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assessing nectar search times in bees with radiating
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Abstract Floral displays are often composed of areas of contrasting stimuli which flower

visitors use as guides, increasing both foraging efficiency and the likelihood of pollen

transfer. Many aspects of how these displays benefit foraging efficiency are still unex-

plored, particularly those surrounding multimodal signals and the spatial arrangement of

the display components. We compare the nectar discovery times of forager bumblebees

(Bombus terrestris) when presented with artificial flowers with unimodal or compound

displays of visual and/or olfactory stimuli, positioned in either radiating or non-radiating

arrangements. We found that the addition of individual display components from either

modality reduces nectar discovery time but there was no time benefit to bimodal displays

over unimodal displays or any benefit to radiating stimuli arrangements over non-radiating

arrangements. However, preference tests revealed a time advantage to radiating unimodal

visual patterns over non-radiating unimodal visual patterns when both types were displayed

simultaneously. These results suggest that the benefits of multimodal stimuli arrangements

to pollinators are unrelated to benefits in nectar discovery time. Our results also suggest

that spatial patterns of scent can be used as nectar guides and can reduce nectar discovery

times without the aid of visual stimuli.

Keywords Floral displays � Pollination � Spatial fragrance patterns � Plant-pollinator
coevolution
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Abbreviation
NDT Nectar discovery time

Introduction

The initial means of communication between flowering plants and their visitors are visual

and olfactory signals (Cook et al. 2002; Raguso 2004; Balao et al. 2011). A well-studied

and taxonomically widespread feature of these displays are nectar guides which were first

described by Sprengel (1793). Nectar guides are contrasting patterns of floral stimuli

thought to minimise nectar discovery times, increase the foraging efficiency of flower

visitors and increase the rate at which pollinators transfer pollen between conspecifics

(Penny 1983; Waser and Price 1983; Leonard and Papaj 2011; Hansen et al. 2012). Nectar

guides have been seen to increase the relative frequency of legitimate flower visits in

flowers at risk of nectar robbing (Leonard et al. 2013) and may also broaden the range of

pollinator species that visit a flower (Ollerton et al. 2007).

The most widespread of these cues contain markings around the corolla openings,

peripheral dots or lines which radiate from the nectary (Fig. 1) (Proctor et al. 1996; Dafni

et al. 1997), with the use of these guides being observed in bees, hummingbirds, hawk-

moths and syrphid flies (Dinkel and Lunau 2001; Knoll 1926; Waser and Price 1983).

These radiating lines, whereby the pattern spreads linearly outwards from the floral reward

(Fig. 1a), have been shown to increase the attractiveness of flowers over others which do

not have them (Manning 1956; Free 1970; Dinkel and Lunau 2001; Leonard and Papaj

2011; Leonard et al. 2013). Considering the potential benefits to nectar discovery times and

accuracy, these preferences are unsurprising given that even small increases in the rate at

which nectar is collected can scale up to increase the reproductive success of the entire

colony (Pelletier and McNeil 2003). Bees have also been shown to visit artificial flowers

with visual nectar guides when the flowers no longer offered a reward, but did not do so for

plain flowers, highlighting the benefit of nectar guides to plants which can receive visits

regardless of reward status (Leonard and Papaj 2011). Removal of nectar guides in iris

Lapeirousia oreogena also reduced pollen analogue export and fruit set, suggesting nectar

guides are under strong selective maintenance through effects to both male and female

fitness (Hansen et al. 2012).

Although previous studies have compared search times between radiating guides and

plain flowers (Leonard et al. 2011a, b; Waser and Price 1983), it is unknown if radiating

guides would reduce nectar discovery times over non-radiating patterns (Fig. 1b). This

radiating aspect of nectar guides appears to be important in terms of flower orientation to

species such as bombyliid flies and bumblebees (Johnson and Dafni 1998; Goodale et al.

2014). Considering these points, it would be of interest to explore the differences between

these pattern types.

These visual guides are not the only orientation cues used by flowering plants. Many

species produce scented nectar, as investigated by Raguso (2004). Distinct pollen odours

have also been observed in multiple species (Dobson et al. 1990, 1996; Bergström et al.

1995). These scented rewards provide an honest signal to flower visitors and may serve as

an olfactory flag providing another means by which flower visitors can orientate within the

flower (Bergström et al. 1995). Flowers can also have an uneven distribution of scent

within and between floral organs. For example, the nectar-producing petal areas in Ra-

nunculus acris produced more volatiles than the areas which did not produce nectar
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(Bergström et al. 1995). These spatial fragrance patterns are believed to act as orientation

cues on flowers, acting as olfactory nectar guides and have been observed in a wide range

of species (Bergström et al. 1995; Raguso and Pichersky 1999; Flamini et al. 2002).

However, reductions in nectar discovery time through the use of spatial fragrance patterns

has not been shown under experimental conditions. These visual guides and spatial fra-

grance patterns may occur in spatially corresponding locations on the flower, and studies

have found that different colour morphs of certain species have different scent profiles

(Flamini et al. 2002; Salzmann and Schiestl 2007; Zuker et al. 2002). However, this

relationship between colour morphs and scent profile is not observed in all species (Olesen

and Knudsen 1994; Dormont et al. 2010), making it difficult to say how ubiquitous these

relationships are.

It is currently understood that multimodal displays have considerable effects on the

learning and efficiency of foraging pollinators (Hebets and Papaj 2005; Goyret et al. 2007;

Fig. 1 Examples of different types of visual nectar guides. a Limnathes douglasii, demonstrating straight,
thin nectar guides and centre with a contrasting colour; b Jovellana punctate, demonstrating a non-radiating
speckled guide; c Cistus ladanifer, demonstrating peripheral dots of contrasting colour; d Schizanthus
wisetonensis, demonstrating speckled flowers with a radiating arrangement. Photo credits: a. David Lawson;
b. Pabloendemico; c. Carsten Niehaus; d. Hans Braxmeier. See image references for full details
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Kulahci et al. 2008; Katzenberger et al. 2013). Additionally, visual nectar guides are

known to reduce the time foragers spend on flowers (Leonard and Papaj 2011). However, it

is currently unknown whether nectar guides which incorporate display components from

multiple modalities are more effective than unimodal guides (i.e. guides which are com-

prised of only one sensory modality). Hebets and Papaj (2005) suggested that the function

of multimodal signals may relate to inter-signal interactions where the presence of one

signal acts to increase the probability and/or speed of detection of a second signal (the

‘increased detection and discrimination hypothesis’). If this is the case, foragers presented

with bimodal nectar guides (i.e. guides which are comprised of components from two

sensory modalities) may have increased detection of one aspect of the display leading to a

potentially shorter nectar discovery time when compared to unimodal guides. Aside from

time benefits to the pollinator, easier access to nectar though decreased nectar discovery

times may increase the range of possible pollinators for a plant (Ollerton et al. 2007),

minimise loss of pollen or potentially regulate the amount of pollen deposited on visitors

(Harder and Thomson 1989; Leonard and Papaj 2011). Bimodal nectar guides present us

with an opportunity to investigate foraging speeds in a multimodal context whilst looking

into the potential interactions these guides have with other aspects of floral displays, such

as the radiating or non-radiating arrangement of these patterns.

Within this study, we examined the speed of Bombus terrestris foragers while locating

feeding wells on artificial flowers when presented with either radiating patterns or non-

radiating patterns comprised of visual stimuli, olfactory stimuli or both. We investigated

the preferences individual foragers had for these pattern combinations. We hypothesised

that the time it takes a forager bee to locate feeding wells would be shorter in radiating

patterns compared to non-radiating patterns and shorter in bimodal displays over unimodal

displays. These hypotheses were tested in speed comparison experiments in which the time

between landing and feeding from the nectary of forager B. terrestris was recorded. Pre-

landing preferences were recorded in separate experiments. Within this study, we define

nectar discovery time (hereafter NDT) as the time between landing and proboscis exten-

sion into the central feeding well.

Method

Flight arena, bumblebee colony conditions and animal welfare

All experiment types were carried out in wooden framed 72 9 104 9 30 cm flight arenas

topped with UV-transparent perspex with the floor covered in Advance Green gaffer tape

(Stage Electrics, Bristol, UK). Flight arenas were connected to the plastic nesting box of

flower naı̈ve Bombus terrestris subsp. audax (Harris, 1776) colonies (Koppert BV, Berkel

en Rodenrijs, Netherlands and Syngenta-Bioline, Little Clacton, UK) via a transparent

gated tube which could be manually manipulated to regulate which bees, and how many,

could enter or leave the flight arena. Six Sylvania Activa 172 Professional 36 W fluo-

rescent tubes (Havells-Sylvania Germany GmbH, Erlangen, Germany) on a 12-hour

light/dark regime were used to simulate natural illumination. Bees were fed 30% sucrose

solution daily ad libitum after experiments had taken place and pollen was added directly

to the colony three days a week. Foraging individuals were marked on their thorax with an

identifying pattern of non-toxic paint before experiments took place. All work conforms to

the legal requirements of the UK where it was carried out and conforms to the welfare
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requirements of both the UK and ASAB/ABS Guidelines for the Use of Animals in

Research.

Artificial flowers

6 white perspex discs (80 mm diameter, 3 mm width) were used as foraging stimuli during

each experiment. Each disc had 43 holes (2 mm diameter) in a hexagonal pattern (Fig. 2).

Plastic covers with holes corresponding to those of the discs were placed on the top of each

disc. Each of these covers had either a printed visual pattern or no visual pattern (Fig. 2).

The back of each cover had an additional layer of self-adhesive film in order to prevent

spoilage on the printed pattern and to allow for the easy removal of volatiles after

Fig. 2 Artificial flowers used during the no-choice speed test. Visual patterns are shown and scent
placements are shown with x’s. a Unimodal scented—radiating; b Unimodal scented—non-radiating;
c Scentless and colourless control; d Bimodal—radiating; e Bimodal—non-radiating; f Unimodal visual—
radiating; g Bimodal—radiating visual, non-radiating scent; h Bimodal—non-radiating visual—radiating
scent and; i Unimodal visual—non-radiating. Placement of the 3 lid wells and cover structure is also
displayed with the dark feeder at the bottom of each disc being the location which contains sucrose. More
contrasting colours were used here to more easily view pattern arrangements
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experiments. At the start of each experimental session a layer of self-adhesive covering

film was placed on the bottom of each Perspex disc so the holes can contain small amounts

of liquid. At the end of each day this film was removed and the discs were soaked

overnight in a detergent solution to remove volatiles and glue residue.

Each film had 43 holes (2 mm diameter) corresponding to those on the disc and three

upturned lids of 0.5 ml Eppendorf containers glued to three equidistant points on the disc

surface to be used to contain sucrose or to be left empty. Each of these upturned lids was

painted (white for blank discs, green for visual pattern discs) to reduce visibility of con-

tents and each had a plastic hood placed on top which meant bees could only access the

feeding wells from one direction (shown in Fig. 2). All visual patterns consisted of a green

background of hue 140� HSB (140;50;100) with a different arrangement of green circles of

120� HSB (140;50;100) (10 mm diameter) around 11 of the holes. These two similar

greens, which have been previously used in Leonard et al. (2011a, b), Clarke et al. (2013)

and similar unpublished experiments (Lawson in prep.) with encouraging results, were

chosen so that the pattern was not immediately obvious to foragers from a distance. More

obvious guides could cause bees to land close to the nectary and limit their exposure to the

flower’s scent patterns (Lunau et al. 2006).

Alongside the visual patterns presented, there were also sets of discs loaded with scent

patterns corresponding to the arrangement of the visual patterns. In these discs, a pattern of

peppermint oil solution was also presented (a 1:10 mix of peppermint oil: mineral oil,

where the peppermint essential oil came from Amphora Aromatics, Bristol, UK), whereby

2.5 lL of the peppermint solution was pipetted into eleven of the wells in a radiating or

non-radiating pattern which spatially matched the visual patterns (Fig. 2). Given the three

types of visual pattern (radiating, non-radiating and a control) and three corresponding

scent patterns, there were nine possible combinations of visual and scent pattern combined.

All nine of these pairings were considered in the experiment, with fourteen foragers used in

each pairing (126 total).

No-choice speed test

In each experiment, the flight arena was cleared of bees and cleaned. Six discs of the

same type were placed in the flight arena with a 30% sucrose solution (20 lL) placed in

the appropriate well for each disc (Fig. 2). All discs were placed on top of upturned

transparent plastic containers (6 cm height, 150 ml, Sterilin UK) and distributed ran-

domly throughout the flight arena. Individual marked foragers which were naı̈ve to both

scent and visual stimuli, but had experience drinking from Eppendorf lid wells, were

then allowed entry into the flight arena. The time between landing and drinking from the

sucrose-containing well was measured and recorded. Once a forager had left a flower

from which it had drunk, the disc was removed and sucrose was re-administered into the

appropriate well and then placed back into the flight arena. The number of times a

forager leaves a flower without drinking was also recorded. Once a forager had finished a

foraging bout all discs were removed and swabbed with ethanol including the plastic

well covers to remove visual cues and foraging pheromones and then placed into a new

random distribution. This continued until the forager had landed and drunk from 30

discs. This experiment was conducted on 126 forager bees (fourteen for each disc type)

from 11 colonies.

904 Evol Ecol (2017) 31:899–912

123



Radiating/non-radiating preference tests

Ten discs were placed into the flight arena from one of two treatments. One treatment with

five unimodal radiating visual pattern flowers and five unimodal non-radiating visual

patterns and another treatment with five bimodal radiating pattern flowers and five bimodal

non-radiating pattern flowers. These discs were randomly distributed with sucrose placed

in the appropriate well for each disc (Fig. 2). Individually marked foragers, which were

naı̈ve to the scent and visual stimuli, were then allowed into the flight arena where their

landing choice was recorded as well as the time between landing and drinking and whether

a forager left a flower without drinking. This continued until the forager had landed and

drunk from twenty discs. These preference tests were conducted on 60 forager bees from

three colonies.

Analysis

No-choice nectar discovery speed test

A multiple linear regression model was used to analyse the effect of the different visual and

olfactory patterns on nectar discovery time (NDT). Radiating scent, non-radiating scent,

radiating visual, non-radiating visual and visit number and the interactions between these

variables were used as predictors within the model, giving the linear model a structure

similar to a 2-factor ANOVA. Both subject and colony were incorporated into the model as

random effects. Nectar discovery times were log transformed to meet assumptions of the

analysis. Welch’s two-sample t tests were used to compare the NDTs between foragers

presented with bimodal versus unimodal flowers as well as between foragers exposed to

radiating versus non-radiating floral displays in order to look at the benefits of these stimuli

arrangements and combinations. Controls which had no display components were not

included in these tests nor were the ‘radiating visual—non-radiating scent’ and ‘non-

radiating visual—radiating scent’ groups included in the comparison test between radiating

and non-radiating displays as these groups contain both aspects simultaneously. We also

compared the number of times forager bees abandoned flowers before drinking between

scented and unscented flowers and visual and non-visual flowers using independent

2-group t tests.

Radiating and non-radiating preference tests

The preference for either radiating or non-radiating patterns in both visual and visual plus

scent preference tests, measured in flower visits out of 20 (as 20 choices were made in total

per forager), was compared using paired sample t tests after log transformations. Paired

t tests (after log transformations) were used to compare the NDTs and the number of flower

landings which did not lead to drinks between radiating and non-radiating patterns in both

visual and visual plus scent preference tests.

R version 3.0.1 (R Development Core Team 2013) was used for all analysis.
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Results

No-choice nectar discovery speed test

The multiple linear regression analysis found bumblebee nectar discovery time (NDT) was

affected by all individual display components, both radiating and non-radiating and visual

and olfactory, all of which reduced NDT (Table 1). There were also significant interactions

between these pattern types. Flower visit number also affected the NDT, however, there

was no interaction between flower visit number and the individual display components

(Table 1). The interactions increased NDTs with the interaction between non-radiating

scent and radiating visual patterns increasing NDT by 0.65 s from the intercept (Table 1).

These interactions show that the visual components of the floral display are slowing the

bees’ responses to the olfactory cues or vice versa.

There was no difference in NDT between the foragers exposed to unimodal floral

displays and those exposed to bimodal floral displays (unimodal: NDT = 2.73 ± 0.76 s

(mean ± SD), bimodal: NDT = 2.53 ± 0.72 s, two-sample t test: t110 = 0.83,

p = 0.407). There was no difference in NDT between the foragers exposed to flowers with

purely radiating display elements and those exposed to flowers with purely non-radiating

display elements (radiating: NDT = 2.46 ± 0.65 s, non-radiating: NDT = 2.53 ± 0.71 s,

two-sample t test: t41 = -0.69, p = 0.548). The mean number of flower abandonment was

larger in unscented flowers than scented flowers (unscented: 6.7 ± 4.19 flower abandon-

ments, N = 30, scented: 4.79 ± 2.82 flower abandonments, 2-group t test: t40 = -2.3,

N = 76, p = 0.027) but there was no difference in the mean number of flower abandon-

ments between flowers with visual components or flowers without visual components (with

visual: 5.25 ± 2.79 flower abandonments, N = 64, without visual: 5.45 ± 4.11 flower

abandonments, 2-group t test: t66 = -0.28, N = 42, p = 0.781).

Table 1 Effects of radiating scent, non-radiating scent, radiating visual and non-radiating visual patterns
and visit number on the nectar discovery time of forager bumblebees after log transformation (multiple
linear regression: SEresid = 0.68, radj

2 = 0.09, F13,3766 = 29.74, p\ 0.001)

Explanatory factor Estimate SE T3766 p

(Intercept) 1.278 0.055 23.05 \0.001***

Radiating scent -0.288 0.068 -4.26 \0.001***

Non-radiating scent -0.338 0.068 -4.99 \0.001***

Radiating visual -0.411 0.068 -6.07 \0.001***

Non-radiating visual -0.393 0.068 -5.81 \0.001***

Visit number -0.014 0.003 -5.00 \0.001***

Radiating scent: radiating visual 0.263 0.067 3.96 \0.001***

Non-radiating scent: radiating visual 0.647 0.067 9.72 \0.001***

Radiating scent: non-radiating visual 0.153 0.067 2.30 0.021*

Non-radiating scent: non-radiating visual 0.289 0.067 4.35 \0.001***

Radiating scent: visit number -0.006 0.003 -1.84 0.065

Non-radiating scent: visit number -0.005 0.003 -1.58 0.115

Radiating visual: visit number 0.001 0.003 0.17 0.867

Non-radiating visual: visit number 0.004 0.003 1.35 0.176

906 Evol Ecol (2017) 31:899–912

123



Preference tests

Bees spent less time searching for nectar on artificial flowers with radiating visual patterns

over flowers with non-radiating visual patterns (radiating 2.18 ± 0.78 s (mean ± SD),

non-radiating 2.67 ± 1.00 s, paired sample t test: t14 = 2.44, p = 0.029) but there was no

difference in nectar discovery time between radiating and non-radiating flowers which had

both visual and scent stimuli (radiating 2.6 ± 0.64 s, non-radiating 3.03 ± 1.81 s; paired

sample t test t14 = 0.98, p = 0.339). There was also no difference in the number of flower

visits which did not lead to drinks between flowers with radiating and non-radiating visual

patterns (radiating 1.67 ± 1.59 flower visits, non-radiating 2 ± 1.51 flower visits; paired

sample t test t14 = 0.98, p = 0.344), as well as no difference when flowers had both visual

and scent stimuli (radiating 3.87 ± 2.7 flower visits, non-radiating 2.67 ± 2.06 flower

visits; paired sample t test t14 = 1.33, p = 0.205). Bumblebees also showed no preference

for either radiating or non-radiating visual patterned flowers (one-sample t test t14 = 1.5,

p = 0.155). No preference was found between bimodal radiating or bimodal non-radiating

flowers using the same criteria (one sample t test t14 = 0.16, p = 0.876).

Discussion

Nectar guides are thought to benefit both plants and their pollinators through reductions in

nectar discovery time (NDT) and the likelihood of nectar robbing as well as increasing

accuracy and pollen export (Waser and Price 1983; Leonard et al. 2011a, 2013; Hansen

et al. 2012). Within this study, we examined the NDTs of forager bumblebees on artificial

flowers with different combinations of radiating or non-radiating floral patterns of two

modalities: visual and olfactory. We show that the addition of unimodal floral pattern

components, whether visual or olfactory, reduces NDT compared to flowers without guides

but there was no extra NDT benefit from bimodal displays or radiating patterns during the

no-choice speed test. Despite this, NDT was shorter on unimodal flowers with radiating

visual patterns than non-radiating visual pattern flowers during preference tests. Our results

also suggest that spatial fragrance patterns, both radiating and non-radiating, can be used as

nectar guides to reduce nectar discovery times without the aid of visual signals.

During the no-choice speed test, bimodal nectar guides did not have shorter NDTs than

unimodal displays, nor were there any time benefits to bees when visiting radiating patterns

over non-radiating patterns. These findings suggest that the benefits of bimodal guides may

not relate to NDTs. Previous studies have shown that displays incorporating compound

signals reduce uncertainty (Leonard et al. 2011a; Riffell and Alarcón 2013) and enhance

decision making (Kulahci et al. 2008), although these benefits from multimodal displays

relate to pre-landing choices compared to the post-landing nectar discovery speeds

investigated in this study. Our findings also suggest that the time benefits of non-radiating

nectar guides are comparable, at least with the patterns used here, to radiating guides. This

suggest that the benefit of radiating guides, bimodal or unimodal, may relate to other

aspects of pollination other than NDT, such as the physical alignment of pollinators on the

flower surface which facilitates optimal pollen deposition and placement, conferring fitness

benefits to the plant (Scora 1964; Goyret 2010; Hansen et al. 2012). Multimodal signals

may also relate to the learning and recall of floral stimuli (Leonard et al. 2011b), the

eliciting of feeding behaviours (Raguso and Willis 2002), the facilitation of attention

(Talsma et al. 2010), which are not explored in this study. However, these similarities in
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NDT between the two pattern types may relate to the low level of contrast between the two

greens used for visual guide and background. If this is the case, it is possible that patterns

with higher degrees of contrast may result in greater differences between pattern types as

the chromatic contrast of a guide relates to its effectiveness (Lunau et al. 1996; Dinkel and

Lunau 2001). However, bees exposed to purely visual patterns did have shorter NDTs than

the control, suggesting the visual guides had sufficient saliency to contribute to a beha-

vioural change.

Our findings also suggest that the ‘increased detection and discrimination hypothesis’

(Hebets and Papaj 2005) does not apply in this scenario and that the addition of any

individual display component, whether visual or olfactory, radiating or non-radiating,

reduces NDT. This suggests that any visual or olfactory information present on a flower

allows for the faster location of rewards by foragers. With this comes the implication that

spatial fragrance patterns can be used to reduce nectar discovery times without the aid of

visual stimuli, as both unimodal scented flowers had shorter NDTs than the scentless and

colourless control. This use of scent patterns as nectar guides has previously been sug-

gested (Bolwig 1954; Bergström et al. 1995; Raguso and Pichersky 1999; Flamini et al.

2002), however reductions in nectar discovery time as suggested in this study have not

been shown through experimental methods until now.

Besides the ‘increased detection and discrimination hypothesis’, there are other func-

tional hypotheses relating to multimodal signals which relate to our findings. Reduction in

NDT through the addition of either visual or olfactory stimuli also suggests that in envi-

ronments where display components of certain modalities are compromised there may still

be sufficient information on the flower to shorten NDTs. This would support the ‘efficacy

backup hypothesis’ which states that individual signals act as a backup to others in varying

environmental conditions (Hebets and Papaj 2005). It would also support the ‘redundant

signal hypothesis’ which suggests that different signals provide the same information,

allowing for increased accuracy of receiver response (Hebets and Papaj 2005).

With our results, we see an example of the bimodal interactions increasing NDT over

unimodal displays which could detrimentally affect nectar collection and pollen transfer

rates (Table 1). These findings imply that there are interactions between simultaneously

presented display components where the olfactory component is negatively affecting the

reception or processing of visual component or vice versa. Differences in the colour of

flowers have been shown to modulate the learning of scents in hawkmoths (Balkenius and

Kelber 2006). If a similar interaction is happening with the bumblebees, it is possible that

the colours used affected the reception or processing of the scent or vice versa. However, if

this were the case one would expect all combinations of interactions to increase NDT,

which is not the case.

The spatial arrangement of the bimodal display components also influenced the NDTs.

Foragers presented with spatially matched combinations of visual and olfactory stimuli and

those presented with combined radiating scent and non-radiating visual patterns have

discovery times similar to foragers presented with unimodal patterns. However, foragers

presented with non-radiating scent and radiating visual patterns (i.e. spatially unmatched)

had longer NDTs than other groups (Fig. 3). This suggests that the spatial arrangement of

bimodal signals is an important factor in terms of NDTs. It is worth noting that although

non-radiating scent and radiating visual patterns had longer NDTs than other groups, this

longer NDT is still shorter than the NDT of the scentless and colourless control, suggesting

that a spatially unmatched display is better than no display.

This extended NDT on spatially unmatched flowers is perhaps unsurprising considering

that particular volatiles and pigments share biosynthetic pathways and are presented in the
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same locations on the flower (Zuker et al. 2002; Majetic et al. 2007). However, this

relationship between volatile and pigment production, which is apparent in some species, is

lacking in others (Olesen and Knudsen 1994; Dormont et al. 2010). With this in mind, it is

unclear why one spatially unmatched flower group causes foragers to increase NDTs but

not the other, as foragers presented with combined radiating scent and non-radiating visual

patterns did not exhibit increased NDTs. This increase in NDT in foragers presented with

non-radiating scent and radiating visual patterns highlights the detrimental effects that

some display combinations can have on foraging efficiency and highlights the fact that

there is still much to be learned about multimodal displays.

During preference tests, no preference for either radiating or non-radiating flower types

was found. Previous studies have found radiating elements to be more attractive to bees

than plain or circular elements (Free 1970; Lehrer et al. 1995; Shang et al. 2011), while

others have shown no preference for artificial flowers with radiating patterns over plain

flowers in bee-flies Usia bicolor (Johnson and Dafni 1998). It is possible that the lack of

preference observed in this study is related to the fact that the greens used for the back-

ground and guide were intentionally similar in order to limit bees positioning themselves

close to the nectaries when landing (Lunau et al. 2006). This potential limitation in the

amount of pre-landing information available to the bee makes it difficult to understand

which traits are beneficial to the plant in terms of pollinator preferences.

Despite this lack of preference, results from the preference tests showed that NDTs were

shorter on unimodal visually radiating flowers than simultaneously presented non-radiat-

ing. This shortened NDT on radiating flowers in preference tests is similar to the results of

previous studies where flower to flower flight times and pollinator search times were lower

on flowers with guides than plain flowers (Waser and Price 1985; Leonard and Papaj

2011). Our results are also consistent with Johnson and Dafni (1998), in which bombyliid

flies (Usia bicolor) landing on model flowers with radiating lines walked directly towards
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Fig. 3 Interaction plot displaying the nectar discover times (mean ± SE) of forager bees presented with
artificial flowers of varying display elements. Squares represent visually radiating patterns, diamonds
represent visually non-radiating patterns and triangles represent patterns without a visual component. Floral
displays were comprised of one of three scent arrangements (radiating, non-radiating or no scent) and one of
three visual arrangements (radiating, non-radiating or no visual), making nine combinations in total
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the point where the lines converged. The reduced NDTs on artificial flowers comprised of

radiating lines which lead to the nectary over ‘disjunct’ guides where radiating lines lead

away from the nectary in Goodale et al. (2014) is also reminiscent of our findings. This

shortened NDT on radiating flowers in the preference tests suggest there may be time

benefits from radiating floral patterns when foragers encounter multiple flower species. If

this is the case, pollinators which exhibit low flower constancy may gain a greater

advantage from radiating flower patterns, however, more experimental work would need to

be done to determine if this is the case.

Although this reduced NDT in radiating patterns was observed in unimodal visual

preference tests, the same was not seen between bimodal radiating and non-radiating

flowers. This may be due to both flower types having in excess of a minimum information

requirement for reward location, though this would need further study to verify. Flowers

with non-radiating patterns could still be used to locate rewards as they are still zygo-

morphic (bilaterally symmetrical), which has been shown to reduce discovery times when

compared to asymmetrical flowers (West and Laverty 1998). They may also be well

matched to the perceptual systems of bumblebees which primarily visit zygomorphic

flower forms (Leppik 1953).

Bees were also found to abandon more unscented flowers than scented flowers. It is

possible that the scent acts to provide a foraging context as scent may prompt a foraging

response and reduce confusion between different tasks such as locating the nest or within-

nest tasks (Leonard and Papaj 2011). This behaviour is similar to tobacco hornworm moths

Manduca sexta, which do not feed from artificial flowers which lack plant odours (Raguso

and Willis 2002). Although bumblebees are known to visit and feed from unscented

artificial flowers without difficulty (Keasar et al. 1997), considering odour enhances colour

discrimination, memory formation and memory retrieval in bumblebees (Kunze and

Gumbert 2001), it is unsurprising that we observe these differences between scented and

unscented flowers.

Conclusion

Within this study, we examined the NDTs of forager bumblebees on artificial flowers with

visual, olfactory or combination displays in radiating, non-radiating or mixed arrange-

ments. Our findings suggest that the addition of unimodal floral pattern, whether visual or

olfactory or in radiating or non-radiating arrangements, reduces NDT. Bimodal displays

did not reduce NDTs compared to unimodal displays and even increased NDTs in one case

where the two modalities were spatially unmatched. Radiating patterns also appeared to

have no benefit to bees over non-radiating patterns in terms of NDT apart from when both

were presented simultaneously during preference tests. These findings imply unimodal

signals are sufficient to communicate reward location and that the benefits of bimodal

signals are unrelated to NDTs in B. terrestris.
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