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Shared research resource facilities, also known as core laboratories (Cores), are responsible for generating
a significant and growing portion of the research data in academic biomedical research institutions. Cores
represent a central repository for institutional knowledge management, with deep expertise in the strengths and
limitations of technology and its applications. They inherently support transparency and scientific reproduc-
ibility by protecting against cognitive bias in research design and data analysis, and they have institutional
responsibility for the conduct of research (research ethics, regulatory compliance, and financial accountability)
performed in their Cores. The Association of Biomolecular Resource Facilities (ABRF) is a FASEB-member
scientific society whose members are scientists and administrators that manage or support Cores. The ABRF
Research Groups (RGs), representing expertise for an array of cutting-edge and established technology platforms,
perform multicenter research studies to determine and communicate best practices and community-based
standards. This review provides a summary of the contributions of the ABRF RGs to promote scientific rigor and
reproducibility in Cores from the published literature, ABRF meetings, and ABRF RGs communications.
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INTRODUCTION

Advances in biomedical research–an increasingly complex
collaboration of both basic and clinical science–are driven by
improvements, innovations, and breakthroughs in technology.

The application of technology requires significant expertise,
as well as implementation of best practices for scientific
rigor and transparency, and the acquisition of equipment,
instruments, and reagents to make it possible.124 This
increasing sophistication, combined with significant finan-
cial investment, has been the impetus for the growth of
Shared Research Resource Laboratories (Cores) in acade-
mia, government, and industry.527 Shared research
resources are highly valued for making efficient use of
research funds and broadening access to advanced
technologies.8211 Working with Cores, the research commu-
nity can more effectively promote rigorous research practices,
quality technical training, and collaborative research.6 The
Association of Biomolecular Resource Facilities (ABRF) is
an international scientific society dedicated to advancing
shared research resource core laboratories through research,
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communication, and education.12 ABRF represents over 700
members from 19 countries working within or in support of
Cores in government, academia, research, industry, and
commercial settings, representing a collaborative knowledge
base to advance the adoption of more rigorous, reproduc-
ible, and transparent research practices.

Recently, well-publicized allegations of the inability to
reproduce published biomedical research13216 have elicited
discussions and examination within the research commu-
nity and among public stakeholders.17221 Federal agencies
that support research activities, including the U.S. Na-
tional Institutes of Health (NIH) and the National Science
Foundation, have implemented new policies to address
these concerns and improve communication of critical
experimental details within the research community and
to the public.22224 The National Academy of Sciences
also released guidelines on Research Reproducibility and
Replicability in Science.25 In response, the ABRF Commit-
tee for Core Rigor and Reproducibility conducted a survey
to gain information on how NIH initiatives on advanc-
ing scientific rigor and reproducibility influenced current
shared resource services and new technology development
and to identify the challenges and opportunities related to
implementation of new reporting requirements.26 The
survey results supported that core scientists are deeply
invested in supporting transparency and scientific repro-
ducibility. By employing best practices, protecting against
cognitive bias in research design, employing full trans-
parency in reporting experimental details and authentica-
tion of key resources, Cores directly addresses 2 of the 4 areas
of improvement identified by the NIH.22, 26 As responsible
stewards for the majority of research data produced at many
institutions, with 94% of all core scientists trained in the
operation and performance of instrument and equipment in
their laboratories, Cores have a fundamental role in scientific
excellence.527, 26 Recognizing this, federal granting agencies
have already made significant investments in Cores through
direct and indirect mechanisms, with the goal of provid-
ing cutting-edge technologies and expertise to individual
scientific investigators.27

Collectively, and synergized through membership in
ABRF, core scientists contribute to best practices, data
reproducibility, and consensus guidelines for standard
operating procedures, data standards, and quality analysis
and quality control (QC).28, 29 ABRF was founded on these
premises,30 its mission to both define and support best
practices and scientific excellence and reproducibility in
biomedical discovery through research, communication,
and education. The hallmarks of ABRF, distinguishing it
from all other professional scientific societies, are the ABRF-
sponsored multisite Research Group (RG) studies. RG
study participants prepare more effectively for change in the

analytical environment and stay current with best practices
for scientific rigor and reproducibility. In conjunction with
the ABRF web-based discussion forum (http://list.abrf.org/),
both contribute to the education of resource core directors,
scientists, administrators, customers, and interested mem-
bers of the scientific community.

Because scientific research advances are driven by
the temporal nature of technology, scientific rigor is the
foundation that drives data quality. Reviewed here are the
ABRF RG contributions and current efforts in supporting
these tenets, spanning protein primary structural analysis to
single-cell transcriptomics.

ABRF RGs

The concept of developing test samples for Cores to use for
methodology and proficiency assessment was initiated in
1986 at the Sixth International Conference on Methods in
Protein Sequence Analysis Research Resource Facility
Satellite Meeting (which later evolved formally into what
we now know as the ABRF). A group of attendee scientists
with an interest in assessing the reproducibility and rigor
among laboratories performing Edman sequencing and
amino acid analysis distributed test samples to 103
laboratories, thus establishing the first ABRF RG.31 Today,
the ABRF RGs are organized by ABRF members who are
experts in their respective disciplines and who design studies
relevant to the prevailing state of the technology to inform
scientific rigor in research performed across national and
international academic, government, and industry labora-
tories. These objectives are met by designing and distributing
studymaterials through several means: 1) provide a protocol
for self-evaluation of scientific accuracy and procedural
efficiency; 2) contribute improvements to instrumenta-
tion, methods, and instrument operation/maintenance by
identifying limitations or common problems encountered
in laboratories in the field; 3) determine best practices
for standard operating procedures, and 4) define realistic
expectations for both core scientists and users.32 Through
participation in the multisite RG studies, participants are
more effective at addressing inevitable changes, improve-
ments, and upgrades in the analytical environment and
remain current with best practices for scientific rigor and
reproducibility.33

The first decade of ABRF RG studies focused on the
advancement of technologies and education of the scien-
tific community on the best methods and strategies for the
hot topic of research focus at the time—protein primary
structure and function analysis. These early RGs [Edman
Sequencing RG (ESRG), Protein Sequencing RG (PSRG),
and related Internal Sequencing RG studies] provided rich
detail on the scientific rigor demanded for the cutting-edge
technologies of this era.34253 A critical adjunct to the ESRG
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was the Proteomic Standards RG (sPRG), which focused on
designing and producing peptide standards.54257The sPRG
produced 3 synthetic peptides that were registered and
certified as reference standards, which is important work
done in collaborationwith theNational Institute of Standards
and Technology (NIST). A significant asset to the scien-
tific community at large, these peptides are commercially
available.58

A cornerstone of quantitative protein characteriza-
tion, amino acid analysis was an early methodology and
technology focus for ABRF. The amino acid analysis RG
members detailed advances in the detection and sensitiv-
ity of amino acid analysis, tracing technology platform
evolution, and ion-based chromatographic methods tomass
spectrometry analyses.59274 And the PSRG was instrumen-
tal in bringing improvements to synthetic chemistrymethods,
most significantly leading efforts for research and methods
for introducing fluorenylmethyloxycarbonyl chloride amino
acid chemistry (FMOC) to the forefront.75290

Later RG efforts and publications focused on deter-
mining best practices for analyzing post-translational
modifications (Carbohydrate Analysis RG, Glycoprotein
RG)91, 92 and establishing quality measurement standards
for analyzing molecular interactions (protein-protein;
protein-ligand) (Molecular Interactions RG).93297

Individually and as a valuable resource in aggregate, the
ABRF RG studies remain highly referenced for technology
applications andmethodology. New studies continue, driven
by new technologies and the need for robust methods and
protocols and building on the success of the early RGs. The
current ABRF RGs encompass 4 broad, technology-based
categories integral to modern bioresearch: 1) genomics, 2)
bioinformatics, 3) mass spectrometry (proteomics, metab-
olomics), and 4) imaging (microscopy and flow cytometry)
and are reviewed here.

RESULTS

Genomics

Thefield of genomics has explodedover thepast 40 yr,with the
rapid development of next-generation technologies spawning
multiple generations of sequencing platforms, each improving
oncost, speed, anddata quality, evenportability, as exemplified
by recent sequencing data performed on the International
Space Station.98 Although these technology advances have
significantly impacted our understanding of biology and
disease, the sheer volume of new data that these technologies
produce have created tremendous challenges related to data
sharing and datamanagement. As a consequence, standardized
procedures and data formats as well as comprehensive quality
management considerations are at the forefront.99

The current Genomics RGs (GRGs) represent 5 over-
lapping subspecialties representative of critical genomics based

technology and applications: 1) next-generation sequenc-
ing (NGS), 2) Genome Editing RG (GERG), 3) DNA
Sequencing RG (DSRG), 4) GRG, and 5) Metagenomics
RG (MGRG). The predecessor genomics-related RGs
researched methods and applications for microarrays,
fragment analysis genotyping, and nucleic acid analysis
[Nucleic Acids RG (NARG)], finally merging to form the
current GRG. The mission of all the genomics-related RGs
is to analyze, establish, and disseminate standards and best
practices for Cores in the fast-evolving field of genomics
technologies and applications.

Next-Gen Sequencing RG

TheNGSRG is dedicated to educating ABRFmembers and
scientific community in support of scientific rigor and data
reproducibility, identifying optimal methods and strategies
for NGS projects as well as performance evaluation of the
ever-evolvingNGSplatforms. To that end, the 2018ABRF-
NGS study was a coordinated multi-RG effort by 4 RGs
[NGSRG,DSRG,GRG, andGenomics Bioinformatics RG
(GBIRG)] and over 20 Cores. The long-term goals of the
study are to optimize the detection of genetic variation with
the latest sequencing tools, establish a community resource
for self-evaluation and self-improvement, and improve
sequencing performance while evaluating existing and
emerging protocols and platforms. Previous RG studies
focused on RNA sequencing (RNA-seq), using standard
Microarray Quality Control Consortium (MAQC) total
RNA samples combined with External RNA Controls
Consortium synthetic spike-in RNA.100, 101 This RNA
profiling phase of the ABRF-NGS Study included the
Illumina HiSeq 2000/2500 and MiSeq (Illumina, San
Diego, CA), Roche 454 GS FLX+ (Roche, Basel, Switzer-
land), Life Technologies Ion Torrent PGM and Proton
(Thermo Fisher Scientific, Waltham, MA, USA), and
Pacific Biosciences PacBio RS (Pacific Biosciences, Menlo
Park, CA) platforms. The Phase 1 ABRF-NGS Study
(2012–2015) assessed sequencing accuracy, absolute and
relative expression levels, RNA splice junction detection,
and differential expression detection between samples. In
a similar fashion, the current Phase 2 ABRF-NGS Study
(2016–2020), performed in collaboration with the NIST
Genome in a Bottle Consortium,102 the U.S. Food and
Drug Administration’s Sequencing Quality Control Con-
sortium103 and other sequencing community stakeholders
will utilize standardized reference genomic DNA samples.

High-throughput RNA-seq greatly expands the po-
tential for genomics discoveries, but the wide variety
of platforms, protocols, and performance capabilities has
created the need for comprehensive reference data. Here we
describe the ABRF-NGS study on RNA-seq: Replicate
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experiments across 15 laboratory sites were performed
using reference RNA standards to test 4 protocols (poly-
A–selected, ribo-depleted, size-selected, and degraded)
across 5 sequencing platforms (Illumina HiSeq, Life
Technologies PGM and Proton, Pacific Biosciences RS,
and Roche 454).104 The results showed high intraplatform
(Spearman rank R . 0.86) and interplatform (R . 0.83)
concordance for expression measures across the deep-count
platforms but highly variable efficiency and cost for splice
junction and variant detection between all platforms. For
intact RNA, gene expression profiles from ribosomal
ribonucleic acid (rRNA) depletion and poly-A enrichment
were similar. In addition, rRNA depletion enabled effective
analysis of degraded RNA samples, new approaches for
correcting batch effects in large-scale studies105 and more
efficient detection of splice isoforms.106 These RG studies
provide a broad foundation for cross-platform standardiza-
tion, evaluation, and improvement of RNA-seq107, 108 and
have led to other standards in genomics, metagenomics, and
multiomics.109

Genome Editing RG

With increasing demand for CRISPR/Cas9 technology,
new or existing Cores have adapted their services to fit
this technology into their workflows. In the GERG 2017
survey,110 plasmid format and lipofection delivery were
favored among cell culture users. The 2018 GERG study
evaluated the reproducibility of indel formation rates by
comparing guide RNA format and delivery methods across
participating labs. Various configurations of guide RNA and
Cas9 components can be used for editing cells, including 1)
a plasmid expressing both the guide RNA andCas9, 2) Cas9
protein combinedwith a synthetic single guide RNA, and 3)
Cas9 combined with a synthetic 2-part guide RNA. The
study evaluated the cutting efficiency at 3 different guide
RNA targets based on the guide RNA format using 2
delivery methods (lipofection or nucleofection transfection
methods). The study results suggest the ribonucleoprotein
(RNP) format for the guide RNA and Cas9 is gaining in
popularity in combination with nucleofection delivery. The
GERGRG is finalizing the results of the study to determine
the most reproducible method (Sergison, E., Regan, M.,
Delventhal, K., Gurumurthy, C., Kmiec, E., Pruett-Miller,
S., Dahlem, T., Marsischky, G., unpublished results).

DNA Sequencing RG

The DSRG conducts studies to assess the capabilities of
DNA sequencing technologies, protocols, kits, and re-
agents; provides a means of self-evaluation for sequencing
technologies to evaluate their ownperformance; disseminate

the findings while still relevant; and promote communica-
tion and cooperation among laboratories that perform
Sanger sequencing and NGS. The ABRF NARG, a precur-
sor to the DSRG, first conducted a comparison of DNA
sequencing technologies in 1995.111–113 In the late 1990s, the
ABRFDSRGestablished a series of long-term studies, called in
aggregate The Never Ending Story, designed to evaluate the
performanceof Sanger sequencing instruments.108TheDSRG
1997 study involved sending a guanine-cytosine (GC)-rich
DNA template to Cores that offered DNA sequencing as a
service.114 The objective was to evaluate whether chemical
additives, altered thermocycling conditions, and analysis
methods could improve the sequence obtained fromaGC-rich
template. A total of 134 Cores participated in this study. The
study demonstrated that manual review and editing of data
generated by automated sequencing instruments had themost
impact in improving sequencing accuracy, using the auto-
mated analysis algorithms available at that time. Continuation
of this study resulted in definition and dissemination of best
practices for sequencing high GC templates.115

The second inTheNever Ending Story series assessed the
state-of-the-art in DNA sequencing to create a publically
available quality control resource. Sequencing groups sub-
mitted unedited sequence for a common standard template
[i.e., bacterial plasmid cloning vector pGEM template with
the M13 (220) forward primer] using the instruments,
reagents, and protocols common in their core and also included
all metadata (e.g., chemistry type and concentration, instru-
ment type and run conditions, and analysis algorithms and
methods). Data were collected electronically and analyzed
based on sequencing accuracy, read length, signal sensitivity,
enzyme dilution tolerance, and ease of use. The aim of
establishing this readily updatable, online benchmark re-
source for self-evaluation was to promote high standards and
reproducible results for DNA sequencing in core laboratories.
More than 300 Cores participated in this study.116

The Never Ending Story continued with DSRG studies
in 1999, 2000, and 2001, evaluating the outcomes of
different DNA sequencing methods on sequencing both
standard and difficult templates to expand the web-based
quality control resource and produce a defined standard
test array of difficult-to-sequence templates.117 The Never
Ending Story continued in 2003, 2005, 2006, and 2008,
withDSRG studies that evaluated and defined best practices
for sequencing through difficult-to-sequence DNA tem-
plates containing extensive repetitive sequences.118 In 2019,
The Never Ending Story was rebooted with a DSRG study
on Sanger-based sequencing best practices in response
to the release of new Sanger sequencing dye termina-
tor chemistries. This study was a cross-site evaluation of
Sanger sequencing chemistries, designed to evaluate the
performance of sequencing both standard and difficult-to-
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sequence templates using a variety of legacy and new-to-
market Sanger sequencing chemistries and provide guid-
ance to Cores in regard to modifying existing sequencing
protocols to further the quality and robustness of their
Sanger sequencing production pipelines.1192129

Recent DSRG studies expanded the rigorous assess-
ment of sequencing reagents toNGSmodalities as well, with
an eye toward implications for the selection of kits for
specific experimental contexts. Multisite projects included
the following: a robust evaluation of small RNANGS library
sequencing kits with respect to accurate representation of
microRNAs (miRNA) differential expression, retention
of small RNA and other noncoding RNAs (ncRNAs),
technical replication, conservation of material, and ease of
use across 11 different ABRF member sites (Herbert ZT,
Thimmapuram J, Xie S, et al., unpublished results); an
assessment of ribosomal reduction protocols for human/
mouse/rat RNA upstream of NGS sequencing in order
to determine effectiveness at retaining messenger RNA
(mRNA) and ncRNA components of a total RNA specimen
for sequencing while minimizing the intervening and
noninformative rRNA and transfer RNA (tRNA) compo-
nents130; and a comparison of methods designed for high
throughput enzymatic fragmentation of DNA prior to next-
gen library generation to assess resulting library complex-
ity, bias in sequence and genomic context, and site-to-site
consistency (DSRG posters and presentations). These and
an array of RG studies with broad participation have driven
improvements in quality, accuracy, and reproducibility for
DNA and RNA sequencing provided by Cores.1312147

Genomics RG

The GRG members provide both academic and industrial
scientists useful information and guidance in the use of
various microarray, NGS, and other genomic platforms and
applications in their research. Earlier RGs that focused on
microarrays, fragment analysis genotyping, and nucleic
acid analysis (NARG) have merged into the GRG. These
RGs performed foundational studies on the evaluation and
applicationofmicroarrays1482160 and fragment analysis.161, 162

More recent GRG studies have focused on single-cell
genomics, a field that is rapidly evolving in both platform
technology and analyticalmethodology.To assess variability
and determine best practices across various leading plat-
form technologies, the 2017 GRG study evaluated the key
technologies for single-cell RNA-seq. The platforms chosen
were Takara’s iCell8 (Mountain View, CA), Fluidigm’s
C1 AutoPrep (South San Francisco, CA), 10X Genomics
Chromium Controller (Pleasanton, CA), and Illumina/
BioRad’s ddSEQ joint venture. A well-characterized triple-
negative breast cancer cell line was distributed to multiple

labs for analysis in duplicate across all platform technolo-
gies to assess correlation with bulk RNA-seq data, assess
reproducibility, and evaluate concordance of expression
results using mock vs. drug exposure. Results further
understanding of the limitations of each technology,
furthering more rigorous experimental design in platform
selection (Fournier, C., Reyero-Vinas, N., Ashton, J., Jen,
J., Boswell, S., Chittur, S., Mason, C., Rehrauer, H., Steen,
R., unpublished results). The 2018 GRG study, performed
in collaborationwith theAmericanNaturalHistoryMuseum,
assessed accuracy and reproducibility of several long-read
sequencing platforms, evaluating PacBio Sequel, Oxford
Nanopore Technologies GridION, 10X genomics linked
read technology, and Illumina’s MatePair chemistry. An
outcome goal of this study was the creation of a full genome
reference of an endangered parrot for conservatory pur-
poses (Fournier, C., Reyero-Vinas, N., Ashton, J., Jen, J.,
Boswell, S., Chittur, S, Mason, C., Rehrauer, H., Steen, R.,
unpublished results).

Metagenomics RG

The MGRG was created in response to the rapidly growing
field ofmetagenomics by a teamof scientists with backgrounds
in microbiology, genetics and genomics, bioinformatics,
oceanography, geochemistry, planetary sciences, climate
research, and extremophile research.163

Early ABRF studies on metagenomics were performed
by the DSRG and GRG.164 International reference samples
used and characterized by the MGRG are used to assess the
performance of impact of protocols like whole-genome
amplification165 and help individual laboratories compare
their local results with those of the larger research
community or improve clinical implementation of “pre-
cision metagenomics”166. The tested, titrated bacteria/
fungal mixtures are now continuously used in a wide range
of environments167 for both genetic and epigenetic
applications.168 Reference standards facilitate the devel-
opment of much needed peripheral reagents including
high-performance DNA extraction kits, complex enzyme
mixes for microbial lysis, nucleic acid-free sample concentra-
tors, and bioinformatic pipelines. Improvements in meta-
genomic methods will ultimately benefit from the availability
of standardized reference samples that represent the range of
organisms potentially present in samples from the field.163

The MGRG has initiated a novel microbiome project
ExtremeMicrobiome Project169 to characterize organisms from
extreme environments around the world. Further goals of the
MGRG include assembling microbial standards and charac-
terize shortcomings of current metagenomic techniques170

and comparison to older techniques in microbiome research
like 16S rRNA sequencing171 including optimizing DNA
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extraction protocols, library synthesis methods for different
NGS platforms and developing best approaches for bioinfor-
matics. The RG also works very closely with the appropri-
ate vendors of the field to help advance this technology
for metagenomics while developing low-input RNA-seq to
further enable metatranscriptomics.172, 173 The development
of a bacterial counting platform (similar to simple low-cost
mammalian cell counters), in partnershipwith specific vendors,
is needed for research and clinical metagenomic quality control
requirements.This enumeration devicewill be validated against
standard techniques such as flow cytometry, microscopic, and
light scattering chromatography (LSC) techniques.

Bioinformatics

Advances in the technologies and informatics used to generate
and process large biologic data sets (“omics data”) are
promoting a critical shift in the study of biomedical sciences
and a need for interdisciplinary data integration strategies to
support a better understanding of biologic systems. Analysis
of genomics, transcriptomics, and proteomics data are still
primarily analyzed individually with distinct approaches
generating monothematic rather than integrated knowledge.
Computational methods for data management, algorithms
for statistical pattern inference and recognition, and data
integration are necessary for the integrated or constructionist
view of biology. Coupled with the increase in metabolomics,
epigenomics, and pharmacogenomics data needs, the ABRF
members have formed 2 RGs to exemplify and evaluate
computational methods for bioinformatics (data exchange
and management) and quantitative mathematical modeling
to meet current needs in data analysis and sharing.

Genomics Bioinformatics RG

The goals of the GBIRG are to 1) provide collaborative
bioinformatics and bio-information technology (bio-IT)
support for ABRF genomics-focused RG studies, 2) explore
collaborations with the ABRF proteomics bioinformatics
focused RGs, and 3) investigate questions of interest to all
genomics-focused bioinformatics and bio-IT Cores by
creating surveys of bioinformatics and bio-IT Core manage-
ment and funding models, conducting studies of computa-
tional biology analysis tools and data management methods
issues, and identifying best practices. Most recently, GBIRG
has supported a multiplatform assessment of transcriptome
profiling using RNA-seq with the ABRF Next-generation
Sequencing Study group.104

Proteome Informatics RG

Themission of the ABRFProteome Informatics RG (iPRG)
is to educate ABRF members and the scientific community

on best application and practice of bioinformatics toward
accurate and comprehensive analysis of proteomics data.
The iPRG members actively support and participate in the
development and advancement of new algorithms, software
tools, and strategies for proteome informatics with the goal
of both educating and introducing these technologies to
the membership. The iPRG research studies1742178 have
typically started by generating ground truth data sets to
challenge and benchmark commonly used algorithms and
statistical methods in proteomics. Several of these data sets
have seen reuse independently from the iPRG study for
which they were generated, demonstrating the lasting value
of reference data fromwell-designed experiments.179–181 All
past studies, including the data sets and their documentation,
are archived and available on the ABRF website.182

Proteomics, Metabolomics, and Proteomics
Standards RGs

Edman sequencing dominated the early RG studies, the
only method at the time for determining the primary
structure of proteins.With the advent of mass spectrometric
instruments, methods evolved to provide rapid and sensi-
tive qualitative and quantitative analysis of biomolecules
(proteins, peptides, oligosaccharides, metabolites, lipids,
DNA, andRNA).The PSRGandProtein IdentificationRG
supplanted the ESRG.

Significant advances in mass spectrometry (MS) plat-
form technology and informatics data analysis increased
sensitivity and throughput, supplanting earlier chemistry-
based technologies.183 The PSRG studies focused onN- and
C-terminal sequence analysis of proteins by any technology
yielding information about the termini of proteins.1842197

The current Proteomics, Metabolomics, and Proteo-
mics Standards RGs studies are designed to examine
reproducibility and other capabilities of emerging tech-
niques to establish best practices for scientific excellence.
The Mass Spectrometry RG, which preceded the cur-
rent Proteomics, Glycoprotein, and Metabolomics RGs
(MRGs), contributed the Delta Mass utility website still
employed today (Delta Mass). However, our current
knowledge that more than 21,000 human genes198 may
code 1 million199 or more proteoforms leaves ample room
for development.200 New methodologies, coupled with
transcriptomics data and MS/MS peptide sequence anal-
ysis at the subpicomole level have enabled a multiomics
approach to protein identification for biologic and disease
studies within a given biologic sample. Recent advances in
mass spectrometry have clearly revolutionized the studies
of post-translational modifications and include the devel-
opment of specific strategies to preferentially enrich
modified amino acids via covalent modifications incorpo-
rating affinity tags.
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Proteomics RG

The PRG is dedicated to sharing knowledge about the analysis
of proteins in support of scientific rigor and data reproduc-
ibility. The 2018 PRG study is focused on enabling mass
spectrometry–based proteomics laboratories to use Data-
Independent Acquisition (DIA) technology. For this study,
the PRG reached out to laboratories around the world. Sixty-
four laboratories from 16 countries (and 20 U.S. states) were
provided with a test sample set, protocols, and resources to
facilitate the use of data independent acquisition (DIA). Forty-
one participants (64% of sample recipients) deposited the raw
data for PRG to analyze. Almost half of the participants in the
study were new to DIA (Jagtap, P., Herring, L., Midha, M.,
Martin, R., Neely, B., Phinney, B., Shan, B., Stemmer, P.,
Wang, Y., unpublished results). The previous 2 studies
conducted by the PRG were based on detection and quantita-
tion of low-abundance proteins in a highly complex sample.
In the 2016 PRG study, data submitted from study partici-
pants was used to measure intralaboratory variation in liquid
chromatography-mass spectrometry (LC-MS) performance
to determine the types of QC procedures implemented in
proteomics laboratories and identify the elements of system
design/setup that correlate with variability. The results
showed variability in the identification of lower-abundance
spiked-in proteins from different laboratories and demon-
strated a significant advantage of performing fractionation
on complex samples to detect proteins at an extremely
low concentration. Unexpectedly, when identification files
provided by the participants were reanalyzed for validation
of self-reported values, significant differences in participant-
reported and study-validated values were found.201

The 2017 PRG study was a member-only study on the
quantification of unidentified low-abundance proteins with
mass spectrometry spectra (MS1) data and bioinformatics
tools. In this follow-up of the 2016 PRG study, retention time
and accurate mass of peptides with relatively high concentra-
tion (500 fmol in 25 ug cell lysate) were employed to quantify
the same peptides in samples with low concentration (20 fmol
in 25 mg cell lysate). Four software programs (2 open source
and 2 commercial) were used to analyze data set fromOrbitrap
Fusion, Q Exactive, and Orbitrap Velos instruments (Thermo
Fisher Scientific). All evaluated software programs extracted
quantitative information fromMS1 spectra that did not yield
peptide spectralmatches in sampleswith low concentrations of
spike-in proteins. False quantification of peptides in the zero
spike-in sample was observed. This was attributed to carryover
between runs and misassignment of noise in the signal.202

Proteomics Standards RG

The mission of the sPRG is to promote and support the
development and use of standards in proteomics and

committed to identifying and implementing technical
standards for accuracy, clarity, and consistency, supporting
ABRF’s commitment to scientific rigor and reproducibility.
Examples of technical standards include, but are not limited
to, reference materials, data sets, conditions, and procedures
that give proteomics researchers and analysts’ independent
criteria to evaluate their abilities to produce predictable,
consistent results.54258 The sPRG strongly supports ongoing
efforts for standardization of the recording and reporting
of proteomics experiments. The 2018 sPRG Study delivered
a newheavy-labeled phosphopeptide standard and a designed
study to test the ability of proteomics labs to detect endogenous
phosphopeptides (Herren, A., Lee, K., Searle, B., Patel, B.,
Leib, R., Chien, A.,Hawke,D., Koller, A., Isovev, G.,Neeley,
B., unpublished results).

Metabolomics RG

Metabolomics is the comprehensive profiling of metabolites
and other small molecules. The large structural diversity of
these compounds makes both comprehensive profiling and
identification challenging. With nuclear magnetic reso-
nance (NMR) and MS being the major platforms used,
there are a variety of approaches, including untargeted
profiling, targeted approaches, and fluxomics. Challenges
include identification of metabolites, how they change in
relation to a biologic perturbation (e.g., drug, diet, disease)
and the biologic significance of these changes.

The goals of the MRG are 1) to educate research
scientists and resource facilities in the analytical approaches
and management of data resulting from comprehensive
metabolite studies and 2) to promote the science and
standardization of metabolomic analyses for a variety of
applications.203 The 2013MRG study assessed the ability of
laboratories to conduct successful untargeted and targeted
metabolomics analyses. The study sample was human plasma
spiked with different amounts of metabolite standards in 2
groups to emulate a typicalmetabolomics study. Results from
the 2013 MRG study highlighted current challenges in the
field that include missing benchmarks for comparing
differentmethodological approaches and analytical platforms
to enable cross-laboratory reproducibility.204

The 2016 MRG study focused on metabolomics data
analysis methods—bioinformatics and statistical approaches
for pre- and postprocessing of global profiling data sets, and
assessed interlaboratory reproducibility, a major concern that
we tried to assess by providing study participants with already-
acquired mass spectrometry data. The task was to detect
feature level differences between 2 groups to shed light on the
contribution of data pre- and postprocessing methods on
metabolomics analysis results. A major conclusion from this
study identifies proper data preprocessing as a critical step of
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the data analysis workflow when using untargeted metab-
olomics profiling.205

We believe that consolidation of validated metabolo-
micsmethodologies and benchmarking standards of use and
reporting will further augment routine and widespread
practice of this powerful and cost-effective technology with
many applications in the life and biomedical sciences.

Light Microscopy and Flow Cytometry RGs

Two diverse technology areas focused on capturing images
of cell populations, single cells, cells represented in tissues
and organelles, entire organisms, and imaging at the molec-
ular level (which may or may not be within a cell) are
represented in the Light Microscopy RG (LMRG) and
Flow Cytometry RG (FCRG). Few technologies are more
widespread in modern biologic laboratories than optical
imaging techniques using light emitted through fluores-
cence or bioluminescence, and new imaging techniques
include optical coherence tomography, multiphoton mi-
croscopy, total internal reflection fluorescence provide ever-
increasing ability to monitor biologic phenomena with
higher resolution, specificity, dimensionality, complexity,
and scale, all while maintaining viability and biologic
relevance. These imaging modalities are increasingly multi-
parametric and rely heavily on computational approaches,
which are in many cases nearly as important as the optics,
not only for automating and optimizing image acquisition
but also for visualizing and analyzing the data.

Light Microscopy RG

Relative to the other technologies represented by the ABRF,
Light Microscopy and Flow Cytometry are unique in their
involvement of the individual researcher and therefore
unique in their challenges to reproducibility. Light Micros-
copy Cores typically train individual researchers who then
use the core instruments independently to collect their
data, in contrast to other types of Cores in which trained
Core staff perform or oversee most data collection. Light
Microscopy Core users may range widely in expertise, from
novice undergraduate and graduate students to more highly
experienced postdocs and staff scientists. Moreover, many
research laboratories may have their own microscope
systems (potentially including “advanced” instrumentation
such as confocal and superresolution systems) and may
conduct their entire study without ever setting foot in a
Core. Finally, lightmicroscopy is, by its nature, an interactive
technology in which the user is intimately involved in the
data collection process. Microscope users select which
regions of a specimen to image and have expansive control
over the appearance of those images. Experienced micros-
copists are well aware of the ethical pitfalls of having such

control; equally important, however, are its impacts on
reproducibility.206

Given the highly individualized and highly decentral-
ized nature of light microscopy–based research, improving
reproducibility necessitates providing both Core and indi-
vidual microscope users with easily accessible standards for
characterizing their instruments and protocols. The LMRG
promotes scientific exchange between researchers using
microscopy in Cores to increase our general knowledge and
expertise and conducts multisite experiments to establish
light microscopy standards. The first 2 LMRG studies
focused on developing quality assurance tests for light
microscopes, including the characterization of objective
lenses, the accuracy of spectral detection and separation,
illumination stability and uniformity, and characterization
of the point spread function.2072210

A third LMRG study of microscope resolution,
distortion, intensity quantification, and signal-to-noise as
a function of depth in 3D is being finalized, with the goal of
creating a 3D biologically relevant test slide and imaging
protocol to assess 1) system resolution and distortions in 2D
and 3D, 2) dependence of intensity quantification and
image signal-to-noise of the microscope on imaging depth,
and 3) dependence of the microscope sensitivity on imaging
depth. The test sample consists of a mixture of fluorescence
microspheres imbedded in a 120-um-thick layer of CyGel
(Cy10500; BioStatus, Loughborough, United Kingdom)
with a refractive index of 1.37 closely matched to biologic
tissue. Double-sided adhesive 18-mm square spacers with a
well (9-mm diameter, 120-mm deep) were used for the
sample preparation (70327-8s; Electron Microscopy Sci-
ences, Hatfield, PA, USA). The mixture of microspheres
includes 1 mmOrange, 2.5 mmGreen 20% brightness, 2.5
mmGreen 100% brightness, 6mmFar Red 36%, 6mmFar
Red, and 15 mm Blue Core/Orange Ring (Kubow, K.,
Abrams, B., Ammer, A., Arvanitis, C., Callahan, L., Cole, R.,
Dragavon, J., Itano, M., Mezzano, V., Pengo, T., Powers, J.,
Sanders, M., Wee, E., unpublished results).

All 3 LMRG studies have resulted in microscopy
standards as well as easily accessible protocols for the
characterization and verification ofmicroscope systems. The
next LMRG study will focus on reproducibility issues in
image analysis. As with the acquisition of microscope
images, their subsequent analysis would also typically be
performed entirely by the end-user and therefore presents a
major reproducibility challenge.

Flow Cytometry RG

The FCRG was formed with the goal of providing key
information related to the art of flow cytometry, including
its cross-technology applications to genomics, proteomics,
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and other Core-related areas.211, 212 Flow cytometry is a
broad term describing the rapid measurement of large
numbers of cells individually using light-scatter and
fluorescence detection to analyze cell characteristics (size,
intracellular pH, membrane potential) and intracellular
cellular components (DNA, protein, calcium, cell surface
receptors) and distinguish based on these parameters for
isolating cell populations, critical for downstream analysis of
cells. Mass cytometry has recently emerged as a form of flow
cytometry where lanthanides are used as the label on cells
that are measured in a time of flight mass cytometer. Cell
sorting uses flow cytometry to separate cells based on protein
expression labeled with fluorescent tags and has many
downstream applications such as functional assays. In other
experimental workflows, cells sortedwill be assessed for gene
expression, such as single-cell analysis (10X Genomics,
Fluidigm C1). The first FCRG study investigated the
impact of cell sorting on cell health using a range of
instrument types and configurations across multiple sites, as
assessed by cell viability, proliferation, and gene expression.
Variables such as sorting vs. not sorting, high vs. low
pressure, and the presence vs. absence of UV light were
analyzed with RNA-seq and microarray in Jurkat cells,
primary mouse B cells, and mouse ES cells. Information
garnered through this multisite study provided guidelines
for sorting cells upstream of other technologies including
genomics and proteomics.213 A second study surveyed flow
cytometry Cores for sorter cleaning practices; a subset of
study participants submitted sheath fluid samples for
testing. The study results showed that the majority of
sorters had significant endotoxin contamination, little to no
RNase, with bacterial concentrations quite variable. There
was no correlation found between sorter cleanliness and any
surveyed variables, including sorter age, cleaning practices,
date of last preventive maintenance, sheath source, or
known recent contamination. Because a number of sorters
assayed in the sorter cleanliness study were contaminated
with endotoxin, effectiveness of an H2O2 cleaning procedure
was tested to assess removal of the endotoxin from the sorters.
Sheath fluid samples collected before and after cleaning were
tested with an Limulus amebocyte lysate (LAL) quantita-
tion kit and it was determined that the contamination was
only partially mitigated. Also, the endotoxin levels reached
precleaning levels within a few weeks of the sterilization. The
results of the second study will be published in combination
with the endotoxin removal results (Thornton, S., Bowen, S.,
Bispo, C., Hassel, C., Abshari, M., Adams, D., Bergeron, A.,
Brundage, K., Cochran, M., Del Rio Guerra, R., Dwyer, K.,
Harley, R., Holmes, L., Loof, N., Meyer, M., Niziolek, Z.,
Saluk, A., unpublished results).

Increasingly, investigators ask Flow Cytometry Cores
to sort fixed cells for RNA isolation either in bulk or at the

single-cell level. The 2018 FCRG study performed a
systematic evaluation of the reported fixation methods prior
to sorting to determine the impact on the purity, quality,
and RNA yield from sorted cells (Thornton, S., Bowen, S.,
Bispo, C., Hassel, C., Abshari, M., Adams, D., Bergeron,
A., Brundage, K., Cochran,M., Del RioGuerra, R., Dwyer,
K., Harley, R., Holmes, L., Loof, N., Meyer, M., Niziolek,
Z., Saluk, A., unpublished results).

Interest groups

The ABRF supports a fifth category of Interest Networks,
which facilitate discussion and review for key technology
areas of interest that may be considered for RG status. The
Antibody Technology Interest Network is dedicated to
sharing its collective knowledge about generating, producing,
purifying, fragmenting, and conjugating antibodies, with
ABRF members and within the larger scientific community.
The Antibody Technology Interest Network holds online
sessions andworkshops to facilitate the discussionof antibody
use and application, immunization strategies, fusion proto-
cols, screening strategies, antibody production purification
and labeling, antibody applications (e.g., Flow Cytometry,
Microscopy, Chromatin immunoprecipitation combined with
sequencing (ChIP-Seq), in vivo, in vitro applications), and
laboratory organizational and fiscal structures.

CONCLUSIONS

The research enterprise includes numerous stakeholders:
universities and other research institutions that educate,
employ, and train researchers; the federal and industrial
sponsors of research, journal, and book publishers; and
scientific societies.1, 5, 6, 23 These stakeholders can act in
ways that either support or undermine the integrity of
research.23 As presented here, ABRF sponsorship of multi-
center research studies promote community-based standards
and provide a sustainable framework for sharing best practices
in methodology, standard operating procedures, and data
management.26 The ABRF RGs, led by highly trained
scientists, provide an extremely valuable yet undervalued
service to the research community by helping to provide
clarity on approaches and best practices for experimental
design and data analysis. TheABRFRGs collectively address
enigmatic technology-based problems to answer complex
biologic questions, ranging from determining best practices
for cytometric cell sorting for optimal RNA extraction to
partnering with instrumentation manufacturers to improve
MS methods for protein and metabolome studies.

At an institutional level, Cores generate the majority
of research data at many institutions so their role in
maintaining needed expertise and generating quality data
is considerable and represents a central repository for
knowledge management, with deep expertise and knowledge
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of the strengths and limitations of the technology and
applications.327 Core science inherently supports trans-
parency and scientific reproducibility through unbiased
acquisition, minimizing interoperable variability and pro-
moting transparent processes and reporting (detailed
experimental materials and methods) for publications and
grants.527 Data provenance is assured—detailing who per-
formed what experiment on which instrument, instrument
standardization and maintenance, quality assurance/QC
(required controls, standards, documentation and tracking
of buffers, reagents, components, lot numbers, version,
expiration dates), location of source data and shared data
(curation in compliance with Data Storage Standards for
Research Core Laboratories, OMB Circular A-110 and
NIHGDSPolicy)—and essential for research integrity.23227

Recognizing this, federal granting agencies have alreadymade
significant investments in Cores through a variety of direct
and indirect mechanisms, with the goal of providing cutting-
edge technologies and expert consultation to individual
scientific investigators.27

The shared goals of the NIH, other research stake-
holders, and research institutions are more likely to be
achieved when core scientists and research scientists work
together to identify and minimize risk to research data,
thereby improving research quality, rigor, and reproduc-
ibility. The ABRF supports data management policies and
deposition of data/methods to prevent digital meddling,
either through repositories specific for techniques (i.e.,
https://flowrepository.org) or general data repositories spon-
sored by the Center for Open Science (https://osf.io).
Engaging RG core scientists as technology editors and
reviewers26 will promote and support rigorous, transparent,
and reproducible research and the responsible conduct of
research. Scientists, funding sponsors, and institutions are
encouraged to foster an atmosphere of quality data
management and to give credit for data sharing by the data
author.214 This ensures that the available data set follows a
set of guiding principles to make data findable, accessible,
interoperable, and reusable (FAIR).215 FAIR Guiding
Principles instruct that the data and metadata meet criteria
of findability, accessibility, interoperability, and reusability
are standard practice.214– 216 Changes by scientific journals
to improve reporting transparency includes providing
generous length limits for methods section, and the use of a
checklist during editorial processing to ensure the reporting
of key methodological, and analytical information to
reviewers and readers.16, 19, 20
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