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Dorsal root ganglion macrophages contribute
to both the initiation and persistence of
neuropathic pain

Xiaobing Yu® ™, Hongju Liu"2, Katherine A. Hamel® 3, Maelig G. Morvan® 4, Stephen Yu3, Jacqueline Leff!,
Zhonghui Guan', Joao M. Braz® 3 & Allan . Basbaum3*

Paralleling the activation of dorsal horn microglia after peripheral nerve injury is a significant
expansion and proliferation of macrophages around injured sensory neurons in dorsal root
ganglia (DRG). Here we demonstrate a critical contribution of DRG macrophages, but not
those at the nerve injury site, to both the initiation and maintenance of the mechanical
hypersensitivity that characterizes the neuropathic pain phenotype. In contrast to the
reported sexual dimorphism in the microglial contribution to neuropathic pain, depletion of
DRG macrophages reduces nerve injury-induced mechanical hypersensitivity and expansion
of DRG macrophages in both male and female mice. However, fewer macrophages are
induced in the female mice and deletion of colony-stimulating factor 1 from sensory neurons,
which prevents nerve injury-induced microglial activation and proliferation, only reduces
macrophage expansion in male mice. Finally, we demonstrate molecular cross-talk between
axotomized sensory neurons and macrophages, revealing potential peripheral DRG targets
for neuropathic pain management.
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here is now considerable evidence that molecular and

cellular interactions among spinal dorsal horn neurons and

microglia, the resident macrophages of the central nervous
system (CNS), are important contributors to the induction and
maintenance of neuropathic pain following peripheral nerve
injury!2. Paralleling the activation of dorsal horn microglia after
peripheral nerve injury, several recent studies demonstrated that
there is also a significant increase in the number of macrophages
in dorsal root ganglia (DRG) ipsilateral to the injury>#4, suggesting
that pro-nociceptive neuronal and non-neuronal cellular inter-
actions also occur in the DRG. Unclear, however, is the extent to
which the increase of DRG macrophages contributes to the pain
phenotype induced by nerve injury.

To address this question, pharmacological and genetic approa-
ches have been used to examine the behavioral consequence of
depleting DRG macrophages in a nerve injury setting. For example,
Cobos et al.> reported that clodronate-mediated killing of DRG
macrophages reduced the mechanical allodynia induced by nerve
injury. However, other groups could not confirm those findings®~?,
conceivably due to variability in the efficacy of clodronate>¢. Other
studies demonstrated clodronate killing of macrophages in injured
peripheral nerves and concluded that these macrophages were cri-
tical to the neuropathic pain development!®1!, However, as these
studies did not examine the DRG, the contribution of DRG mac-
rophages could not be ruled out.

Selective CSF1 receptor (CSFIR) antagonists have also been
used to induce cell death, by blocking CSF1 signaling to macro-
phages. However, as these CSF1R antagonists readily cross the
blood-brain barrier (BBB), they concurrently deplete both CNS
microglial?~14 and macrophages!3. As a result, this approach
cannot address selectively the contribution of DRG macrophages.
The same limitation confounds the interpretation of results from
studies that used transgenic mouse lines that express a drug-
inducible suicide gene, e.g., herpes simplex virus type 1 thymidine
kinase (CD11b-TK)!> or diphtheria toxin receptor (CDI11b-
DTR!6, LysM-DTR', and Cx3crI-DTR'8) in both microglia and
macrophages. As the drugs that induce killing readily cross the
BBB, it is impossible to distinguish between the contribution of
DRG macrophages and microglia!8-20.

A recent report?! took a different approach, using the mac-
rophage Fas-induced apoptosis (MAFIA) transgenic mouse
line22. As for the TK or DTR mice, this line expresses a suicide
gene (Fas) under the control of the CSFIR promoter, which is
specifically expressed in macrophages and microglia. In these
mice, killing is provoked with an FK-binding protein dimerizer,
AP20187 (AP). Based on reports that AP does not cross the BBB
in MAFIA mice?2, this approach has been used to kill macro-
phages selectively. Importantly, as this transgenic line coexpresses
green fluorescent protein (GFP) under control of the same pro-
moter, it is possible to monitor the distribution of cells that
express the suicide gene and the extent of their depletion. Using
the MAFIA mice, Shepherd et al.2! demonstrated reduced nerve
injury-induced mechanical hypersensitivity, a hallmark of the
neuropathic pain phenotype, after depletion of circulating
monocytes and macrophages at the nerve injury site. Moreover,
as these authors found that DRG macrophages were spared, they
concluded that peripheral macrophages, but not those in the
DRG, are the critical contributors to nerve injury-induced neu-
ropathic pain?l. However, their conclusion was not consistent
with an earlier study reporting that selective depletion of per-
ipheral monocytes/macrophages, while sparing DRG macro-
phages, had limited impact on neuropathic pain development®.

Given the significant discrepancies in the literature, here we re-
examined the question, again using the MAFIA mice. We admi-
nistered AP systemically, before or after producing the peripheral
nerve injury, so as to examine the contribution of peripheral

macrophages to both the initiation and the maintenance of the
mechanical hypersensitivity. We report that depletion of macro-
phages in the DRG, but not at the peripheral nerve injury site, can
both prevent the development of and reverse ongoing nerve
injury-induced mechanical hypersensitivity, in both male and
female mice. In the context of nerve injury, we also uncovered a
reciprocal cellular interaction between DRG macrophages and
sensory neurons, one that we suggest is relevant to the DRG
macrophage contribution to the neuropathic pain phenotype.

Results

Nerve injury induces macrophage expansion in the DRG. Using
a fluorescence-activated cell sorting (FACS) analysis of dis-
sociated DRG cells immunostained for the fractalkine receptor,
CX3CRI, a marker that selectively defines peripheral monocytic
cells and microglia®, we first quantified macrophages in the DRG
after spared nerve injury (SNI). Figure 1a shows that 4 days after
nerve injury (POD4), the CX3CR1 cell population in the L4 and
L5 DRG, ipsilateral to the nerve injury, increased by 2.9 + 0.4-fold
compared with the DRG on the contralateral, uninjured side. This
ipsilateral expansion of macrophages persisted for at least 4 weeks
after the nerve injury (POD28).

With a view to determining the origin of the injury-induced
macrophage expansion in the DRG, we monitored expression of
the chemokine receptor CCR2, which reportedly marks infiltrating
macrophages?3, in a double transgenic CCR2-RFP*/~/CSFIR-
GFP*/~ mouse. As expected, we observed significant numbers of
CCR2T macrophages at the peripheral nerve injury site, compared
with the contralateral uninjured sciatic nerve (Supplementary
Fig. 1A, B); however, we also found many CCR2" macrophages in
the DRG of uninjured mice (Supplementary Fig. 1C-E), indicating
that CCR2 is not a reliable marker of infiltrating macrophages. In
a separate experiment, we costained the CX3CR1+ macrophages
with a Ki67 antibody to mark proliferating cells**. One day after
nerve injury (POD1), FACS analysis showed that the percentage of
Ki67TCX3CR1" macrophages in the ipsilateral DRG did not
differ from the uninjured contralateral DRG (Fig. 1b). However, at
POD4, the percentage of Ki67TCX3CR1T macrophages in the
ipsilateral DRG more than doubled (Fig. 1b and Supplementary
Fig. 2A, B). Paralleling this result and consistent with previous
immunocytochemical findings?>, FACS analysis showed that
proliferating microglia (Ki67"CX3CR1%) in the lumbar cord on
POD4 ipsilateral to the nerve injury increased by more than
twofold compared with the contralateral side (Supplementary
Fig. 2C). Together, we conclude that axotomy-induced macro-
phage expansion in the DRG involves local proliferation. Although
we cannot rule out infiltration, we favor the view that proliferation
from resident macrophages predominates.

DRG macrophages are depleted by systemic AP administra-
tion. To determine whether the increase in DRG macrophages
contributes to neuropathic pain development, we chose the MAFIA
transgenic line?2, which as noted above, expresses GFP and a drug-
inducible Fas suicide gene under control of the CSFIR promoter
(Supplementary Fig. 3A). The transgene is expressed in CNS
microglia (Supplementary Fig. 3B) and tissue macrophages, including
DRG (Supplementary Fig. 4). To deplete monocytic cells in the
MAFIA mice, we began our studies with five daily intraperitoneal
injections of AP (10 mgkg~1), a macrophage-depleting dose used in
earlier studies?2. Supplementary Fig. 5 shows that this dose was
without effect on baseline mechanical threshold (S5A) and weight
(S5B) in wild-type (WT) mice. By contrast, this regimen resulted in
significant weight loss and also increased the baseline mechanical
threshold 1 day after the last injection in the MAFIA mice (Sup-
plementary Fig. 6A). As these effects clearly complicated our
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proposed analysis, we considerably tapered the dose and determined
that 3 daily 1.0 mgkg—! injections did not affect baseline mechanical
(Supplementary Fig. 6B) or thermal (heat) thresholds (Supplemen-
tary Fig. 6C, D) in the MAFIA mice. We did not observe deficits in
the rotarod test (Supplementary Fig. 6E), although this regimen was

still accompanied by weight loss (~15%), compared with vehicle
(VEH)-treated mice (Supplementary Fig. 6F).

Using the 3-day protocol, we next used different approaches to
examine the fate of resident macrophages in the DRG and of
blood monocytes. We monitored DRG macrophages by
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Fig. 1 Systemic AP treatment depletes macrophages in the DRG of MAFIA mice and delays mechanical allodynia. a FACS analysis of CX3CR1+
macrophage expansion in the L4/L5 DRG of wild-type mice after SNI (n = 6-7 per group). BL, baseline. POD, post-operative day. b FACS analysis of Ki67
expression in CX3CR1*T macrophages in the L4/L5 DRG of wild-type mice after nerve injury (n=>5 per group). ¢ Representative images illustrating AP-
induced depletion of GFP+ (green)/PU.1*(red) macrophages in the L4/L5 DRG of MAFIA mice injected with systemic AP (1.0 mg kg~ for 3 days. NF200
(blue) marks myelinated neurons; scale bar: 50 pm. d FACS analysis of GFP+ DRG macrophages 1 day after the 3rd AP injection (nVEH =9; nAP = 6).
e, f SNI 1 day after AP or VEH treatment followed by FACS analysis of DRG macrophages on POD4 (e) and POD9 (f) (n = 5-6 per group). g qPCR analysis
of Cx3cr1 gene expression in the L4/5 DRG of mice pretreated with AP or VEH on POD1 (n = 3 per group). h FACS analysis of GFPT spinal cord microglia
after a 3-day AP or VEH (n = 6 per group). i GFP (green) and Ibalt (red) immunoreactive spinal cord microglia after a 3-day AP or VEH. Scale bar: 50 um.
j gPCR analysis of Cx3crT gene expression on POD1 in the lumbar spinal cord in mice pretreated with AP or VEH (n = 3 per group). k FACS analysis of GFP*
microglia in the lumbar spinal cord of mice pretreated with AP or VEH (nVEH = 5; nAP = 7) on PODA4. I Effect on mechanical thresholds of systemic AP or
VEH followed by SNI (n = 5 per group). Gray shading indicates injection days. Data presented as mean + SEM. One-way ANOVA with Tukey's correction in
a, Student’s t-test in b, d, h, and k, and two-way ANOVA with Sidak’s correction in e-g, j, and I. *P<0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, NS
nonsignificant compared with control. Source data are available as a Source Data file.

immunostaining for GFP and PU.1, a transcription factor
expressed in myelomonocytic cells?® and in their immature
precursors?’. By the third injection, we recorded a significant loss
of GFPH/PU.IT cells (Fig. 1c) as well as GFPt/Ibal™ cells
(Supplementary Fig. 7A, B). In a separate group of mice, 1 day
after the 3-day AP regime (D3), FACS analysis demonstrated a
significant, ~80% depletion of resident (GFPT) macrophage in the
L4 and L5 DRG, compared with VEH mice (Fig. 1d). At the same
time point, FACS analysis of blood demonstrated an almost 90%
depletion of mature (GFPM or CSF1RM) circulating monocytes
(GFPhCDI11b* or GFPTCSF1RM), with no change in the VEH-
treated group (Supplementary Fig. 7C). Importantly, at 4 days
after the last AP injection (D6 in Supplementary Fig. 7D), the
percentage of blood monocytes was largely restored, despite a
persistent weight loss (Supplementary Fig. 6F). Taken together,
these data demonstrate that resident macrophages in the DRG, as
well as peripheral monocytic cells, can be significantly, albeit
transiently, depleted by AP treatment in MAFIA mice, impor-
tantly without altering baseline nociceptive thresholds.

We next examined macrophages in the context of nerve injury.
To monitor the early response of macrophages, we followed the
expression of Cx3crl in the DRG by quantitative PCR (qPCR)
1 day after the nerve injury (POD1). We recorded a 2.1 + 0.4-fold
increase of Cx3crl expression in the L4/L5 DRG ipsilateral to the
nerve injury in VEH-treated mice (Fig. 1g) compared with the
uninjured contralateral DRG. On the other hand, AP treatment,
prior to the nerve injury, not only reduced baseline Cx3crl
expression in the uninjured, contralateral DRG but also prevented
the injury-induced increase of Cx3crl expression in the ipsilateral
DRG (Fig. 1g). By POD4 (5th day after the last AP treatment),
macrophage number recovered to the level recorded in uninjured,
VEH-treated mice (Fig. le). By POD9, the ipsilateral DRG
expansion of macrophages reappeared and did not differ from
that recorded in VEH-treated SNI mice (Fig. 1f).

AP treatment does not alter spinal cord microglia number.
Although previous studies concluded that AP does not cross the
BBB22, we considered it essential to rule out a direct CNS action of
the AP treatment. Compared with uninjured, VEH-treated mice, we
found no difference in the number of spinal cord microglia by FACS
(Fig. 1h) in the lumbar cord of AP-treated mice. Immunostaining
for microglia also did not differ (Fig. 1i). These results are consistent
with the AP exerting a selective peripheral action. We also addressed
the possibility that a compromised BBB following nerve injury could
result in AP leakage into the cord?®2%. Arguing against this possi-
bility, both the nerve injury-induced upregulation of Cx3crl gene
expression, evidence of microglia activation, 1 day after SNI (POD1;
Fig. 1j) and microgliosis examined 4 days after SNI (POD4; Fig. 1k),
did not differ between VEH- and AP-treated mice. Glial fibrillary
acidic protein (GFAP) immunostaining of astrocytes also did not

differ (Supplementary Fig. 8). Taken together, these data confirm
that neither spinal microglia nor astrocytes are affected by the AP
treatment, whether or not there was a nerve injury.

DRG macrophages are required for initiation of nerve injury-
induced mechanical allodynia. To investigate the contribution of
DRG macrophages to nerve injury-induced mechanical hyper-
sensitivity, we treated separate groups of mice with three daily
injections of AP (1.0 mgkg™!) followed by SNI. In contrast to
VEH-treated mice, which developed mechanical hypersensitivity
within 24 h of the SNI, the 3-day AP treatment regimen sig-
nificantly delayed development of the hypersensitivity, for at least
7 days after the nerve injury (Fig. 11). Importantly, mice in which
macrophage expansion was restored exhibited mechanical allo-
dynia. Continuing the AP treatment into the day of nerve injury®
did not enhance the anti-allodynic effect (Supplementary Fig. 9).
These results indicate that the anti-allodynic effect of AP treat-
ment correlates with the prevention of DRG macrophage
expansion. Finally, as the AP-induced weight loss persisted in
these mice (Supplementary Fig. 6F), we conclude that the AP
effect on mechanical hypersensitivity was not secondary to the
weight loss. Moreover, because thermal pain thresholds did not
differ in the AP-treated mice (Supplementary Fig. 6C, D), we
conclude that systemic side effects were not major contributors to
the anti-allodynic effect produced by macrophage depletion.

In a separate experiment we transplanted bone marrow (BM)
progenitor cells (GFPT) isolated from MAFIA mice into
irradiated WT mice and confirmed the lack of effect of AP on
spinal cord microglia. Specifically, 7 days after the SNI, in
contrast to a complete replacement of peripheral host monocytic
cells with GFPT donor cells (Supplementary Fig. 10A, B), we
detected very few GFP™T cells in the spinal cord (Supplementary
Fig. 10C, D). We conclude that the majority of spinal cord
microglia (PU1Y) derived from the host (GFP™), even after injury
(Supplementary Fig. 10C, D). In a separate group of transplanted
mice, we performed SNI after the 3-day AP or VEH treatment.
Consistent with our findings in non-transplanted mice, we found
that AP-mediated macrophage depletion in the DRG of the
transplanted animals (Supplementary Fig. 10E) significantly
delayed the development of nerve injury-induced mechanical
hypersensitivity (Supplementary Fig. 10F).

Initiation of the neuropathic pain phenotype requires macro-
phage expansion in the DRG and is independent of infiltrated
macrophages at the nerve injury site. Next, we examined
the relative contribution of macrophage expansion in the DRG
and at the nerve injury site. As AP-mediated systemic
macrophage depletion cannot distinguish their respective contribu-
tion, we designed the following experiment to deplete selectively
macrophages at the injury site, leaving DRG macrophages intact. At
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Fig. 2 Macrophages in the DRG, but not at the nerve injury site, are required for mechanical allodynia initiation. a-e Effect of SNI followed by cannula
injection with VEH or AP on immunostaining of GFPT macrophages at the peripheral nerve (PN) ligature site (a-c) and DRG (d) (n =3 per group) and on
mechanical thresholds (e). Dashed lines in a and b denote ligature site; arrows point proximally. Scale bar: 50 um. Gray shading indicates injection days.
Data presented as mean £ SEM. Student’s t-test in ¢ and d, and two-way repeated-measures ANOVA with Sidak’s correction in e. ***P<0.001, NS
nonsignificant compared with control. Source data are available as a Source Data file.

the time of the nerve injury, we implanted a cannula and sutured it
to muscles that overlay the injury site. Our intent was to deliver a
low AP dose that only targeted the macrophages around the injury
site, with limited to no systemic action. After serial dose titrations,
we identified a systemic dose (0.8 pg in 20 pl) that, when adminis-
tered daily for 3 days, did not influence nerve injury-induced
mechanical allodynia (Supplementary Fig. 11A) or cause weight loss
(Supplementary Fig. 11B). We administered the low-dose AP via the
cannula, prior to performing the nerve injury, and repeated the
targeted injection for 2 more days. By quantifying GFP™ cell density
1 day after the last injection, compared with VEH-treated mice
(Fig. 2a-d), we found an almost 90% reduction of macrophages
(GFPT) at the nerve injury site in the AP-treated mice (Fig. 2b, c).
Notably, this treatment did not prevent macrophage expansion in
the injured DRG (Fig. 2d). Most importantly, the targeted AP
treatment had no impact on nerve injury-induced mechanical
hypersensitivity development (Fig. 2e). Our findings differ from
earlier reports that concluded that macrophage expansion at the
nerve injury site is the major contributor to neuropathic pain'®!..
Rather, we conclude that macrophage expansion in the DRG, but
not at the site of injury, is required for initiation of the nerve injury-
induced mechanical hypersensitivity.

Macrophages in the DRG contribute to maintenance of nerve
injury-induced mechanical allodynia. SNI-induced mechanical
allodynia is typically long lasting and this behavioral phenotype is
associated with prolonged microglial activation in the ipsilateral
dorsal horn. Figure 3a illustrates, e.g., that microglial activation

persists for at least 4 weeks after peripheral nerve injury. At this
time point, we also recorded a persistent increase in the number of
macrophages in the ipsilateral DRG (Figs. 1a and 3b) and at the
nerve injury site (Fig. 3c).

To study the peripheral macrophage contribution to main-
tenance of the mechanical hypersensitivity, we repeated the 3-day
systemic AP (1.0 mgkg~!) regimen, 28 days after the nerve injury
(POD28). In these post-injury studies, by quantifying GFP*/PU.1™
macrophage density (number of cells per unit area), compared with
VEH-treated mice, we recorded an almost 50% decrease of DRG
macrophages (Fig. 4a). This decrease was confirmed by qPCR for
Cx3crl (Fig. 4b). In a separate group of comparably treated mice,
we recorded an almost 80%, albeit transient, reversal of the
mechanical allodynia (Fig. 4c). The hypersensitivity reappeared
within 6 days of the last AP injection. Finally, we asked whether
macrophages at the injury site contribute to maintenance of the
persistent mechanical hypersensitivity. We implanted the cannula
4 weeks after the SNI and administered 0.8 ug of AP daily for 3
consecutive days. Figure 4d shows that selective depletion of
macrophages at the nerve injury site had no impact on the
persistent mechanical hypersensitivity. We conclude that macro-
phages in the DRG, but not at the peripheral nerve injury site, are
also critical contributors to maintenance of the peripheral nerve
injury-induced hypersensitivity.

Nerve injury triggers a reciprocal interaction between DRG
macrophages and sensory neurons. Recently, our laboratory
demonstrated that axotomized DRG sensory neurons de novo
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Fig. 4 Macrophages in the DRG, but not at the peripheral nerve injury site, are required for mechanical allodynia maintenance. Four weeks after SNI

(POD28), MAFIA mice received either systemic (a-¢) or cannula (d) injections of AP or VEH. a, b GFP*/PU.1T macrophage density (a) and gPCR of Cx3cr1
gene expression (b) in the ipsilateral DRG 1 day after the 3rd AP injection (D3, n= 3 per group). ¢, d Mechanical thresholds after 3-day systemic (¢) or cannula
(d) injections (n =5 per group). Gray shading indicates injection days. Data presented as mean + SEM. Student's t-test in a and b, two-way repeated-measures
ANOVA with Sidak’s correction in € and d. *P < 0.05, ****P < 0.0001, NS nonsignificant compared with control. Source data are available as a Source Data file.
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express Csfl after peripheral nerve injury3°. The CSF1, in turn, is
transported to the spinal cord dorsal horn, where it activates
microglia through the CSFI1R, induces microglial proliferation,
and promotes the neuropathic pain phenotype. Importantly, in
AP-treated mice, the depletion of macrophages did not prevent
the injury-induced expression of CSF1 in axotomized sensory
neurons (Supplementary Fig. 12A, B). As DRG macrophages also
express CSF1R, we next asked whether injury-induced CSF1
contributes to the nerve injury-induced macrophage expansion in
the DRG. We performed the analysis in Adv-Cre; CsfI/Ml mice, in
which CsfI gene expression is depleted selectively from sensory
neurons, preventing nerve injury-induced CSF1 expression and
the development of mechanical hypersensitivity. As expected,
FACS analysis of lumbar dorsal horn microglia 4 days after nerve
injury (POD4) showed that the ipsilateral injury-induced
microglial activation and proliferation were largely abrogated in
the Adv-Cre; Csfl/V/l mice, compared with WT mice (Fig. 5a).
Interestingly, conditional deletion of Csfl also prevented the
injury-induced expansion of macrophages in the ipsilateral,
axotomized DRG (Fig. 5b). Finally, the expansion was not com-
promised in animals globally lacking CCL2, a potent CCR2 ligand
(Fig. 5b). We conclude that nerve injury influences DRG mac-
rophage expansion via an interaction with axotomized, CSF1-
expressing sensory neurons, and is CCL2 independent.

As we previously reported, CSF1 is also constitutively
expressed in satellite cells® (Supplementary Fig. 12A, B). As
satellite cells in the DRG reportedly contribute to injury-induced
neuropathic pain development®, we also examined the impact of
macrophage depletion on satellite cells in the axotomized DRG.
Supplementary Fig. 12C, D illustrates that Connexin-43 immu-
noreactivity, a satellite cell marker3!, was not noticeably altered
after AP-mediated macrophage depletion.

We next asked whether the nerve injury-induced DRG
macrophage expansion/activation, in turn, influences sensory
neurons. Specifically, we examined the impact of depleting DRG
macrophages on several well-established markers of genes induced
or upregulated in sensory neurons, namely ATF332, BDNF3334,
galanin®®, and neuropeptide Y (NPY)®. The analysis was
performed in systemic AP-treated mice, 1 day after SNI (POD1).
Interestingly, the AP-induced macrophage depletion did not alter
the increased expression of Atf3, galanin, or Npy (Supplementary
Fig. 13A-C). On the other hand, qPCR analysis showed that the
fourfold increase in Bdnf mRNA in the axotomized L4 and L5 DRG
observed in VEH-treated mice was completely prevented by AP
treatment (Fig. 5¢). As qPCR could not determine whether the
increased Bdnf derived only from sensory neurons or also from
surrounding non-neuronal cells, we used in situ hybridization (ISH)
to examine the DRG. Figure 5d, e shows that upregulation of Bdnf
mRNA is readily detected in sensory neurons one day after nerve
injury (POD1), but we found no expression in surrounding non-
neuronal cells, in line with our previous report3¢. Consistent with
the qPCR analysis, quantification of ISH intensity in VEH-treated
mice demonstrated a threefold induction of Bdnf in the ipsilateral
compared with the contralateral DRG (Fig. 5d). Also, ISH
demonstrated that AP-mediated macrophage depletion significantly
attenuated the post-injury Bdnf upregulation (Fig. 5e). We conclude
that macrophages, which do not express Bdnf*°, are nevertheless a
contributor to and indeed are required for the nerve injury-induced
upregulation of Bdnf in axotomized sensory neurons.

To determine how DRG macrophage activation might influence
sensory neurons, we next focused on key proinflammatory
cytokines, interleukin-1p (IL-1B) and tumor necrosis factor-
a (TNFa), which are reportedly expressed in both neuronal and
non-neuronal cells of the DRG and have been previously implicated
in neuropathic pain37-3%, A qPCR analysis revealed that in VEH-
treated mice, on PODI, there is an almost tenfold upregulation of

1118 gene expression in the ipsilateral L4/L5 DRG, compared with
the contralateral DRG (Fig. 5f). The 3-day AP regimen, performed
prior to the SNI, not only abolished the upregulation of 1118 in the
ipsilateral DRG, but also reduced baseline expression in the
contralateral, uninjured DRG. We also used ISH to identify the
cells in which there was upregulation of IlI 7 days after nerve
injury (POD?7; Fig. 5g, h). Although previous immunohistochemical
studies reported that injury-induced IL-1f expression occurred in
both satellite cells® and sensory neurons*?, to our surprise, we only
detected 1113 message in Itgam* (ie, CD11lb) macrophages
(Fig. 5i-1), in both control and nerve-injured animals.

Somewhat unexpectedly, we found no significant Tnfw
induction in the DRG after nerve injury and macrophage
depletion did not alter baseline Tnfa expression (Supplementary
Fig. 13D). We also examined two putative anti-inflammatory
cytokines, namely IL-10%! and transforming growth factor
(TGFB)*243, exogenous administration of which inhibits nerve
injury-induced neuropathic pain behaviors. Based on those
reports, we hypothesized that Tgf3 levels might decrease in the
setting of nerve injury. However, Supplementary Fig. 13E shows
that Tgf gene expression did not change after nerve injury or
after macrophage depletion on PODI. I110 levels were too low to
be detected in the DRG, either before or after injury. These
findings suggest that the upregulation of Il1f3 after nerve injury
derives predominantly from DRG macrophages and that the anti-
allodynic effect of macrophage depletion results, in part, from a
reduction of injury-induced II18.

The DRG macrophage expansion, but not the contribution to
neuropathic pain initiation and maintenance, is sexually
dimorphic. In contrast to the evidence for a contribution of spinal
microglia to neuropathic pain in male mice, Sorge et al.#* reported
that ablating microglia in female mice does not prevent the devel-
opment of mechanical hypersensitivity after peripheral nerve injury.
Here we asked whether the contribution of DRG macrophages to
nerve injury-induced mechanical hypersensitivity is also sexually
dimorphic. FACS analysis of DRG in female WT mice 4 days after
nerve injury (POD4) showed a significant increase (1.69 +0.21-
fold) in macrophages in the DRG ipsilateral to the injury, compared
with the contralateral, uninjured side (Fig. 6a). This increase,
although significant, was nevertheless not as robust as in the male
mice (Fig. 1a). On the other hand, although conditional deletion of
Csfl prevented the macrophage expansion in male mice, neither
conditional sensory neuron deletion of CsfI nor global deletion of
CCL2 in female mice prevented the macrophage expansion
(Fig. 6a). Clearly, additional axotomized sensory neuron-derived
factors must influence macrophage expansion in female mice.

We next directly tested the contribution of the macrophages to
SNI-induced mechanical hypersensitivity in female mice. As in
the male mice, macrophage depletion by three daily AP injections
(Supplementary Fig. 14A) delayed development of the mechanical
hypersensitivity (Fig. 6b). In addition, as in the male mice, spinal
microglia in the female mice were not affected (Supplementary
Fig. 14B). Furthermore, macrophage depletion by AP adminis-
tration 4 weeks after the nerve injury, when there was
demonstrable mechanical allodynia, also produced a transient,
albeit smaller (60%) reversal of the allodynia in the female mice
(Fig. 6¢). We also examined both male and female animals
lacking CCL2 and found that SNI-induced mechanical hyper-
sensitivity was comparable in male and female mice (Fig. 6d).
Taken together, we conclude that DRG macrophages contribute
to the initiation and maintenance of nerve injury-induced
mechanical hypersensitivity in both male and female mice, but
that there is sexual dimorphism in the contribution of CSF1 to
nerve injury-induced expansion of DRG macrophages.
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Discussion

Although several groups have implicated peripheral macrophages
in nerve injury-induced pain initiation>2!, there is little con-
sensus as to which macrophage population, in the DRG or at the
nerve injury site, is most relevant. As selective depletion of DRG
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macrophages is difficult, here we instead targeted macrophages at
the injury site, using an implanted cannula that delivered a low-
dose of AP, one that killed macrophages at the injury site, but had
no systemic effect, thus sparing the DRG. Based on the profound
effect of systemic AP and the lack of effect of the sciatic nerve-
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Fig. 5 Nerve injury triggers reciprocal molecular interactions between DRG macrophages and sensory neurons. a FACS analysis of CX3CR1+ microglia
in the lumbar spinal cord of WT and Adv-Csfl mice 4 days after SNI (POD4, n = 5 per group). b FACS analysis of CX3CR1+ macrophages in the L4/L5 DRG
of WT (n=7), Adv-Csfl (n=8), and CCL2 knockout (KO) mice (n=38) on POD4. c-e gPCR (¢, n =3 per group), or in situ hybridization (ISH) (d, e, n=4
per group) analysis of Bdnf expression in the DRG of mice pretreated for 3 days with systemic AP or VEH on PODT. Scale bar: 15 um in e. f gPCR for /15 on
PODT1 in the DRG of mice pretreated with AP or VEH. g-1 DRG expression of //18 mRNA (green) in control (g) or 7 days after nerve injury (POD7, h-I).
i-1 Coexpression of /13 with neuronal markers Atf3 (i), Prph (red, j), Nefh (blue, j); a satellite cell marker, Gfap (red, k); and a macrophage marker, Iltgam
(red, D. Scale bars: 50 um. Insets illustrate high magnification of labeled cells. Data presented as mean £ SEM. Student's t-test in a and d, one-way ANOVA
with Tukey's correction in b, and two-way ANOVA with Sidak's correction in ¢ and f. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, NS nonsignificant
compared with control. Source data are available as a Source Data file.
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Fig. 6 The DRG macrophage contribution to neuropathic pain initiation and maintenance is not sexually dimorphic. a FACS analysis of ipsilateral
CX3CRI1*+ macrophage expansion in the L4/L5 DRG of WT (n=6), Adv-Csfl (n=7), and CCL2 KO (n= 8) female mice on POD4. b Effect on mechanical
thresholds of systemic AP (n=8) or VEH (n =10) followed by SNI in female MAFIA mice. ¢ Effect on mechanical thresholds of systemic AP or VEH (n=5
per group) 4 weeks after SNI in female MAFIA mice. d Effect of CCL2 deletion on mechanical thresholds in male and female mice (n =5 per group). Gray
shading indicates injection days. Data presented as mean = SEM. One-way ANOVA with Tukey's correction in a and two-way repeated-measures ANOVA
with Sidak’s correction in b-d. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, NS nonsignificant compared with control. Source data are available as a
Source Data file.

targeted injection, we conclude that DRG macrophages, but not
those at the nerve injury site, are critical contributors to both the
initiation and maintenance of the mechanical hypersensitivity
hallmark of neuropathic pain in mice. Although we cannot rule
out a contribution of a systemic treatment-induced depletion of
dendritic cells in the skin, which are also killed by AP?2, we favor
the view that DRG macrophages are the major contributor.

Not only did we demonstrate that macrophage depletion pre-
vented the nerve injury-induced mechanical allodynia, but we
also found that the mechanical allodynia reappeared after
restoration of the injury-induced ipsilateral expansion of mac-
rophages. A critical question is what drives the DRG macrophage
expansion in the first place. We previously reported that activa-
tion of dorsal horn microglia requires de novo expressed CSF1 in
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axotomized DRG sensory neurons, and that its selective deletion
from sensory neurons prevents the neuropathic pain pheno-
type30. Here we found that conditional deletion of CSF1 from
sensory neurons of male, but not female, mice also prevents the
injury-induced expansion of DRG macrophages, which suggests
that the effect of CSF1 deletion on the neuropathic pain pheno-
type in the male mouse reflects an integrative action on both
DRG macrophages and dorsal horn microglia.

We also addressed the possible source of the injury-induced
macrophage expansion in the DRG. Although CCR2 expression
has been associated with infiltrating macrophages?3, we found
many CCR2" resident macrophages in the DRG of uninjured
mice. We conclude that CCR2 expression in DRG macrophages is
not a suitable marker that can distinguish infiltrating from resi-
dent macrophages. Furthermore, using Ki67 to document pro-
liferating cells, we found that the percentage of Ki67TCX3CR1+
macrophages in the axotomized DRG more than doubled. Based
on these results, although we cannot rule out a contribution from
infiltration, we favor the view that macrophage expansion origi-
nates predominantly from resident DRG macrophages that pro-
liferate after injury.

Of particular interest is our finding that activated DRG mac-
rophages reciprocally influence sensory neurons after injury.
Specifically, depletion of DRG macrophages prevented the upre-
gulation of Bdnf in the DRG that occurred within 24 h of SNL
Importantly, despite reports of BDNF synthesis by microglia”
and presumably macrophages, consistent with other findings30:4°,
our ISH analysis only detected Bdnf mRNA in sensory neurons.
On the other hand, as conditional deletion of BDNF from sensory
neurons has minimal to no effect on the mechanical allodynia
induced by nerve injury>*3%, to what extent the macrophage
contribution to Bdnf upregulation in sensory neurons influences
nociceptive processing is not clear.

The question remains, therefore: how does the DRG macro-
phage influence the sensory neuron contribution to nerve injury-
induced mechanical allodynia? Triggered by peripheral nerve
injury, immune cells, including macrophages, release abundant
proinflammatory mediators that directly or indirectly induce pain
hypersensitivity!3%47. For example, upregulation of /I in both
DRG and spinal cord after nerve injury is implicated in the
central sensitization process!#8->0. Furthermore, injection of
either an IL-1-receptor antagonist®! or a neutralizing antibody to
IL-1B°% can reduce neuropathic pain behavior in mice. Here we
found that both the baseline and the rapidly induced Il1f mRNA
expression in the DRG 1 day after SNI are significantly prevented
by macrophage depletion. Interestingly, although previous
immunohistochemical reports demonstrated that both satellite
cells® and sensory neurons*? are the main source of injury-
induced IL-1P expression in the DRG, we could not confirm those
findings using ISH. Instead, we detected Il1f induction in the
CD11b™ macrophages, consistent with our reverse-transcriptase
PCR findings after macrophage depletion. Our results suggest
that DRG macrophages are the main source of the Il1f3 increase in
the DRG after nerve injury, and that IL-1p, in turn, contributes to
the sensitization of sensory neurons.

Our findings are also of interest in light of the report of Sorge
et al.#* that microglial depletion in male, but not in female mice,
reduced nerve injury-induced neuropathic pain. Here we found
that depleting DRG macrophages not only prevented the devel-
opment but also maintenance of mechanical hypersensitivity, in
both male and female mice. Although the contribution of the
DRG macrophages to the mechanical hypersensitivity appears not
to be sexually dimorphic, there were some important differences
noted between male and female mice. First, the magnitude of the
injury-induced macrophage expansion in male mice was double
that observed in female mice. This difference conceivably

underlies the shorter duration of the AP-mediated anti-allodynic
effect in female vs. male mice (4 vs. 7 days). Furthermore, only in
male mice did deletion of CSF1 in sensory neurons influence
macrophage expansion in the DRG. We conclude that other, as
yet unidentified, sensory neuron-derived factors differentiate
male and female mice.

In conclusion, we have demonstrated that macrophages in the
DRG of both male and female mice contribute to and are required
for neuropathic pain initiation and maintenance. We also
uncovered a reciprocal cellular interaction between macrophages
and sensory neurons in the DRG, an interaction that in concert
with the sensory neuron-microglia connection, contributes to the
neuropathic pain phenotype. To what extent these processes are
independent and whether they can be targeted together as a novel
pain therapeutic remains to be determined.

Methods

Animals. Adult mice (4-12 weeks old) were used in all experiments. WT C57BL/6
mice, MAFIA (CSF1R-EGFP-NGFR/FKBP1A/TNFRSF6) transgenic mice?? (Stock
#005070), CCL2 knockout mice>? (Stock #004434), and CCR2-RFP*/+ knock-in
mice®* (Stock #017586) were obtained from the Jackson Laboratory. We also
studied CX3CR1CreER-EYFP micel8 originally generated by Wen-Biao Gan at New
York University. We crossed homozygous MAFIA mice with homozygous CCR2-
RFP+/+ mice to generate CSF1R-GFP+/~CCR2-RFP*/~ mice. All animal experi-
ments were approved by the Institutional Animal Care and Use Committee at
University California San Francisco and were conducted in accordance with the
NIH Guide for the Care and Use of Laboratory animals.

AP administration. The AP (Clontech, #635058) was diluted in a distilled water
solution consisting of 4% ethanol, 10% PEG-400, and 1.7% Tween 20%2, and
injected intraperitoneally.

Immunohistochemistry. Mice were anesthetized with 2.5% Avertin and perfused
transcardially with 1x phosphate-buffered saline (PBS) followed by 4% for-
maldehyde. Dissected tissues were first post-fixed in the same fixative for 3 h, then
preserved overnight in 30% sucrose in PBS before cryostat sectioning. The fol-
lowing antibodies were used to immunostain DRG, spinal cord, and peripheral
nerve sections: chicken anti-GFP (1:2000, Abcam #ab13970), rabbit anti-CSF1R
(1:15,000, Millipore #06-174), rabbit anti-Ibal (1:2000, Wako #019-19741), rabbit
anti-PU.1 (1:500, Cell Signaling #2266), mouse anti-NF200 (1:1000, Sigma
#N5389), rabbit anti-dsRed (1:500; Clontech #632393), rabbit anti-Connexin-43
(1:2000, Sigma #C6219), rabbit anti-GFAP (1:20,000, DAKO #Z0334), goat anti-
CSF1 (1:500, R&D #AF416), and fluorophore-coupled secondary antibodies
(1:1000, Alexa Fluor 488, 555, 594, 647, ThermoFisher Scientific). Images were
captured with a Carl Zeiss LSM 700 microscope and processed with Fiji/

Image] (NIH).

In situ hybridization. We used the RNAscope Fluorescent Multiplex Reagent Kit
(Advanced Cell Diagnostics) according to the manufacturer’s instructions. Briefly,
freshly dissected tissue was quickly frozen on dry ice, cryostat sectioned at 12 pm,
and mounted on slides. The mounted sections were fixed in prechilled 10% neutral-
buffered formalin for 15 min at 4 °C. After a series of dehydration steps in gradient
ethanol solutions, the sections were pretreated with Protease K for 30 min at room
temperature, and then incubated with RNA probe for 2 h at 40 °C in an HybEZ™
oven. Repeated washing and amplifier hybridizations were performed according to
the manufacture’s protocol. Finally, sections were costained with DAPI (4',6-dia-
midino-2-phenylindole) before mounting. The following probes were used: Bdnf
(#424821), 111 (#316891), Atf3 (#426891), Prph (encoding Peripherin protein,
#40036), Nefh (encoding NF200 protein, #443671), Itgam (encoding CD11b pro-
tein, #311491), and Gfap (#313211).

Image quantification. We analyzed every 5th immunostained section through the
L4 and L5 DRG using ImageJ®(. To quantify the density of GFP*PU1T monocytic
cells in the DRG and of microglia cells in the spinal cord, we counted all labeled
PU.17 cells using Image]. We also used Image]J to measure the density of GFP
immunoreactivity in DRG macrophages. To quantify macrophage density at the
sciatic nerve injury site, we used ImageJ to assess GFP immunoreactivity within an
area extending 500 pm proximal to the ligature. To quantify the Bdnf ISH message,
we used ImageJ to analyze signal intensity in a sensory neuron-rich region of the
DRG (five to eight sections from the same ganglia; four mice per group). An
individual blind to the treatment groups performed the image analysis.

Quantitative real-time PCR. qPCR analyses were carried out with gene specific
primers and fluorescent labeled Tagman probes (ThermoFisher Scientific) for
Cx3crl (Mm00438354_m1), Bdnf (Mm04230607_s1), Il18 (Mm00434228_m1),
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TgfB (Mm01178820_m1), 110 (Mm01288386_m1), Tnfor (Mm00443258_m1), Atf3
(Mm00476033_m1), Gal (Mm00439056_m1), and Npy (Mm01410146_m1).
Relative expression level was calculated using the 2~2ACT method>>. B-Actin
(Mm02619580_g1) was used as the internal control for each sample.

Isolation of spinal microglia, DRG macrophages, and peripheral blood cells.
Peripheral blood was drawn from a retro-orbital vein in isoflurane anesthetized
mice using heparinized micropipettes (ThermoFisher Scientific #22362566). Red
blood cells were lysed first before immunostaining. Fresh isolated spinal cord tissue
was digested with collagenase, dissociated, and filtered through cell strainers (70
pum). Microglia were further enriched using a myelin removal beads protocol
(Miltenyi Biotech #130-096-733). Alternatively, freshly dissected lumbar cord or
L4/L5 DRG was first homogenized in cold calcium and magnesium-free Hanks’
balanced salt solution. After filtering through a cell strainer (70 um), the cell
homogenate was mixed with Percoll (Sigma) for myelin removal and enrichment?®.

Flow cytometric assays. Dissociated cells were briefly fixed in 4% paraf-
ormaldehyde for 15 min at room temperature and washed once with FACS staining
buffer (5% fetal bovine serum (FBS) in PBS). Cells were then resuspended in 100 pl
of saponin buffer (0.5% saponin and 2% FBS in PBS) and immunostained with
anti-CD115-PE cy7 (1:1000, eBioscience #25115282), CD11b-APC-cy7 (1:2000,
Biolegend #101226), PU.1 (1:1000, Cell Signaling #2266), chicken anti-GFP anti-
body (1:1000, Abcam #ab13970), anti-CX3CR1-APC (1:2000, Biolegend #149008),
or anti-Ki67-PerCP-efluro710 (1:2000, Invitrogen, #66-5698-82) for 60 min at
4°C%7,

Surgery and behavioral analyses. For the SNT model of neuropathic pain®8,
under isoflurane anesthesia, we ligated and transected the sural and superficial
peroneal branches of the sciatic nerve, leaving the tibial nerve intact. For cannula
implantation, after the sciatic nerve branches were exposed, a polyethylene capil-
lary tubing (1.0 mm OD, Sutter Instrument, Novato, CA) was embedded next to
the nerve, sutured to overlying muscle and secured between two skin staples. All
behavioral experiments were performed as previously reported in a blinded manner
during the light cycle®.

Bone marrow transplantation. Donor BM cells from CSF1R-GFP mice (CD45.27)
were collected at 4-5 weeks of age, enriched by immunomagnetic depletion of cells
expressing mature hematopoietic lineage antigens defined by a cocktail of mono-
clonal antibodies: CD5 (Ly-1), CD11b (Mac-1), CD45R (B220), Gr-1, and TER119
(#19856 A, StemCell Technologies, Vancouver, BC, Canada). Cells were then
transplanted through a retro-orbital vein into lethally irradiated (1,100 cGy) reci-
pient B6.SJL (CD45.1%) mice (NCI). Four weeks after the transplantation, and prior
to further study, engraftment was determined by FACS analysis of peripheral blood.

Statistical analysis. Data are expressed as mean + SEM. Statistical analysis was
performed using GraphPad Prism version 7.0 (GraphPad Software). Student t-tests
were used for single comparisons between two groups. Other data were analyzed
using one-way or two-way analysis of variance. *P < 0.05, **P < 0.01, ***P < 0.001,
%P < 0.0001, NS nonsignificant.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Source data underlying Figs. 1, 2, 4, 5, 6 and Supplementary Figures 2, 5, 6, 7, 9, 10, 11,
13, 14 are a available as a Source Data file. All other data supporting the findings of this
study are available from the corresponding author upon reasonable request.
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