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Abstract

Circadian rhythms and exercise physiology are intimately linked, but the symbiosis of this 

relationship has yet to be fully unraveled. Exercise exerts numerous health benefits from the 

organelle to the organism. Proper circadian function is also emerging as a prerequisite for 

maintaining health. The positive effects of exercise on health may be partially mediated by an 

exercise-induced change in tissue molecular clocks and/or the outcomes of exercise may be 

modified depending on when exercise is performed. This review provides a brief overview of 

circadian biology and the influence of exercise on the molecular clock, with an emphasis on 

skeletal muscle. Additionally, we provide considerations for future investigations seeking to 

unravel the mechanistic interactions of exercise and the molecular clock.
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INTRODUCTION

The positive health effects of acute and chronic exercise on tissue-specific and organism-

wide function have been a primary interest for nearly a century. Overall health 

improvements from exercise include reduced risk for cardiometabolic, neurodegenerative, 

and metastatic diseases, thereby reducing mortality risk [1]. The mechanisms through which 

exercise training confers health benefits are well-studied with selected tissues but 

incompletely understood at the system level [2,3]. To further address the relationship 

between exercise and health, the Molecular Transducers of Physical Activity Consortium 

(https://www.motrpac.org/ ) will provide data-rich resources to expand the breadth of 

existing knowledge in exercise physiology and health. While it is well-understood that the 

physiological responses to exercise are complex, the emergence of circadian rhythm biology 
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as a parameter of human physiology has added another fundamental layer of complexity into 

understanding exercise responses.

The purpose of this review is to integrate the concepts of circadian biology and the 

molecular clock mechanism with growing research implementing different circadian 

concepts with exercise. We will briefly overview the molecular clock and its role in 

maintaining homeostasis. We will then highlight recent work integrating circadian concepts 

into exercise physiology two main themes. The first theme will review studies on how the 

timing of exercise impacts exercise outcomes and the second theme will review research that 

has contributed to our understanding of exercise as a time cue for skeletal muscle. Lastly, we 

will provide considerations for experimental design, and suggest intriguing future directions 

for the nascent field of exercise chronophysiology.

THE MAMMALIAN MOLECULAR CLOCK

Core Molecular Clock and the Clock-Controlled Transcriptional Program

It is now well established that the primary mechanism underlying circadian rhythms is the 

molecular clock. The elucidation of this mechanism was recently recognized with a Nobel 

Prize in Physiology or Medicine in 2017. The molecular clock is a self-sustaining 

transcriptional-translational feedback loop (TTFL) that exists in virtually every cell of the 

body and functions to direct a daily program of gene transcription and a more in-depth 

review of the molecular clock can be found here [4]. The primary genes that comprise the 

molecular clock are ubiquitous in all cells and include Clock and Bmal1 which comprise the 

positive limb and induce the expression of Period1 (Per)1, Per2 and Cryptochrome (Cry)1, 

Cry2. The PERs and CRYs are part of the negative limb that function to repress the 

transcriptional activity of CLOCK and BMAL1, closing the approximate 24h loop. A 

simplified cartoon of the molecular clock is provided in Figure 1.

In addition to its timekeeping function, the molecular clock regulates a daily transcriptional 

program. It is estimated that BMAL1 and CLOCK directly modulate expression of over 

4000 genes and these genes are called clock-controlled genes (CCGs) [5]. In contrast to the 

core molecular clock factors, CCGs are expressed in a tissue-specific manner with very 

limited overlap in expression across all the tissues in the body [6]. Lineage-specific 

transcriptional regulators (e.g., MYOD1 in skeletal muscle) are likely key factors linking the 

ubiquitous clock with the tissue-specific CCG transcriptional profile [7,8]. The importance 

of this daily transcriptional program is highlighted by the recognition that CCGs include 

transcriptional regulators and rate-limiting enzymes important for cell-specific homeostasis 

[9,10]. Thus, the core molecular clock machinery through the tissue-specific CCG program 

play an important role in maintaining cell and tissue health.

Phase Setting of the Molecular Clock

As noted above the molecular clock within each cell is defined as a self-sustaining 24h 

TTFL that functions in the absence of signals from the environment. However, the phase of 

clock mechanism, as defined by the time of the peak, is sensitive to cues from the 

environment and can shift in response to the timing of the cues [11]. The most well-
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established environmental time cue is light. Light exposure during the dark phase modifies 

the phase of the molecular clock mechanism in the suprachiasmatic nuclei (SCN) in the 

brain, known as the central clock [12]. Historically, the phase of the molecular clocks across 

all the peripheral tissues were believed to be under direct control of the SCN through 

neurohumoral factors. However, studies in the last 10 years have demonstrated that time of 

feeding and time of physical activity/exercise are bone fide time cues that can modify the 

phase of the clock mechanisms in many peripheral tissues, and these changes occur 

independent of any phase change in the central clock [13–15]. These results are exciting as 

they have opened new concepts for using circadian or time of day principles when 

considering application of exercise interventions for the purpose of health or performance 

outcomes.

Circadian Rhythms in Rodents and Humans

One of the common questions within the circadian field is the translation of research 

findings from nocturnal mice to diurnal human beings. There has been significant work at 

the behavioral, physiological, and molecular levels to establish the commonality of the 

circadian system between these mammalian species [12,16,17]. Comparative analysis has 

demonstrated that many daily physiological rhythms in nocturnal species are at an opposite 

phase to humans [12,16,17]. For example, daily core body temperature, heart rate and blood 

pressure peak in the light or active phase and is lowest at dark or rest phase in humans. In 

contrast, these physiological variables peak in the dark or active phase and are lowest during 

the light or rest periods in rodents. The common principle here is that temperature, heart rate 

and blood pressure peak in the active phase of the mammal independent of lighting. This 

principle holds true with the molecular clock expression in rodents vs. humans [11,18]. 

Taking data from a time series of muscle biopsies from humans and comparing clock gene 

expression to muscle from rats and mice confirm that the core clock factors are commonly 

regulated across the active and inactive phases [11,18].

EXERCISE AND THE MOLECULAR CLOCK: OUTCOMES AND TIME CUE

Circadian Timing Affects Exercise Outcomes

Because exercise is a major physiological perturbation, the circadian oscillation of basal 

physiological rhythms has a direct effect on exercise responses. Several studies in humans 

and rodents have revealed that variables such as skeletal muscle strength and oxidative 

capacity demonstrate significant differences over time of day [19–22]. For example, studies 

have consistently demonstrated increased strength in the later afternoon versus morning [19] 

while oxidative capacity peaks in the late evening [22]. In addition, basal systemic hormone 

and metabolite concentrations oscillate over a 24h period, although the impact of these 

oscillation on exercise are unclear [20,22–25]. It is clear, however, that exercise at different 

times of day leads to different outcomes [19,25–27]. One recent example was provided by 

Dalbram and colleagues who reported that exercise in the late active phase of mice reduced 

the accumulation of body mass during high-fat diet compared to exercise in the early active 

phase [28]. The effect of circadian timing on an integrative outcome, such as weight gain, is 

exciting and will provide important considerations for future interventions. Additionally, 

future studies in both human and rodent interventions must take care to provide transparent 
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reporting of circadian conditions (e.g., light/dark cycles, feeding status), as well as robust 

time of day sampling rates. Attention to these details are critical to help distinguish intrinsic 

circadian related changes vs. environmental/behavior effects [29]. We also suggest cautious 

assessments of experimental circadian controls prior to sweeping conclusions regarding the 

outcomes of an intervention.

Circadian timing has also been reported to affect exercise outcomes at the molecular level. 

The molecular responses of muscle to exercise are well-characterized. In particular, the 

mechanistic target of rapamycin complex 1 (mTORC1) and peroxisome proliferator 

activated receptor gamma coactivator 1 (PGC1) pathways are widely studied exercise-

responsive pathways. Recently, these exercise-stimulated pathways were identified as being 

downstream of the molecular clock, providing a molecular mechanism through which 

circadian timing can influence exercise responses [30,31]. For instance, Wu and colleagues 

reported that PER2 lowers mTORC1 activity [32], and PER2 expression oscillates (peaking 

at the end of the inactive phase [33]), linking time-of-day to the exercise response. 

Additionally, morning resistance exercise, but not afternoon exercise in trained individuals 

lead to the activation of the mTORC1 signaling pathway, as assessed by p70S6K 

phosphorylation [34]. Despite the influence of circadian timing on hypertrophic signaling 

following acute resistance exercise, circadian timing of resistance exercise training does not 

influence skeletal muscle hypertrophy [27,34]. Endurance exercise increases PGC1α, which 

is a clock-controlled gene in skeletal muscle [35]. Thus, circadian timing may influence the 

endurance exercise response by modulating the activation PGC1 in skeletal muscle. To our 

knowledge, no investigations have assessed the impact of circadian timing as a modifier of 

endurance exercise training responses. However, it is unclear if any human investigation has 

performed exercise at the onset of the inactive phase (dark), which would closely mirror 

previous interventions using rodent models [15,36,37].

One approach to test the influence of the circadian clock on exercise outcomes is with 

genetic models of circadian disruption. In one model of circadian disruption (ClockΔ19), 

where mice have a 27–28h endogenous period length, mutant mice had a 49% reduction in 

treadmill exercise duration compared to wild type [38] suggesting that animals with internal 

clocks out of sync with environmental cues (i.e. misalignment) have reduced exercise 

capacity. Additionally, in a model of complete circadian disruption, activity levels in mice 

lacking Bmal1 were severely reduced (~2 fold) compared to wild type animals [39]. 

Together, these findings suggest that circadian disruption reduces exercise capacity. 

However, despite reduced exercise capacity in mice with circadian disruption, the animals 

retain plasticity. Specifically, exercise training restored the exercise capacity of the 

ClockΔ19 mice, although no studies have examined exercise training in Bmal1 knockout 

animals. Together, these findings have major therapeutic implications, as circadian 

disruption has been linked to numerous diseases [24,40,41]. Thus, exercise may reduce 

mortality through restoring the function of disrupted molecular clocks. Below we highlight 

the mechanisms through which exercise modulates the molecular clock.
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Exercise as a Circadian Time Cue

Several studies have shown that exercise can impact circadian behavior (see [36,42]). For the 

purpose of this review we will focus on exercise and its role on the molecular clock 

mechanism. Data from the PER2::LUC [43] circadian reporter mouse, and in vitro assays 

[44] have revealed that exercise acts as a circadian time cue [15,37,45]. Specifically, four 

weeks of exercise on a treadmill or running wheel significantly shifted the phase of both the 

skeletal muscle and lung, but did not influence the phase of the central clock [15]. Exercise 

restored circadian patterns of activity, heart rate, and body temperature in mice with central 

circadian disruption [37]. Additionally, studies in humans have revealed that resistance 

[46,47], and endurance exercise [47] stimulate the expression of core clock genes. These 

data suggest that exercise serves as a circadian time cue, and changes the phase of the 

molecular clock, specifically in peripheral tissues. However, the specific mechanisms 

through which exercise serve as a circadian time cue have not been completely resolved. 

Below we highlight how the effects of exercise, or exercise-induced signaling on the 

molecular clock may serve as a circadian time cue.

In addition to core factors that directly repress the core molecular clock (e.g., Pers and 

Crys), factors external to the clock can regulate the stability, phase, or function of core 

molecular clock proteins. Emerging evidence suggests that exercise-responsive genes, 

including AMPK [31,48,49], HIF-1α [50], and PGC1α [51] influence the expression of 

core molecular clock genes, revealing a potential mechanism through which exercise serves 

as a circadian time cue. For instance, AMPK activity increases in response to exercise and 

increased AMPK activity alters the stability of PER and CRY proteins to affects the 

expression of core molecular clock genes [31,52]. Specifically, AMPK activation results in 

reduced stability of CRY1, allowing derepression of Bmal1:Clock targets [52]. Additionally, 

CRY1/2 proteins reduce exercise capacity through PPARδ repression [53], suggesting that 

AMPK activity directly influences the molecular clock, revealing a mechanism through 

which exercise acts as a circadian time cue. Exercise also induces HIF-1α expression, which 

influences the output of the molecular clock through direct binding to core clock gene 

promoters [50]. Thus, HIF-1α may partially mediate the effects of exercise as a circadian 

time cue. Another potential mechanism through which exercise may act as a time cue is 

through mechanical input, as cellular compression has been reported to influence molecular 

clock oscillation in mammary cells [54]. Considering the mechanical effect of exercise on 

skeletal muscle [55], mechanical changes may contribute to the effect of exercise on the 

molecular clock, although the exercise-related regulation of CCG expression is likely 

multifactorial.

CONCLUDING REMARKS & FUTURE DIRECTIONS

Exercise imparts numerous health benefits, and the mechanisms through which exercise 

improves health continue to be revealed [1,2]. With this review, we suggest two new 

considerations: 1) Applying circadian or time of day principles to exercise interventions hold 

promise for improving the outcomes for exercise for healthy subjects, patient populations as 

well as elite athletes. 2) The molecular clock with its impact through clock controlled genes 

maybe one of the mechanisms through which exercise improves cell/tissue health. This is 
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still a new field and there is much to be learned about fundamental molecular clock function 

across all cell types as well as how these clocks in peripheral tissues sense and respond to 

exercise. Further, it is our sincere hope that future investigations aimed to examine the 

interplay between exercise physiology and circadian biology implement rigorous study 

designs [29] to allow for an in-depth understanding of the interaction of these two exciting 

fields. While our review highlights the unknowns of circadian exercise biology from the 

perspective of the skeletal muscle, the intricate system-wide effects of exercise and the 

global physiological enhancements on health that are associated with exercise timing and 

training remain unexplored.
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Figure 1. Conceptual cartoon depicting links between the molecular clock and tissue-specific 
clock controlled gene expression.
Bmal1 and Clock direct the transcription of clock-controlled genes including Periods and 

Cryptochromes, which in turn form a heterodimer to repress activity of BMAL1 and 

CLOCK and maintain an approximate 24h rhythm of gene expression. In coordination with 

tissue-specific transcription factor(s) (ts-TF), BMAL1 and CLOCK direct the transcription 

of clock-controlled genes. This oscillating gene expression output from the molecular clock 

directs a daily program of transcription that impacts cellular physiology and metabolism.
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