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Abstract

Sleep is a behavior that exists broadly across animal phyla, from flies to humans, and is necessary 

for normal brain function. Recent studies in both vertebrates and invertebrates have suggested a 

role for glial cells in sleep regulatory processes. Changes in neural-glial interactions have been 

shown to be critical for synaptic plasticity and circuit function. Here, we wanted to test the 

hypothesis that changes in sleep pressure alters neural-glial interactions. In the fruit fly, 

Drosophila melanogaster, sleep is known to be regulated by mushroom body (MB) circuits. We 

used the technique GFP Reconstitution Across Synaptic Partners (GRASP) to test whether 

changes in sleep pressure affect neural-glial interactions between MB neurons and astrocytes, a 

specialized glial cell type known to regulate sleep in flies and mammals. The MB-astrocyte 

GRASP signal was reduced after 24 h of sleep deprivation, whereas the signal returned to baseline 

levels following 72 h of recovery. Social enrichment, which increases sleep drive, similarly 

reduced the MB-astrocyte GRASP signal. We did not observe any changes in the MB-astrocyte 

GRASP signal over time-of-day, or following paraquat exposure or starvation. These data suggest 

that changes in sleep pressure are linked to dynamic changes in neural-glial interactions between 

astrocytes and neuronal sleep circuits, which are not caused by normal rest-activity cycles or 

stressors.
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Introduction

Sleep is a ubiquitous behavior exhibited broadly throughout animal phyla, yet its functions 

remain enigmatic. Fundamental properties of sleep function may be revealed by determining 

phylogenetically conserved mechanisms associated with sleep behavior across evolutionarily 

distant species. Sleep is affected both by the amount of time spent awake, as well as 
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experience-dependent changes in synaptic plasticity. Sleep regulatory processes have largely 

focused on the role of neurons; however, glial cells also play an important role in sleep, 

across invertebrates and vertebrates alike, including humans [1] [2] [3] [4] [5] [6] [7].

The fruit fly Drosophila melanogaster is a powerful model for exploring neural and glial 

processes that regulate sleep. For example, sleep in Drosophila has been shown to be 

regulated independently by mushroom body (MB) neural circuits [8] [9] as well as glial cells 

[1] [4] [6] [10] [11]. However, it is currently unclear how MB neurons and glial cells 

physically interact as a result of changes in sleep pressure. The GFP Reconstitution Across 

Synaptic Partners (GRASP) technique is a method that labels the membrane contact of two 

cell types by complementary fragments of the green fluorescent protein (GFP) molecule 

[12]. Here we use the GRASP technique to label interactions between MB neurons and 

astrocytes, a specific glial cell type known to regulate sleep in flies and mammals [1] [2] [5]. 

Determining that changes in neural-glial interactions are associated with sleep pressure 

would provide a new model system to test functional aspects of sleep-regulatory molecular 

events that may be conserved across species.

Objective

To determine whether changes in sleep pressure regulate mushroom body neural-glial 

interactions in flies.

Results & Discussion

Our GRASP studies utilized flies harboring mb247-splitGFP11 (specific to MB neurons) 

[13] [14] and the UAS-splitGFP1–10 expressed in glia, using the astrocyte-directed Alrm- 

GAL4 driver [15]. MB neural-glial interactions are quantified by the presence of a GFP 

fluorescent signal, which is triggered upon contact of the individual GRASP components 

[12]. MB-astrocyte GRASP flies also express Ds-Red under control of the mb247 MB 

neuronal promoter, which labels the whole MB region of the fly brain. MB-astrocyte 

GRASP flies were subjected to 24 h of mechanical sleep deprivation [16] and brains were 

harvested and examined for changes in GFP signal compared to control (undisturbed) flies 

using confocal microscopy (Fig. 1A-C). All flies were examined at the same time-of-day 

(ZTo, lights-on). MB-astrocyte GRASP flies showed a significant reduction in GFP signal 

(Corrected Total Cell Fluorescence, see methods) following sleep deprivation compared to 

control flies (Fig. 1D). Following 72 h of recovery after 24 h of sleep deprivation, we 

observed that the GFP signal returned to control levels (Fig. 1D). This MB-astrocyte 

GRASP response to sleep deprivation and recovery closely resembled the amount of sleep 

observed under these conditions (Fig. 1E).

To determine whether the changes in MB-astrocyte GRASP signal may have been 

influenced by the normal sleep-wake cycle, we performed brain dissections on MB-astrocyte 

GRASP flies at multiple times-of-day. We did not find any differences in the diurnal profile 

of GFP signal (Fig. 1F), indicating that the observed differences in MB-astrocyte GRASP 

signal were due to changes in sleep pressure, and not normal sleep-wake cycles. To rule out 

the possibility that the differences in GFP signal were caused by stress effects, we examined 

MB-astrocyte GRASP flies for changes in GFP signal following paraquat treatment and 
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starvation stressors. We did not observe any differences in GFP signal in stressor-treated 

MB-astrocyte GRASP flies compared to control flies (Fig. 1G). To determine whether the 

decreases in MB-astrocyte GRASP signal were due to increases in sleep pressure, and not a 

nonspecific artifact of mechanical sleep deprivation, we tested flies following a social 

enrichment paradigm, which is known to increase sleep drive in flies [17]. Compared to 

control (isolated flies), MB-astrocyte GRASP flies subjected to social enrichment (enriched 

flies) showed a significant reduction in GFP signal (Fig. 1H-J) in tandem with a significant 

increase in sleep (Fig. 1K), pointing to sleep pressure as the specific driver of the changes in 

MB-astrocyte GRASP signal.

Sleep deprivation is detrimental to cognitive functioning [18], including learning and 

memory [19], as well as overall health [20]. Yet, we lack a fundamental understanding of 

sleep function [21]. The fly model is a powerful tool to understand sleep regulatory 

processes and functions [22]. Here, we used the GRASP technique to show that increases in 

sleep pressure decrease neural-glial interactions between MB neurons and astrocytes. 

Dynamic changes in neural-glial interactions may influence sleep homeostasis through glial 

uptake of neurotransmitters, efficiency of gliotransmission, and glial processes underlying 

metabolic support of neurons. Future studies examining phylogenetically conserved 

molecular pathways in regulating the dynamic relationship of sleep pressure with sleep 

deprivation- and experience-dependent changes in neural-glial interactions will help to better 

understand the functional roles for sleep behavior.

Conclusions

This study shows that changes in sleep pressure regulate MB neural-glial interactions in 

flies.

Limitations

We used Drosophila melanogaster to test whether changes in sleep pressure regulate changes 

in neural-glial interactions. The current studies are limited to MB neurons and astrocytes, 

and we have not determined whether other sleep circuits or other glial cells are responsive to 

changes in sleep pressure. Our studies are also limited to the GRASP technique, and 

alternative strategies, such as immunohistochemistry against neural-glial extra-cellular 

matrix proteins or cell adhesion molecules [23] or electron microscopy-based morphological 

studies [24] may provide alternative means to examine sleep-dependent changes in neural-

glial interactions. More research is needed to fully understand the time constants of the 

changes at the neural-glial interface. These changes may take place at time scales ranging 

from milliseconds to hours, and perhaps even days. Our study was limited to assessing the 

effects of acute (24 h) sleep deprivation. Our studies are also limited to the fly model, and 

testing vertebrate models is desirable in order to determine whether the observed changes in 

neural-glial interactions are phylogenetically conserved. Recent studies demonstrated sleep-

dependent changes in the astrocyte glutamate transporter, GLT1, apposition to hypothalamic 

neurons in mice [25]. However, these studies did not conclude whether the changes were due 

to a redistribution of GLT1 protein in astrocytes, or to structural changes of astrocyte 

processes (e.g., extension/retraction) onto these neurons.
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Alternative Explanations

Conjectures

Future studies using, e.g., RNAi-based strategies to knock down cell type-specific target 

proteins involved in cell growth or morphology or the maintenance of the extracellular 

matrix in our model will be needed to determine mechanisms underlying sleep- dependent 

changes in neural-glial interactions. In addition, since the MB is an important brain region 

for learning and memory processes in flies [26], testing whether changes in neural-glial 

interactions are important for cognitive function would be a worthwhile direction for future 

studies.

Additional Information

Methods

Fly stocks—Alrm-Gal4 stocks were obtained from the Bloomington Drosophila Stock 

Center (Indiana University). The mb247-DsRed; mb247-splitGFP11, UAS-splitGFP1–10/

TM3sb flies were obtained from T. Riemensperger and A. Fiala (University of Göttingen).

Fly husbandry—Flies were cultured at 25°C, 60% humidity, maintained on a 12:12 

Light:Dark cycle, on Nutri-fly Bloomington Formulation fly food (Genesee Scientific, San 

Diego, CA). Newly eclosed virgin female flies were collected from culture vials daily under 

CO2 anesthesia and housed in groups of approximately 30 prior to experimentation.

Sleep analysis—Female flies 4–7 days after eclosion were used for all sleep studies. Flies 

were mouth aspirated into 5 mm × 65 mm (outside diameter × length) polycarbonate 

recording tubes (Trikinetics, Waltham, MA) with food (Bloomington Nutri-fly formula) on 

one end and yarn plugs on the other. Sleep parameters were continuously evaluated using the 

Trikinetics Drosophila activity monitoring system (DAMS; Trikinetics, Waltham, MA) as 

described previously [27]. One acclimatization day was followed by 2 days of baseline sleep 

recording, one 24 h period of mechanical sleep deprivation, and 72 h of recovery sleep. 

Sleep deprivation was performed using a Sleep Nullifying Apparatus (SNAP), which 

produces waking without nonspecifically activating stress responses [16], as described 

previously [27].

Imaging—Drosophila brains were dissected in phosphate-buffered saline (0.9% NaCl, 10 

mm NaH2PO4, pH 7.2) containing 0.3% Triton X-100 (PBS-T) and fixed in 4% 

paraformaldehyde, washed, and mounted on cover slips. Optical sections were collected 

with a Leica DMi8 laser scanning confocal microscope. For each experiment, calibration on 

the microscope was held constant by establishing a signal threshold value for the control 

group. GRASP intensity levels were measured using Corrected Total Cell Fluorescence 

(CTCF). The corrected total fluorescence = Integrated Fluorescence density – (Area of ROI 

multiplied by Mean Fluorescence of background) and was calculated in max projected 

image stacks with the region of interest (ROI) around the mushroom bodies.

Stress and starvation—Virgin female flies were collected as described above. 4–7 days 

after eclosion, animals were mouth aspirated into 5 mm × 65 mm (outside diameter × 
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length) polycarbonate recording tubes (Trikinetics, Waltham, MA) containing 0.1 mM 

Paraquat in minimal media (2% agar, 5% sucrose in ddH2O) or starvation food (2% agar in 

ddH2O). Animals were housed for 24 h on these media and afterwards were rapidly 

dissected at ZT0 for imaging of GRASP signal.

Social enrichment—To standardize the environmental conditions during critical periods 

of brain development, virgin female flies were collected upon eclosion and maintained in 

same-sex vials containing approximately 30 flies for 2 days. This protocol kept 

environmental conditions constant between subsequently isolated and enriched flies for the 

first 2 days of adult life. 3 day old flies were then divided into a socially isolated group, in 

which flies were individually housed in 5 mm × 65 mm plastic tubes, and a socially enriched 

group, consisting of 50 female flies housed in a single vial. After 5 days of social 

enrichment/isolation, flies were placed into clean 5 mm × 65 mm plastic tubes and sleep was 

recorded for 3 days using the Trikinetics DAMS.

Data analysis—Statistics were calculated using Graphpad Prism software. Student’s t-test, 

one-way ANOVA, two-way ANOVA, and Tukey post-hoc analysis were used for analyses. 

Sleep data were analyzed by averaging across multiple experiments. Flies that did not 

survive the entire experimental paradigm were removed from data analysis.
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Figure 1. Increased sleep pressure decreases neural-glial interactions between mushroom body 
neurons and astrocytes in Drosophila melanogaster.
(A) Representative image of MB-astrocyte GRASP signal in baseline (non-sleep deprived) 

condition.

(B) Representative image of MB-astrocyte GRASP signal after 24 h of sleep deprivation 

(SD).

(C) Representative image of MB-astrocyte GRASP signal after 72 h of recovery following 

24 h of SD. Scale bar 25 μm.
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(D) Average CTCF signal in groups from the 24 h of baseline (non-sleep deprived) 

condition, after 24 h of sleep deprivation (SD), and after 72 h of recovery following 24 h of 

SD. One-way ANOVA revealed a significant effect of sleep loss on GRASP signal 

(P<0.0001). Tukey multiple comparisons test showed a significant reduction in GRASP 

signal after 24 h of SD when compared to both baseline (*P<0.001) and after 72 h of 

recovery following 24 h of SD (*P<0.001).

(E) Average sleep amount (min) per 24 h day in groups from the 24 h of baseline (non-sleep 

deprived) condition, during 24 h of sleep deprivation (SD), and for the final 24 h period after 

72 h of recovery following 24 h of SD. One-way ANOVA confirmed a significant effect of 

sleep loss (P<0.0001). Tukey multiple comparisons test showed a significant reduction in 

sleep during SD when compared to baseline (*P<0.001) and during 72 h of recovery 

following 24 h of SD (*P<o.oo1).

(F) Diurnal measures of MB-astrocyte GRASP signal in flies on a 12:12 light-dark cycle. 

One-way ANOVA indicated no significant changes across time-of-day (P=o.22). ZTo 

(zeitgeber time 0) = lights on, ZT12 = lights off.

(G) Stress induced by 24 h of paraquat treatment (0.1 mM) or by 24 h of starvation did not 

affect MB-astrocyte GRASP signal compared to control flies. One-way ANOVA (P=0.08); 

Tukey multiple comparisons tests among conditions (n.s.).

(H) Representative image of MB-astrocyte GRASP signal in control (isolated flies).

(I) Representative image of MB-astrocyte GRASP signal in flies following social 

enrichment (enriched flies). Scale bar 25 μm.

(J) Effect of social enrichment (enriched flies) on MB-astrocyte GRASP signal compared to 

control (isolated flies). T-test (*P<0.01).

(K) Total sleep amount (min) in the 24 h day from MB-astrocyte GRASP flies following 

social enrichment (enriched flies) compared to control (isolated flies). T-test (*P<0.0001).
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