervals. Fed fish initially explore more, producing longer 

intervals. As their hunger states converge, intervals selected by fed and starved fish become 

more similar. These opposing patterns require the split-ttank feature to be modeled 

appropriately.

Probabilistic Models to Predict Bout-Types

The second component of the marked renewal process is a model of how the next bout-type 

is selected depending on behavioral history, including the interval immediately preceding it. 

We add 4 extrinsic features to model how locations (νloc), sizes (νsize), and relative 

velocities (νx, νy) of local environmental objects relate to bout-type selection (Figure 5A). 

We construct an 868-D image (νloc) to encode putative prey object locations immediately 

preceding bout initiation. We modify νloc to construct the other extrinsic features by scaling 

pixel intensities representing each object (Figure S4). We take the dot product of a basis 

function representation of a feature input with its corresponding weights to produce a vector 

of bout-type “activations”, ψ (Figure 5B). This vector is passed through a softmax function 

to generate a valid probability distribution, π, over all 36 possible bout-types (Methods S1). 

As before, we select hyper-parameters and preferred feature forms, choosing pooled forms 

for all features except ttank. As before, we include split-bias weights to account for 

differences in baseline bout-type abundances across fed and starved fish groups (36 extra 

free parameters per fish group).

Bout transition probabilities are captured by the preceding bout-type feature (Figure 5C-D). 

While exploring, larvae link consecutive bouts of similar energy (note increased transition 

probability along diagonal in Figure 5C). This may help larvae maintain speed [45] over 

many seconds, especially in combination with autocorrelated intervals. Larvae enter hunting 

mode with a transition to J-turn, after which they are likely to emit pursuits before an abort 
or strike. Since behavior is symmetric at the population level, we enforce feature symmetry 

to simplify and improve models. For example, the preceding bout-type feature encodes 

ipsilateral (Figure 5C) and contralateral (Figure 5D) bout transition probabilities. Larvae are 

known to link bouts in the same direction while exploring featureless environments [46], and 

we too see ipsilateral transitions are more probable. We find this pattern extends also to 

hunting, except for transitions into abort (Figure 5D, arrow), during which fish are likely to 

switch left-right state.
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Prey object locations influence bout-type selection, especially during hunts, and pooled-νloc 

weights associated with each hunting bout-type are shown (Figure 5E). Since νloc inputs are 

high-dimensional, we compress them by summing νloc pixels within spatial bins as shown 

(Figure S4). Objects located in red bins increase the probability that the corresponding bout-

type will be selected next by the fish. Larvae typically select a J-turn to orient toward a 

laterally located object ( ~ 15-60 ° relative to heading) and the magnitude of heading angle 

change depends on prey location [18] (compare j1, j2). Energetic pursuits (p3-4) are more 

likely when prey are further away, while larger ∣ Δ heading∣ pursuits (p2, p4) are more likely 

when prey are located more laterally. Prey locations affect how hunts end, with strike 
becoming most likely with an object located directly in front of the mouth. By contrast, 

aborts are weakly related to prey location and may be selected to terminate unsuccessful 

hunts. When prey are absent, exploring bouts become more probable since their associated 

νloc weights are more spatially uniform with near-zero or negative values (not shown).

The generative process underlying bout-type selection depends nonlinearly on preceding 
interbout interval. We capture this dependency with the pooled-in model (Figure 5F). 

Activations (ψ) of several bout-types across the range of in input values are shown (left 

panel), with larger activations indicating higher bout-type probability. Full bout-type 

probability distributions evaluated at 3 specific in values are shown (panels i-iii), with 

probabilities across fed and starved fish averaged for display. At very short preceding 
interbout interval values (in < 0.25 sec), activations of p3, strike, and abort have different 

dynamics, indicating how timing is intricately involved in bout-type selection during hunts. 

As in extends from 0 to 0.25 seconds, strikes become less likely, aborts become more likely, 

and p3 probability peaks near 150 ms before decreasing again. As in reaches 0.5 seconds 

(panel ii), exploring bouts become more probable. As in reaches 1 second (panel iii), low-

energy e1–3 and high-∣ Δ heading ∣ e3, e6, e9 bouts become most likely.

Longer timescale dependencies are captured with thunt, texplore, and ttank features. As hunts 

extend, aborts become less likely and strikes become more likely (Figure 5G). Pursuits are 

always likely when larvae are in hunting mode (i.e. thunt is non-zero), but the probability 

mass shifts toward the short straight p1 bout as hunts get longer and larvae approach a target. 

As explore dwell-time increases, larvae become more likely to select low-energy exploring 

bouts and to remain in exploring mode (Figure 5H). J-turn emission probability decreases 

~46% as texplore increases from 5 to 40 bouts. This may be partly explained by decreased 

food density as fish navigate toward the arena edge. On the longest timescale, the ttank 

feature captures slow fluctuations in bout-type probabilities over the course of observation 

(Figure 5I). As with models of bout timing, the ttank feature must be split to capture 

opposing behavioral trends of fed and starved fish on this timescale. Separate bout-type 

probability distributions for fed and starved fish are shown. These distributions becomes 

similar across groups as their hunger states converge at ttank = 40 minutes.

Comparing and Combining Behavioral Models

Having constructed several single-feature models, we next compare their quality. We 

compute the marginal log likelihood (MLL) of each model and report improvement over the 

simplest baseline model (pooled-bias). For interbout models, the baseline NB pooled-bias 
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model has 2 parameters (1 for mean, 1 for variance). For model comparison, we plot MLL 

for pooled and split forms of each model (Figure 6A). We include also bn–2 as well as in–2, 

in–3, in–4, and in–5 to show how predictive information decays over time. We find preceding 
bout-type is best able to predict in, but that preceding interbout interval is a close second, 

and that more distant behavioral history also provides useful information to model intervals. 

In general, MLL is similar across pooled and split forms, except for ttank. We interpret this to 

suggest that any mild gains in predictive performance through use of split features may be 

offset by increased complexity and decreased training examples per split weight.

While preceding bout-type is the best predictor of in, can we build stronger models by 

combining features? We approach this question by combining all pairs of features (in their 

selected forms) to produce 45 paired interbout GLMs (Figure 6B). For each paired model, 

we compute MLL and report improvement over the stronger component. Paired models 

showing large improvement should combine features that provide some unique information 

about interbout in. We find preceding bout-type and preceding interbout interval combine to 

produce the strongest paired interbout model. This paired [bn–1, in–1] model improves over 

bn–1 alone by 0.05 nats per interbout, or 29% relative to baseline. By contrast, the [bn–1, 

texplore] model improves over bn–1 by just 0.002 nats per interbout, or 1.4%. Since models 

can improve by combining features, we combine all features to construct a combo interbout 

model (Figure 6C). Features are added sequentially via greedy stepwise selection, adding the 

feature that increases MLL most at each step. Model quality improves and saturates during 

construction.

We repeat this procedure for bout-type models. We find preceding bout-type is by far the 

best predictor of bout-type bn, followed by hunt dwell-time and explore dwell-time, and then 

preceding interbout interval (Figure 6D). As constructed, our extrinsic feature GLMs fail to 

fully capture the complex relationship between environmental state and bout-type selection. 

This problem is challenging for several reasons. Identified objects include both prey and 

non-prey (e.g. dust, algae), which differentially influence behavior. Second, environmental 

objects are highly abundant in these experiments (mean # of identified objects per bout = 

12), complicating the visual scenes experienced by the fish and also our environmental 

representations. Third, the locations, sizes, shapes, and motion patterns of objects are likely 

to interact in complex ways to influence larval zebrafish action selection. To improve our 

understanding of how sensory input relates to bout-type selection, we construct feed-forward 

neural networks that take extrinsic feature inputs (Figures S5) and combine them nonlinearly 

to form a prediction. We find this neural network model improves substantially over the νloc 

GLM, with predictions of all bout-types improving on held-out data, especially hunting 

bouts. However, bout-type bn is still far better predicted by preceding bout-type, indicating 

more sophisticated modeling approaches will be needed to better predict future behavior 

from complex environmental data, but also that bout-type selection depends strongly on the 

animal’s short-term behavioral history [1].

The strongest paired bout model again combines preceding bout-type with preceding 
interbout interval, even though preceding interbout interval is just the 4th strongest individual 

feature (Figure 6E). This paired [bn–1, in] model improves over bn–1 alone by 0.09 nats per 

bout, or 14%. By contrast, the paired [bn–1 texplore] model improves over bn–1 by just 0.005 
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nats per bout, or 0.8%. This result again indicates that distinct features of the fish’s short-

term behavioral history (i.e. preceding bout-type and preceding interbout interval) encode 

non-redundant information about future action selection. As before, we construct a combo 
bout model through greedy stepwise selection (Figure 6F). The strongest 3-component bout 

model ([bn–1, in, νloc]) adds information about prey locations to the strongest paired bout 

model, combining internal and external information over a timescale of a second or less.

We next examine combo model quality. To confirm the NB distribution is warranted, we 

compare our NB combo interbout model to similar combo models constructed instead with 

Poisson or geometric distributions (Figure 6G). While requiring more free parameters, the 

NB model clearly outperforms the others on held-out data. For the combo bout model, we 

show its ability to predict each individual bout-type, as measured by the F1 score [47] of 

each one-vs-rest classifier, and compare this performance to baseline (Figure 6H). This 

shows us which bout-types are easiest to predict (e.g. pursuits, aborts, strikes, e0), and which 

are most challenging (e.g. e4-6, j2). We reproduce this analysis for several single-feature 

bout models as well as the strongest paired and 3-component bout models (Figure S6). The 

combo bout model distributes probability mass over similar bout-types (Figure 6I), which 

should be expected if the generative processes involved in producing similar bout-types are 

also similar.

Simulating Trajectories of Fed and Starved Fish

A strong test of a behavioral model is to evaluate its ability to generate realistic behavior in 

novel contexts. To that end, we alternate sampling from our combo bout and interbout 

models (here called a combo renewal process) to move a virtual fish through an artificial 

environment with abundant prey (Figure 7A, Videos S3-4). We simulated trajectories of fed 
and starved fish to capture multiple timescales of structure in larval zebrafish behavior. Prey 

object locations influence hunting bout selection in expected ways (Figure 7B) and fed fish 

select longer intervals (Figure 7C), as expected. The strong effects of hunger are seen by 

comparing bout transition probabilities of simulated fed and starved fish (Figure 7D). Fed 
fish are more likely to transition to low-energy exploring bouts, while starved fish are more 

likely to transition to high-energy exploring bouts. Starved fish also adjust their behavior in 

several ways to increase food intake. They are more likely to transition to J-turns (especially 

j2) and to extend hunt sequences by linking pursuits [41]. Starved fish are also less likely to 

transition to abort and more likely to transition to strike.

These simulations also capture longer timescale behavioral dependencies observed in our 

experiments. With real fish, we find hunts ending in strike are much longer than those 

ending in abort (Figure 7E). This trend is absent in simulations generated from a first-order 
Markov renewal process in which intervals and bout-types depend on just preceding bout-
type (bn–1). By contrast, combo renewal process simulations do better to recover this higher-

order hunting structure. Our simulations also capture non-Markovian dynamics during 

exploration (e.g. decreased J-turn probability as exploring sequences lengthen; not shown). 

Finally, our model reproduces slowly changing bout-type selection probabilities across fed 
and starved fish as their hunger states converge over 40 minutes (Figure 7F).
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Discussion

Behavior is the principal output of the nervous system and is complex and high-dimensional 

[48, 49]. To make studying the brain more manageable, behavior is often constrained in 

neurobehavioral experiments. This reductionist approach has many benefits: it simplifies 

behavioral description, reduces experimental variability, and improves interpretability of 

neural data. However, an important frontier in neuroscience is to better understand how 

brains function in natural conditions [50]. The NIH BRAIN Initiative [51] has identified 

study of the “Brain In Action” [52] as a priority research area, stating that “a critical step 

ahead is to study more complex behavioral tasks and to use more sophisticated methods of 

quantifying behavioral, environmental, and internal state influences on individuals.” [53] 

Importantly, these methods should capture dynamics of minimal behavioral elements, scale 

to big datasets, and be compatible with modern techniques to record neural population 

activity. Here we describe such an approach to predict and simulate natural larval zebrafish 

behavior. Further, by constructing a model of how state influences action, we can make 

predictions about what types of signals must be present in the neural system driving this 

behavior.

Our study generates testable hypotheses about how neural mechanisms might give rise to 

observed behavioral patterns on multiple timescales. On a short timescale, we see larvae are 

likely to link consecutive exploring bouts through ipsilateral transitions, but also tend to 

begin hunts ipsilaterally. It has been shown that reciprocally connected circuits in the 

anterior hindbrain (anterior rhombencephalic turning region: ARTR) alternate between 

“leftward” and “rightward” states to mediate temporal correlations in turn direction during 

exploration [46], but how ARTR or related circuits may bias reactions to prey stimuli is 

unknown. We predict ARTR projections may asymmetrically modulate premotor systems 

(e.g. reticulospinal neurons [54], hunting command neurons [55], or premotor tectal 

assemblies [56]) such that, with the ARTR in a leftward state, leftward J-turns are generated 

preferentially to rightward J-turns. Alternatively, ARTR-state-dependant modulation could 

occur further upstream in the sensorimotor hierarchy through asymmetric modulation of 

retinorecipient areas processing prey stimuli (e.g. optic tectum, AF7) [56, 57]. If so, retinal 

output may be processed asymmetrically to promote ipsilateral transitions from exploring to 

hunting.

Following hunt initiation, several behavioral patterns interact to influence hunt outcome. As 

hunts extend, larvae select shorter intervals, pursuits become finer, and abort probability 

decreases while strike probability increases. By contrast, as intervals extend, abort 
probability increases, pursuit probability rises and falls, and strike probability decreases. 

These time-sensitive patterns likely depend on reciprocal connectivity between the nucleus 

isthmi (NI) and (pre)tectum. It has been shown that NI neurons become active following 

hunt initiation and that NI ablation leads to specific deficits in hunt sequence maintenance 

[41]. Henriques et al. [41] propose NI-mediated feedback facilitation of (pre)tectal prey 

responses increases hunt sequence extension probability. This mechanism may explain why 

abort probability decreases and strike probability increases as hunts elongate in our study. 

However, how hunting bout-type selection depends so precisely on bout timing is not well 

understood. We posit tectal prey representations may attenuate as intervals extend past a few 
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hundred milliseconds, potentially through phasic bout-locked NI feedback that decreases as 

intervals elongate. Alternatively, premotor populations [34, 55, 56] involved in pursuit and 

strike generation may become increasingly inhibited as interbouts get longer, increasing hunt 

termination probability. Also, since larvae tend to abort hunts through contralateral 

transitions, we suspect abort generation may frequently coincide with a change in ARTR 

state. Such a mechanism could facilitate switches in spatial attention from one hemifield to 

the other, thereby inhibiting return [58] to a previously pursued object.

Hunger state affects larval zebrafish behavior in many ways. We see starved fish are more 

likely to initiate and extend hunts. They also upregulate transitions to strike and 

downregulate transitions to abort relative to fed fish. It has been shown that food deprivation 

modulates larval zebrafish tectal processing of prey-like and predator-like visual stimuli such 

that food-deprived larvae are more likely to approach small moving dots [35]. Specifically, 

hunger induces recruitment of additional prey-responsive tectal neurons and neuroendocrine 

and serotonergic signaling mediates this effect [35]. We posit this mechanism may increase 

tectal input to NI, thereby increasing NI-mediated feedback to facilitate hunt sequence 

extension and increased strike probability in starved fish. While not yet tested, direct hunger-

state modulation of tectal-projecting NI neurons is also plausible. Other studies show that 

lateral hypothalamic neuron activity correlates positively with feeding rate [59] and that 

lateral hypothalamic neurons respond to both sensory and consummatory food cues [60]. 

This brain region is likely critically involved in sustaining increased hunting over tens of 

minutes through modulating visual responses to prey and/or facilitating hunting (pre)motor 

circuits.

While the above mechanisms can explain why fed fish initiate fewer hunts, we posit satiety 

signals affect additional circuits to further improve safety against predation during 

exploration. Fed fish select longer interbout intervals, lower-energy exploring bouts, and 

maintain wider eye divergence during exploration. These strategies could improve safety by 

decreasing their visibility to predators (by moving less) and increasing their ability to detect 

threats (by widening surveillance). To coordinate these behavioral patterns, satiety cues may 

separately modulate midbrain nuclei involved in regulating bout timing [61], nMLF neurons 

involved in regulating swim bout duration and tail-beat frequency [45], and oculomotor 

centers involved in controlling eye position [62, 63, 64]. It is clear that feeding state 

coordinates a complex array of behavioral modifications, likely through modulation of many 

circuits distributed across the larval zebrafish brain.

There are many avenues to extend this work. In future studies, moving camera systems 

should use faster camera frame rates, shorter exposure durations, and better tracking 

algorithms to improve raw behavioral data. These adjustments will allow for higher 

resolution pose estimation (e.g. by including pectoral fin dynamics, pitch and roll estimates, 

and tail half-beat analysis [13]), facilitate more comprehensive bout-type classification, and 

yield significantly longer continuous behavioral sequences. Richer datasets will enable 

future models to extract nuanced environmental dependencies, like prolonged attention to 

single prey amongst many distractors [65]. Future models may simultaneously infer discrete 

behavioral states and their dynamics [7, 14, 66, 67], though the non-Markovian 

dependencies on past behavior present new challenges [68]. Likewise, there are many other 
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internal state variables governing action selection, and future models could seek to infer 

these latent states [68] rather than using proxy covariates like tank-time. Behavioral states 

and dynamics differ slightly from one individual larva to the next, and long-term behavioral 

recordings combined with hierarchical models [69, 70] will allow us to study how these 

behavioral differences emerge and change throughout early development. The contribution 

of particular neural populations in generating naturalistic behavioral patterns may also be 

probed by combining our behavioral models with experiments to activate, inhibit, or ablate 

specific neural cell-types in observed fish. Finally, our approach may be combined with new 

technologies to record large neural populations in freely swimming fish [71, 72, 73, 74, 75]. 

This will present opportunities to construct joint models of neural activity and natural 

behavior that are likely to improve the predictability of behavioral sequences while 

providing important new tools to study the brain in action [76, 77].

STAR Methods

Lead Contact and Materials Availability

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Robert Evan Johnson (robertevanjohnson@gmail.com).

Materials Availability Statement

This study did not generate new unique reagents.

Experimental Model and Subject Details

All fish were 7-8 days post-fertilization (dpf) mitfa−/− (nacre) zebrafish raised at ~27C. Fish 

were given abundant live paramecia as food beginning at 5dpf. On test day, fish from the fed 
group remained in their Petri dish with abundant paramecia while fish from the starved 
group were placed in clean water for ~2.5-5 hours prior to testing. Testing was performed 

between 10 AM and 6 PM with 4-6 fish usually tested per day. All protocols and procedures 

were approved by the Harvard University/Faculty of Arts and Sciences Standing Committee 

on the Use of Animals in Research and Teaching (Institutional Animal Care and Use 

Committee).

Method Details

BEAST Design—The gantry was acquired from CNC Router Parts (CRP4848 4ft x 4ft 

CNC Router Kit; www.cncrouterparts.com) and was modified to run upside-down on top of 

a support structure constructed from aluminum T-slotted framing available through 80/20 

Inc (www.8020.net). Three electric brushless servo motors (CPM-MCPV-3432P-ELN 

ClearPath Integrated Servo Motors) and 3 Amp DC Power Supply (E3PS12-75) were 

acquired from Teknic (www.teknic.com). The camera (EoSens 3CL) was acquired from 

Mikrotron (www.mikrotron.de) with a frame-grabber from National Instruments (NI 

PCIe-1433; www.ni.com). The camera lens was acquired from Nikon (AF-S VR Micro-

Nikkor 105mm f/2.8G IF-ED; www.nikonusa.com). A long-pass infrared filter was placed 

over the lens (62 mm Hoya R72; www.hoyafilter.com) to block light from the projector and 

collect transmitted light from an array of 16 IR-LED security dome lights (850 nm Wide 
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Angle Dome Illuminators) positioned on the air table below the fish tank. The projector was 

acquired from Optoma (Optoma GT1080; www.optoma.com) and mounted on the side of 

the air table to project onto a diffusive screen (Rosco Cinegel 3026 Tough White Diffusion 

(216); www.stagelightingstore.com) embedded in the bottom of the plexiglass tank.

Data Acquisition: The walls of the observation arena were assembled with light gray 

LEGO blocks to confine the fish to a water volume of 300 x 300 x 4 mm. Approximately 15 

ml of water containing a high density of live paramecia were added near the center of the 

arena prior to testing each fish. This paramecia stock also contained some rotifers and algae 

particles. For testing, single fish were transferred to the arena where inwardly drifting 

concentric gratings were projected to bring the fish to the arena center. Zebrafish larvae tend 

to turn and swim in the direction of perceived whole-field motion, a reflexive behavior 

called the optomotor response, and we leverage this response to relocate the fish. Once the 

overhead camera detected the arrival of the fish, the first observational trial was initiated and 

the drifting gratings were replaced by a static color image of small pebbles, a natural image 

with reasonably high spatial contrast. Next, the camera moved automatically on the gantry to 

maintain position above the fish and capture video with a frame-rate of 60Hz and 2 

millisecond exposure duration per frame. The fish was tracked for 3 minutes or until it 

reached the edge of the arena or tracking failed. The fish could evade the tracking camera 

with a high-speed escape maneuver, but these events were fairly rare. At the end of each 

trial, the camera returned to the arena center, video data was transferred from memory to 

hard disk, and concentric gratings were once again used to bring the fish back to the arena 

center to initiate another trial (up to 18 trials per fish). If the fish did not return to the center 

within 10-15 minutes, the experiment was terminated. The tracking algorithm was written to 

keep the darkest pixel in the image (usually contained within one of the eyes of the fish) 

within a small bounding box located at the image center. If the darkest pixel was located 

outside this bounding box, a command was sent to the motors to reposition the camera to the 

location of that darkest pixel. In this way, the camera moved smoothly from point to point to 

follow the fish, using the “Pulse Burst Positioning Mode” setting for the ClearPath motors. 

We run the ClearPath motors with Teknic’s jerk-limiting RAS technology engaged to 

generate smooth motion trajectories and minimize vibration during point to point movement. 

Experiments were run using PsychToolBox in Matlab.

Statistical Models: See Methods S1 for statistical modeling details.

Quantification and Statistical Analysis

Image Registration and Fish Pose Estimation—In every image frame, connected 

component pixel regions corresponding to the left eye, right eye, and swim bladder were 

identified. The fish head center was defined as the average position of the centers of these 3 

regions of interest. Heading direction is defined as the direction of the vector from the swim 

bladder center to the midpoint between the two eye centers. This information is used to 

translate and rotate each image for subsequent pose estimation and environment analysis. 

Only image frames in which all postural features could be extracted were included for 

further analysis. One common issue with pose estimation was caused by body roll of the 

fish, usually during an attempt to strike at a prey object, in which the fish would roll (rotate 
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around its rostro-caudal axis) enough for one eye to occlude the other from the view of the 

overhead camera. Rather than estimate eye vergence angles in these situations, these image 

frames were excluded. Another common issue was caused by high-speed maneuvers by the 

fish during which a 2 millisecond exposure was insufficient to capture a suitably sharp 

image, thus causing either image registration or pose estimation algorithms to be 

compromised. We included only image frames in which all postural features could be 

accurately extracted for further analysis. Video segments containing problematic frames 

were split into separate video segments.

Temporal Segmentation of Bout and Interbout Epochs—Bout and interbout epochs 

were identified by taking the absolute value of the frame to frame difference in heading 

angle and thresholding this time-series at 0.7 degrees. This binary signal was then dilated 

(radius = 2 elements) and eroded (radius = 1 element) with built-in Matlab functions 

(imdilate, imerode) to merge bout fragments and expand bout epochs to include one extra 

frame at the beginning and end of each bout. These operations set the minimal duration of 

both bout and interbout epochs to 3 frames (50 ms).

Bout Summary Statistics—Δ heading per bout: The change in heading angle per bout 

was calculated by averaging the heading direction of the fish over all frames in the preceding 

interbout epoch and subtracting this value from the average heading direction through all 

frames in the following interbout epoch. Positive values are assigned to leftward bouts.

∣ Δ heading∣ per bout: The absolute value of Δ heading per bout.

distance traveled per bout: The change in head position per bout was calculated by averaging 

the position of the fish head in the arena over all frames in the preceding interbout epoch 

(starting position) and also for the frames in the following interbout epoch (ending position). 

The distance between these two points is the distance traveled per bout.

∣ Δ tail-shape∣ per bout: This non-negative 1-dimensional quantity summarizes how much 

the tail changes shape during the 10 frames used to represent each swim bout (as in Figure 

2A). To compute this quantity, let the 10-frame tail angle measurements be placed in an 

array T with shape 20 × 10. First, the magnitude of frame to frame changes in each tail 

segment angle are computed to give a new array with shape 20 × 9. ∣ Δ tail-shape∣ is the sum 

of the absolute values of these 180 array elements. This value is divided by 180 to give units: 

radians per segment per frame. In Matlab syntax, this is computed as: abs_delta_tail_shape = 

sum(sum(abs(diff(T, n=1, dim=2)))) / 180

Several additional summary statistics are used to describe the fish eyes during each bout. 

These metrics are computed from the 10-frame representations of each bout and are further 

described in Figure S3.

tSNE Input—Each swim bout is represented as a 220-dimensional vector encoding the 

posture of the fish through 10 image frames beginning at bout initiation with 20 tail vectors 

and 2 eye vergence angles per frame (see also Figure S1). All rightward bouts (Δ heading < 

0) were mirror reflected prior to running tSNE by swapping the left and right eye 
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measurements and multiplying all tail angle measurements by −1. Because tail 

measurements are tenfold more abundant than eye measurements and we sought to 

emphasize eye data in our clustering, we decreased the relative magnitude of the tail 

measurements by encoding tail measurements in radians and encoding eye measurements in 

degrees. In practice, we found that we could identify roughly the same bout-classes across a 

fairly wide range of scaling factors used to emphasize eye measurements relative to tail 

measurements. While it is common to preprocess data with PCA prior to running tSNE, we 

achieved qualitatively similar embedding results with and without this step, so we simply ran 

tSNE on the 220-D inputs.

Each of the 200,559 swim bouts are represented as 220-D vectors as described above and are 

embedded in a 2-D space with tSNE. We implement tSNE with Barnes-Hut approximations 

with CUDA to decrease tSNE runtime (https://github.com/georgedimitriadis/t_sne_bhcuda). 

Euclidean distance was used as a distance metric. Following embedding, 5 bout classes were 

identified with the routines described in Figure S2. The 3 largest clusters were then further 

subdivided by kinematic variables, ∣ Δ heading∣ and ∣ Δ tail-shape∣, as described in Figure S2 

and above.

Identifying and Encoding Environmental Information: Objects near the water surface 

preceding each swim bout are identified with image processing routines. The focal plane of 

our camera was positioned near the water surface, so objects near the water surface are in 

focus while objects near tank bottom are blurry. We therefore wrote routines to isolate high 

spatial contrast objects. Following image translation and rotation, a stack of the 6 images 

preceding bout initiation are cropped as in Figure 1J. High spatial contrast objects are 

identified in Matlab by filtering each image in this stack with a Laplacian of Gaussian 2-D 

filter (size = 13 × 13 pixels, sigma = 1.6). Contiguous 3-D object volumes in this image 

stack are smoothed with 3-D dilation and erosion. The average position of each object in the 

image frame preceding bout initiation was used to encode object location with the extrinsic 

feature νloc. The number of pixels assigned to each object in this final frame was used to 

encode object size with the extrinsic feature νsize. The velocity of each object was computed 

by calculating the distance between the center of mass of each object in the 6th image frame 

preceding bout initiation (t-minus 100 ms) and the 1st frame preceding bout initiation (t-

minus 17 ms) and dividing by the time elapsed. If an object was not properly segmented 

through all 6 frames, the velocity was calculated from fewer frames (with a minimum of 3 

frames). The velocity vectors for each object were used to encode x-velocity and y-velocity 

in the extrinsic features νx and νy. While the image resolution is sufficient to extract 

additional features such as the orientation, eccentricity, and detailed shape of each of object, 

we have not yet included this information in our predictive models.

Intrinsic Features to Predict Interbout Intervals and Bout-types

preceding interbout interval: the duration of the preceding interbout interval in seconds. For 

models to predict interbout interval duration (in), this is the duration of interbout in–1. For 

models to predict bout-type (bn), this is the duration of interbout in.
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preceding bout-type: the category (i.e. bout-type) of the preceding swim bout. There are 18 

bout-types, each of which is composed of left and right versions, giving 36 categories in 

total. hunt dwell-time: the integer number of observed preceding consecutive hunting bouts 

(i.e. J-turn, pursuit, abort, strike). As hunt sequences extend, this value increases.

explore dwell-time: the integer number of observed preceding consecutive exploring bouts. 

For all predicted interbout intervals and bout-types, either hunt dwell-time or explore dwell-
time will be zero, with the other being a positive integer. Only the contiguous bout sequence 

containing the predicted interbout interval (in) or bout-type (bn) is used to define these 

feature values.

tank-time: the amount of time (in minutes) elapsed since the first trial was initiated for that 

fish.

Extrinsic Features to Predict Bout-types: νloc: locations of potential prey in the local 

environment.

νsize: sizes of potential prey in the local environment..

νx: relative x-velocities of potential prey in the local environment.

νy: relative y-velocities of potential prey in the local environment.

See Figure S4 for more information on intrinsic and extrinsic feature encoding.

Simulations: For our combo renewal process simulations, we simulated an environment 

with prey objects that move as biased random walking particles. Each particle has a constant 

size and speed. These particles influence bout-type selection as their locations, sizes, and 

relative velocities are encoded with the extrinsic features νloc, νsize, νx, and νy. We 

simulated 50 fed and 50 starved fish for 40 minutes each (in 20 two-minute trials). Similar to 

our real experiments, prey are distributed with a centro-peripheral gradient, with the highest 

density of prey located near where trials begin. To simulate a behavioral sequence, an 

interbout interval duration is selected by randomly sampling from an interbout interval 

distribution generated from the combo interbout interval model. Next, a bout-type is selected 

by randomly sampling from a bout-type probability distribution generated from the combo 
bout model. Upon selection of a bout-type, we move the fish through its virtual world along 

the bout-type specific trajectories described in Figure S7. Since the combo bout model 

depends on the environment in addition to behavioral history and hunger state, the virtual 

prey objects influence the fish’s behavioral trajectory. We call this combined bout and 

interbout model a combo renewal process. For comparison, we simulate 50 fed and 50 

starved fish with a simpler model in which interbout intervals and bout-types depend only on 

preceding bout-type (bn–1). In these simulations, interbout interval durations are sampled 

from a probability distribution generated by the selected form of the preceding bout-type 
feature (split-bn–1), and bout-types are sampled from a bout-type probability distribution 

generated from the selected form of the preceding bout-type feature (pooled-bn–1). This 

model is referred to as a first-order Markov renewal process, and has no environmental 

dependencies. For both the combo renewal process simulations and the first-order Markov 
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renewal process simulations, model weights are set at the maximum a posteriori (MAP) 

estimate of the GLM weights from the trained models.

Data and Code Availability—Compressed behavioral data (https://data.mendeley.com/

placeholder) and statistical models (https://github.com/slinderman/placeholder) are available 

online. Uncompressed data available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS:

• Naturalistic larval zebrafish behavior is observed with a moving camera 

system.

• Probabilistic models are used to predict and simulate behavioral sequences.

• Models combine environmental dynamics, behavioral history, and hunger 

state.

• Simulations capture behavioral dynamics spanning multiple timescales.
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Figure 1: Acquiring Behavioral Data with BEAST
A. BEAST Schematic. Infrared camera (i) moves on motorized gantry to stay above fish. 

Frame rate = 60 fps. Projector (ii) and IR-LEDs (iii) illuminate screen embedded in tank 

bottom. See Video S1 for animated schematic. B. Swim paths from 3 trials from 1 fish. 

Arena water volume = 300 × 300 × 4 mm. Camera field of view = 22 × 22 mm (orange 

square). C. Fish heading direction over time (from purple section in B). D. Expansion of box 

from C with bout and interbout epochs identified (notation indicated). E. One swim bout 

(from box in D) after image registration. F. Head position (yellow dot), heading direction 

(purple arrow), eye vergence angles (angles of black arrows above horizontal), and tail shape 

(20 tail tangent directions) extracted in every frame (frame 3 from E shown). See Figure S1 

for details. G. Histograms of all bout and interbout durations. H. Histogram of heading 

direction change per bout (Δ heading). I. Histogram of mean eye vergence per interbout. 

Convergence threshold set at local minimum: 24°. J. Video dataset cropped to circular FOV 

(diameter = 8.12 mm). K. Locations, sizes, shapes, and relative velocities of putative prey 

are identified preceding initiation of every swim bout (here shown for objects in J). Box 

width = 820 μm. Identified objects are mostly edible (paramecia, rotifers), but include also 

algae, dust (box 1), and artefacts.
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Figure 2: Exploring and Hunting Bout-Type Categorization
A. Bouts are represented as 10-frame postural sequences beginning at bout initiation. Bout 

shown immediately follows image from Figure 1J. B. Bout dataset embedded in 2-D space 

with tSNE. 5 bout-classes (abundances in parentheses) identified with density-based 

clustering (see Figure S2). Location of bout from A indicated with triangle. Each bout is a 

point, colored by bout-type (see C for colormap). C. Large bout-classes are subdivided to 

get bout-types. Plus signs indicate kinematic parameter magnitude. D. Duration (mean ± SE) 

of interbout intervals preceding (top) and following (bottom) left and right versions of each 

bout-type. E. Trajectory of 13-bout hunt ending in strike. Circle locations and arrows 

indicate head position and heading direction preceding bout initiation. Circle colors indicate 

bout-type. Circle areas are proportional to ∣ Δ tail-shape∣. F. Hunt from E contained in a 

longer bout sequence. Heading direction and eye vergence angles shown over time with bout 

and interbout epochs indicated. Bout from A indicated (triangle). See Video S2 for 

corresponding video data. G. Trajectories from 1000 complete hunts ending in strike (black 

line: hunt from E).
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Figure 3: Hunger Regulates Eye Position and Action Selection
A. Mean eye vergence per interbout (like Figure 1I) for observations in first 10 minutes of 

testing, shown separately for fed and starved groups. Solid vertical lines indicate local 

histogram peaks. B. Fed fish display wider eye divergence preceding exploring bouts and J-
turns, but not pursuits, aborts, and strikes (bout-types ordered as in C). See Figure S3 for eye 

kinematics associated with each bout-type. C. Log2 of relative bout-type abundances 

(starved / fed) during first 40 minutes of testing. D. Interval durations (mean ± SE) following 

each bout-type for fed and starved groups (first 40 minutes of testing). E. Log2 of relative 

bout-class abundances (starved / fed) in 10-minute bins.
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Figure 4: Probabilistic Models to Predict Interbout Intervals
A. Behavioral data conceptualized as marked renewal process. Part of bout sequence from 

Figure 3F shown for example. B. Intrinsic features relate behavioral history and hunger to 

interval in. Example inputs to predict interval from A shown. C. Schematic of GLM to 

generate predictive probability distribution over in. Geometric and Poisson distributions are 

parameterized by just their mean, while the negative binomial distribution is also 

parameterized by variance. D. in probability distributions given 2 possible values for 

preceding bout-type. E. Similar to D, but for split-bn–1 (NB distribution only). F. Predicted in 

(mean with 95% credible intervals) given from pooled and split forms of single-feature NB 

models.
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Figure 5: Probabilistic Models to Predict Bout-Types
A. Extrinsic features encode surface object locations and properties (see Figure S4). For 

example, νsize encodes object sizes (here, for objects from Figure 1K). B. Schematic of 

GFM to generate predictive probability distribution over bn. C. Ipsilateral bout transition 

probabilities (i.e. left to left, or right to right) from pooled-bn–1 model. Each row shows bn 

probability given preceding boat-type. D. Contralateral bout transition probabilities (i.e. left 

to right, or right to left) from pooled-bn–1 model, reported relative to ipsilateral transition 

probabilities. Rare transitions not shown. Blue squares indicate transitions that are more 

likely to occur ipsilaterally. Transitions into abort are more likely to occur contralaterally. E. 
Weights from pooled-νloc model shown for each rightward hunting bout-type. F. pooled-in 

model summary. Activations of 5 bout-types shown given preceding interbont interval. Full 

bout-type probability distribution evaluated at 3 specific in values (indicated with i, ii, iii). 
G-I. Similar to F, but for hunt dwell-time, explore dwell-time, and tank-time. We choose the 

split architecture for tank-time, with separate distributions for fed and starved fish shown.
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Figure 6: Comparing and Combining Behavioral Models
A.Pooled and split single-feature NB interbout models compared by marginal log likelihood 

(MLL). MLL of simplest NB interbout model (pooled-bias) subtracted from each model’s 

MLL as baseline. For comparison, we include features similar to preceding bout-type and 

preceding interbout interval, but from further into behavioral history. Pooled forms selected 

unless indicated. B. All pairwise combinations of features (in selected form) are used to 

make 45 paired interbout models. Paired model MLL calculated as in A (i.e. baseline-

subtracted) and divided by baseline-subtracted MLL of stronger feature component. C. All 

features combined to make combo GFM for intervals. Starting with strongest paired model, 

we add the feature at each selection step which increases MLL most, until all features are 

added. D-F. Same as A-C, but for bout-type models. See Figure S5 for information on 

extrinsic feature neural network models. G. NB combo interbout model compared to 

similarly constructed combo geometric or Poisson models to predict in. NB distribution fits 

the data best. H. Performance of combo bout model compared to baseline (pooled-bias 
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model captures only overall bout-type abundances). F1-statistic computed for each bout-type 

on test-set data (combo model: bars; baseline: white lines). Fold increase shown for each 

bout-type. See Figure S6 for similar analyses of single-feature bout models. I. Combo bout 

model confusion matrix (separate rows for left and right versions of each bout-type). Each 

row sums to one, showing average model output for all bouts of that type in test-set.
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Figure 7: Simulating Trajectories of Fed and Starved Fish
A. We simulate behavioral trajectories of 50 fed and 50 starved fish (40 minutes per fish) by 

alternating sampling from combo interbout and bout models (here called a combo renewal 
process). ~5 seconds of simulated behavior shown in which fish hunts and strikes at a virtual 

prey. See Video S3 for animation of this simulated sequence and Video S4 for visualization 

of how these bout-types and intervals were selected from conditional probability 

distributions evolving overtime. Fish move through the environment using bout-type 

trajectories shown in Figure S7. Virtual prey move through environment as biased random-

walking particles with fixed sizes and speeds. B. Bout-type triggered averages of fish FOV 

preceding initiation of 2 bout-types. C. Histograms of simulated interval durations (mean ± 

SE). D. Ipsilateral bout transition probabilities of simulated fed and starved fish are 

compared. Red squares indicate increased transition probability for starved fish relative to 

fed fish. E. Hunt length distributions for complete hunts ending in strike or abort. Left panel: 

real data. Middle panel: data from simulations in which bout-types and intervals depend on 

only preceding bout-type (called a 1st-order Markov renewal process). Right panel: data 

from combo renewal process simulations. F. Relative bout-class abundances produced in 

combo renewal process simulations (similar to Figure 3E).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Compressed Behavioral Data This paper www.mendeley.com/placeholder

Experimental Models: Organisms/Strains

7-8 days-post-fertilization
Danio rerio: mitfa−/− (nacre)

Harvard University;
MCB Fish Facility

N/A

Software and Algorithms

Statistical Modeling Code This paper www.github.com/slinderman/placeholder
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