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Abstract
BACKGROUND
Prevalence of nonalcoholic fatty liver disease (NAFLD) is rapidly increasing, and
NAFLD has become one of the most common chronic liver diseases worldwide.
With abnormal CD44 activation, the severe form of NAFLD can progress to liver
cirrhosis and hepatocellular carcinoma (HCC). Thus, the molecular mechanism of
CD44 in NAFLD needs to be identified.

AIM
To investigate the relationship between CD44 activation and malignant
transformation of rat hepatocytes under nonalcoholic lipid accumulation.

METHODS
Sprague-Dawley rats were fed a high-fat (HF) for 12 wk to entice NAFLD and
then with HF plus 2-fluorenylacetamide (0.05%) to induce HCC. Rats were
sacrificed every 2 wk, and subsequently divided into the groups based on liver
pathological examination (hematoxylin and eosin staining): NAFLD,
denaturation, precancerosis, HCC, and control. Liver CD44 mRNA was detected
by OneArray. Liver fat as assessed by Oil red O staining or CD44 by
immunohistochemical assay was compared with their integral optic density.
Serum CD44, alanine aminotransferase, aspartate aminotransferase, triglyceride,
total cholesterol, and AFP levels were quantitatively tested.

RESULTS
Elevated CD44 was first reported in hepatocarcinogenesis, with increasing
expression from NAFLD to HCC at the protein or mRNA level. The CD44
integral optic density values were significantly different between the control
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group and the NAFLD (t = 25.433, P < 0.001), denaturation (t = 48.822, P < 0.001),
precancerosis (t = 27.751, P < 0.001), and HCC (t = 16.239, P < 0.001) groups,
respectively. Hepatic CD44 can be secreted into the blood, and serum CD44 levels
in HCC or precancerous rats were significantly higher (P < 0.001) than those in
any of the other rats. Positive correlations were found between liver CD44 and
CD44 mRNA (rs = 0.373, P = 0.043) and serum CD44 (rs = 0.541, P = 0.002) and
between liver CD44 mRNA and serum CD44 (rs = 0.507, P = 0.004). Moreover,
significant correlations were found between liver CD44 and liver AFP (rs = 0.572,
P = 0.001), between serum CD44 and serum AFP (rs = 0.608, P < 0.001), and
between CD44 mRNA and AFP mRNA (rs = 0.370, P = 0.044).

CONCLUSION
The data suggested that increasing CD44 expression is associated with the
malignant transformation of hepatocytes in NAFLD.

Key words: Hepatocarcinogenesis; CD44; Nonalcoholic fatty liver disease; Animal model;
Dynamic expressions
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Core tip: CD44, which belongs to a family of adhesion molecules, is a marker of cancer
stem cells and is related to the transformation of nonalcoholic fatty liver disease to
nonalcoholic steatohepatitis and hepatocellular carcinoma. Dynamic expression of CD44
in livers or blood at protein or mRNA level was first investigated at different stages of
the progression of fat accumulating fatty liver. Increasing CD44 expression could be one
of the most important progenitors and was associated with the malignant transformation
of hepatocytes with lipid accumulation.
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INTRODUCTION
Hepatocellular  carcinoma  (HCC)  is  the  main  form  of  primary  liver  cancer
characterized by high malignancy, easy recurrence and metastasis, and geographical
diversity, and both its incidence and mortality are increasing in the world[1,2]. Despite
improved treatment modalities, the prognosis of HCC patients is still rather poor
because  of  frequent  metastasis  and  recurrence[3,4].  Major  risk  factors,  except  for
infection with hepatitis B virus or hepatitis C virus, are nonalcoholic fatty liver disease
(NAFLD)  and  metabolic-related  disorders [5-7].  The  incidence  of  NAFLD  has
significantly increased, and the proportion of HCC due to malignant transformation
of NAFLD shows an increasing trend. Lipid accumulation is strictly linked to chronic
hepatocyte damage, resulting in the generation of an inflammation microenvironment
and creation of a pro-oncogenic milieu, thus promoting malignant transformation of
hepatocytes  with  no  mitochondrial  carnitine  palmitoyl  transferase-II  activity[8].
Recently, accumulating evidence supports that HCC contains a small subpopulation
of  cancer  stem-like  cells  (CSC)[9]  with  potential  biomarkers  (CD44,  CD133,  and
aldehyde dehydrogenase 1) that might be important factors in HCC occurrence[10], of
which CD44 could be a key player in non-alcoholic steatohepatitis[11].

Transmembrane glycoprotein CD44 is closely associated with aggressive behavior
and poor prognosis in a variety of human malignancies[12,13]. It can bind to hyaluronic
acid (the most  important  ligand),  collagen,  fibrin,  and laminin,  mediate  specific
adhesion between cells as well as between cells and the extracellular matrix, and be
involved in many biological processes such as transmitting intracellular signals and
regulating the growth, invasion, and metastasis of HCC[14,15]. CD44 is one of the most
frequently reported CSC markers  in  NAFLD, and CD44 positive cells  have CSC
properties, such as self-renewal and tumorigenicity. Recently, high CD44 expression
has been closely linked to NAFLD progression to HCC[16]. However, the relationship
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between CD44 expression and hepatocarcinogenesis is still controversial, with unclear
particular  mechanisms.  The objective of  this  study was to highlight  correlations
between the alterations of CD44 expression and malignant transformation of lipid-
accumulating hepatocytes.

MATERIALS AND METHODS

Fatty-accumulated HCC model
In total, 78 4-wk-old male Sprague-Dawley rats, weighing 100-120 g, were randomly
divided into either a control group (n = 12) or an NAFLD model group (n = 66). All
animals were raised at 22 ± 2 °C, with a light/dark period of 12 h, and a humidity of
55%. According to a previous method[8],  the rats of  the control  group were fed a
routine diet, whereas those of the NAFLD model group were fed a high fat diet (10%
egg yolk powder, 10% lard, 4% cholesterol, 1% cholic acid, and 75% common feed) for
2 wk. Then, the NAFLD rats (n  = 42) were given a high fat  diet  plus 0.05% of 2-
fluorenylacetamide (2-FAA, Sigma,  St  Louis,  MO, United States)  to induce HCC
formation. Two control rats, four NAFLD rats, and one HCC rat were sacrificed by
ether anesthetization every 2 wk. Blood samples were collected from the heart and
stored at -20 °C, and liver tissues were taken after operation, frozen quickly in liquid
nitrogen, and stored at -80 °C. Liver tissues were used for Oil red O, hematoxylin and
eosin,  and  immunohistochemical  (IHC)  staining.  All  in  vivo  procedures  were
performed in accordance with the guidelines of the Animal Care and Use Committee
of Nantong University, China.

Histopathological analysis
Dried paraffin-embedded sections were deparaffinized in xylene, rehydrated with a
graded series of ethanol, and stained with hematoxylin for 5 min. Subsequently, the
sections were immerged in hydrochloric acid and ammonia for seconds, rinsed for 1
h, placed in distilled water for a moment, decolorized with 70% and 90% alcohol for
10  min  each,  and  stained  with  eosin  for  3  min.  After  dyeing,  the  sections  were
dehydrated with 100% alcohol, cleared with xylene, and sealed with resin. Based on
the alterations of histopathological characteristics under a microscope, the livers were
divided into control, NAFLD, denaturation, precancerosis, and HCC groups.

Oil red O staining
We prepared the application fluid and filtered it according to the kit manufacturer’s
instructions. The frozen slices stored in the refrigerator at -80 °C in advance were
placed at room temperature for 10 min, then stained with reagent one for 15 min and
washed with distilled water at 37 °C for 20 s. After that, they were stained again with
reagent  two  for  3-5  min  and  washed  with  distilled  water  at  37  °C  for  30  s.
Subsequently, we added the water-based sealant to the surface before drying. The
slices were observed and photographed under microscope and analyzed by Image-
Pro Plus v6.0 software with integral optic density (IOD) value[17]. For measuring IOD,
the image system comprised a Leica CCD camera DFC420 connected to a Leica DM
IRE2 microscope (Leica Microsystems Imaging Solutions Ltd, Cambridge, United
Kingdom). Photographs of representative fields were captured under high-power
magnification (× 200) with Leica QWin Plus v3 software. The IOD value of each image
was measured with Image-Pro Plus v6.0 software (Media Cybernetics Inc, Bethesda,
MD, United States).

Biochemical analysis
Serum total cholesterol (Tch) and triglyceride (TG) levels were measured with a kit
from Nanjing Jiancheng Biotechnology Company (Nanjing, China). Briefly, the blank,
calibration, and sample wells were set up. We added 10 µL distilled water as well as
standards and samples with 1000 µL working liquid into corresponding wells. After
being  incubated  at  37  °C  for  10  min,  absorbance  of  each  well  was  read  on  a
spectrophotometer,  with  510  nm  as  the  primary  wavelength,  and  the  average
concentration was calculated according to the formula.

IHC staining
The liver sections were put in 80 °C drying box for 2 h. Then, after being dewaxed,
dehydrated,  and washed by flowing water,  the  slices  were soaked in the citrate
antigen recovery buffer and heated in the microwave oven until boiling for 5 min.
Each slice was exposed to 100 µL 3% H2O2, incubated, and washed with phosphate
buffered saline with primary rabbit anti-human CD44 antibody (ab157107, Abcam,
Cambridge, United Kingdom) at 1:100 dilution. After that, polymer reinforcements
and horseradish peroxidase-conjugated goat anti-rabbit IgG (ab97051, Abcam) at 1:500
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dilutions were followed and repeatedly washed. Finally, the slices were added with
3,3’-diaminobenzidine dye liquor, counterstained with Hematoxylin, and soaked in
0.1% HCl. After rinsing, blueness, dehydration in ethanol, clearness with xylene, and
sealing with neutral balsam were observed by optical microscope (MX53 Olympus,
Tokyo, Japan) and analyzed with the Image Pro plus v6.0 software with IOD value[17].

Analysis of alpha-fetoprotein (AFP) and CD44 transcription
According to the protocol, every 100 mg tissue was homogenized in a glass grinder
with 1 mL TRI reagent and then transferred into Eppendorf (EP) tube, in which the
reagent was mixed up and down 10 times, and rested for 5 min at room temperature.
Next, 0.2 mL chloroform was added, mixed, rested, and then centrifuged (12000 rpm,
4 °C, 15 min). The upper water was transferred into a new aseptic EP tube, mixed
with 0.5 mL isopropanol, and centrifuged (12000 rpm, 4 °C, 10 min). Afterwards, the
supernatant was removed, sRNA precipitation was hacked and washed with 80%
ethanol, and the centrifugation (7500 rpm, 4 °C, 5 min) was repeated. Finally, the
supernatant was carefully poured out, the precipitation was dried (30 min, until RNA
precipitation became transparent, not completely dry), and then the pellet dissolved
with  30  µL of  DEPC water.  The  quantity  and quality  of  the  RNA samples  were
determined with the use of the NanoDrop ND-1000 spectrophotometer.

The strand of cDNA and antisense RNA was synthesized by using OneArray plus
RNA amplification kit developed by the Hualian Company (Beijing, China). In the
process,  aa-UTP and NHS-CyeDye were added to make aRNA become CyeDye-
aRNA to complete calibration. After purification, we made the hybridization between
the product and Phalanx OneArrayTM and, furthermore, entered the analysis process
after cleaning and signal detection. The scanner was the Agilent Microarray Scanner
(G2505C, Santa Clara, CA, United States). Finally, transcriptional levels of AFP and
CD44 in five groups of rats were.

Liver tissues
Five groups of rats were created based on pathological hematoxylin and eosin (H and
E) staining. Liver tissue (20 mg) was mixed with 200 µL of mixed radioimmuno-
precipitation assay buffer (UNOCI Biological Company, WB020) in 1.5 mL EP tubes
and homogenized. The tissue was preserved with ice for 4 h and centrifuged for 5 min
at 12000 g. The supernatant was divided into two parts: one was stored at -80 °C after
measuring the concentration and the other was denatured in boiling water with 5 ×
protein loading buffer for 5 min and stored at -80 °C.

Serum samples
About 5 mL of blood was taken from the rat heart and incubated at 4 °C overnight.
After centrifugation (2000 rpm, 20 min), we removed sera into the EP tube. Based on
H and E staining, we divided all sera into five groups and stored them at -80 °C and
avoided repeated freeze-thaw cycles.

Enzyme linked immunosorbent assay (ELISA)
The concentration of AFP and CD44 in the liver homogenate and in the sera of rats
was detected according to the manufacturer’s instructions of the ELISA kit (Cloud-
Clone Corp, Katy, TX, United States). We set the blank and added 100 µL standards,
liver homogenates, and serum to the microplate, where the reagents were incubated 1
h at 37 °C. Then, we removed the liquid, added prepared biotinylated labeled detector
antibody,  and  incubated  the  samples  at  37  °C.  Subsequently,  we  aspirated  and
washed each tube, added prepared streptavidin-horseradish peroxidase mixture to
each tube, incubated the mixture again, aspirated and washed each well, added the
TMB solution to each well until color developed, and then added the Stop solution.
The optical density values were measured at 450 nm on a microplate reader (Biotek
Synergy, Winooski, VT, United States), and the corresponding protein concentration
for each sample was obtained by a standard curve.

Statistical analysis
Image pro plus 6.0, GraphPad prism 5.0 (La Jolla, CA, United States), and Photoshop
software were used to analyze data and generate figures. Microsoft Excel and IBM
SPSS statistics 23 software (Armonk, NY, United States) were applied to analyze data
and calculate the mean ± SD. The Student’s t test was used to compare CD44 and AFP
levels in liver homogenates and sera of rats. A P < 0.05 was considered significant.

RESULTS

NAFLD models with lipid accumulation
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Rat livers with lipid accumulation and circulating lipid levels are shown in Figure 1.
Compared with the normal control (Figure 1A and A1), the rat NAFLD models have
been successfully made with lipid accumulation (Figure 1B and B1). After the rats
were fed with a high fat plus 2-FAA diet, the rat livers were collected at the early
(Figure 1C and C1), middle (Figure 1D and D1), and last (Figure 1E and E1) stage. The
corresponding liver sections by the Oil red O staining were confirmed with over fatty
accumulation in hepatocytes, except for control rats, whose levels of hepatic lipid
were relatively quantified by the IOD (Figure 1F). Compared with the control group,
hepatocyte lipid contents were significantly higher in the NAFLD (t  = 12.461, P  <
0.001), hepatocytes denaturation (t = 6.541, P = 0.02), precancerosis (t = 14.133, P =
0.005),  and  HCC  (t  =  9.797,  P  =  0.009)  groups,  respectively.  Furthermore,  the
circulating total cholesterol (Figure 1G) levels with 2-3 times or triglycerides (Figure
1H)  levels  with  1.50-4.53  times  in  any  group of  all  rats  with  high  fat  diet  were
significantly higher (P < 0.05) than those in the control rats.

CD44 alteration in hepatocarcinogenesis
The alterations of liver histopathological examination and the IHC analysis of liver
CD44 expression in rat hepatocarcinogenesis are shown in Figure 2. According to
pathological  results  with H and E staining,  the rat  livers  were divided into five
groups: the controls (n = 12, Figure 2A) with normal diet only, the NAFLD formation
(n = 24, Figure 2B) with high fat diet, the hepatocytes damage (denaturation, n = 17,
Figure 2C) at early stage, the precancerosis (n = 15, Figure 2D) at middle stage, and
the HCC formation (n = 10, Figure 2E) at last stage after high fat diet plus 2-FAA. The
hepatic  CD44  levels  of  the  corresponding  sections  were  analyzed  by
immunohistochemistry with anti-rat CD44 antibodies. Liver CD44 was overexpressed
in rat hepatocytes (Figure 2B1, C1, D1 and E1) except for normal controls (Figure
2A1). The IOD values of CD44 expression (Figure 2F) were significantly different
between  the  control  group and  the  NAFLD (t  =  25.433,  P  <  0.001),  hepatocytes
denaturation (t = 48.822, P < 0.001), precancerosis (t = 27.751, P < 0.001), and HCC (t =
16.239, P < 0.001) groups, respectively. Also, the liver damage with abnormal liver
alanine aminotransferase  (Figure 2G)  or  aspartate  aminotransferase  (Figure 2H)
activity was higher in any group of the rats with high fat diet (P < 0.05) than in the
control rats during malignant transformation of NAFLD.

Quantitative analysis of CD44 in hepatocarcinogenesis
The dynamic alterations of liver or circulating CD44 expression at protein level and
comparative analysis with AFP expression in rat hepatocarcinogenesis are shown in
Table 1. In the rat liver tissues, CD44 expression was lower in the control group and
was significantly increasing in the NAFLD group; no significant difference of liver
AFP was found between the control and NAFLD groups. After the NAFLD rats were
fed with 2-FAA in hepatocarcinogenesis, the increasing liver CD44 expression was
significantly higher in the precancerosis and HCC groups than in the control, NAFLD,
and denaturation groups; the increased liver AFP expression was significantly higher
in the denaturation, precancerosis, and HCC groups than in the control or NAFLD
group. In the circulating blood of rats, CD44 expression was lower in the control
group.  No significant  difference of  serum CD44 or  AFP was found between the
control group and the NAFLD group. However, the serum CD44 or AFP level in the
denaturation,  precancerosis,  or  HCC  group  of  the  NAFLD  rats  with  2-FAA  in
hepatocarcinogenesis was significantly higher than that in the control or NAFLD
group. Significantly close correlations were found between liver CD44 and serum
CD44 (rs = 0.541, P = 0.002) and liver AFP (rs = 0.572, P = 0.001) and between serum
CD44 and serum AFP (rs = 0.608, P < 0.001).

Expression of CD44 mRNA in hepatocarcinogenesis
The dynamic expression of liver CD44 mRNA and the comparative analysis with AFP
mRNA in rat hepatocarcinogenesis are shown in Table 2. The level of liver CD44
mRNA or AFP mRNA expression in the control group was low. Moreover, a similar
observation was found in the NAFLD group, and there was no significant difference
of liver CD44 mRNA or AFP mRNA found between the control and NAFLD groups.
After the NAFLD rats were fed with 2-FAA in hepatocarcinogenesis, the expression of
liver CD44 mRNA in the denaturation, precancerosis, or HCC group was significantly
higher than that in the control or NAFLD group; liver AFP mRNA expression in the
precancerosis or HCC group was significantly higher than that in any of the control,
NAFLD, or denaturation group. Significantly close correlations were found between
liver CD44 (Table 1) and CD44 mRNA (rs = 0.373, P = 0.043) and between liver CD44
mRNA and serum CD44 (Table 1, rs = 0.507, P = 0.004) or AFP mRNA (rs = 0.370, P =
0.044).
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Figure 1

Figure 1  Rat livers with lipid accumulation and circulating lipid levels. A: The livers of control rats with normal diet; B: The livers of the rats with high fat diet; C:
The livers of the rats with high fat plus 2-fluorenylacetamide (2-FAA) diet at the early stage; D: The livers of the rats with high fat plus 2-FAA diet at the middle early
stage; and E: The livers of the rats with high fat plus 2-FAA diet at the last stage; A1: Normal controls; B1-E1: The sections of the corresponding to above livers were
stained with the Oil red O assay, and over lipid accumulation in rat hepatocytes; F: The integral optic density values represented hepatic lipid levels of the
corresponding to above livers; G: The alterations of serum total cholesterol level; and H: The alterations of serum triglycerides level. Original magnification of liver
sections (× 400) from Figure 1A1 to Figure 1E1. aP < 0.05 vs control group. IOD: Integral optic density; Tch: Total cholesterol; TG: Triglycerides.

DISCUSSION
Alterations of hepatic metabolism are critical  to the malignant transformation of
hepatocytes[18,19]. The incidence of NAFLD among healthy populations is increasing
and  has  become  one  of  the  most  common  causes  of  HCC  worldwide[20-22].  An
accumulation  of  ectopic  fat,  including  visceral  obesity  and  fatty  liver,  leads  to
dysfunction of the adipose tissue, with impaired production of adipocytokines and
inactivity of mitochondrial inner membrane (carnitine palmitoyl transferase-II)[8,23];
abnormal CD44 expressions in NAFLD lead to the emergence of a microenvironment
favorable  to  HCC  development.  Human  HCC  follows  a  pattern  of  pathologic
evolution involving multistep processes, starting from hepatocyte injury and cirrhosis
to low-grade dysplastic nodules, high-grade dysplastic nodules, early liver cancer,
and  progressed  HCC [ 2 4 , 2 5 ] .  However,  the  correlation  between  CD44  and
hepatocarcinogenesis is still controversial. In this study, the increasing features of
CD44 activation at different stages were first investigated in the cascade of NAFLD to
HCC progression.

Hepatocarcinogenesis  is  of  fundamental  importance  to  analyze  the  dynamic
alteration of HCC-related biomarkers and to understand the molecular mechanisms of
cancer development[26-28]. NAFLD models with lipid accumulation were confirmed
with Oil red O staining, and then the malignant transformation of rat hepatocytes
induced with 2-FAA was identified by histopathological H and E examination. The
lipid IOD value of the rat liver sections in the NAFLD group was significantly higher
than that in the control group, with increasing serum triglyceride or total cholesterol
levels  and  higher  hepatic  enzymatic  alanine  aminotransferase  or  aspartate
aminotransferase activity. After the NAFLD rats were fed 2-FAA, rat hepatocytes
were malignantly transformed from normal liver cells to denaturation at the early-, to
precancerosis at the middle-, and to HCC formation at last-stage. The data indicated
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Figure 2

Figure 2  Pathohistology and hepatic CD44 in rat hepatocarcinogenesis. According to pathohistological examination with H and E staining, the rat livers were
divided into five groups. A: The normal controls (A1); B: The nonalcoholic fatty liver disease formation (B1); C: The hepatocytes damage (denaturation, C1); D: The
precancerosis (D1); and E: The HCC formation (E1); A1: Normal controls; B1-E1: The sections of the corresponding to above livers were analyzed by CD44
immunohistochemistry with anti-rat CD44 antibody, and the overexpression of CD44 in rat hepatocytes; F: The IOD values represented hepatic CD44 expression
levels; G: The alterations of serum alanine aminotransferase (ALT) activity; and H: The alterations of serum AST activity. Original magnification of liver sections (×
400) from Figure 2A1 to Figure 2E1. aP < 0.05 vs control group. IOD: Integral optic density.

that  the  rat  models  with  lipid  accumulation  were  suitable  to  observe  the  CD44
activation from NAFLD involving inflammatory with abnormal metabolism to HCC
progression[29,30].

The fastest growing cause of cancer-related death is HCC, which is at least partly
attributable to the rising incidence of NAFLD that encompasses a broad spectrum of
conditions, ranging from non-progressive bland steatosis to hepatocarcinogenesis[31,32].
In line with these clinical risk factors, high-fat administration over a prolonged period
results in spontaneous HCC development. Liver CD44 was overexpressed in all rat
livers except for normal controls. Significant difference of the CD44 IOD values was
found between control rats and NAFLD, denaturation, precancerosis, or HCC rats,
suggesting that elevated CD44 level could contribute to malignant transformation of
hepatocytes and HCC development[33,34]. As a hyaluronic acid receptor, CD44, whose
expression could be rapidly induced in a STAT3-dependent manner, potentiates AKT
activation to escape p53-induced death and responds to proliferative signals that
become HCC progenitors[13].

CD44 as a major adhesion molecule of the extracellular matrix has been implicated
in a wide range of biological processes, such as transmitting intracellular signals and
regulating the growth, invasion, and metastasis of tumors[12,35]. The binding of CD44
with active hyaluronic acid in rat nonalcoholic steatohepatitis (NASH) could induce
the accumulation of leukocytes around hepatic sinusoid, and its deficiency could not
completely prevent inflammation. CD44 expression in NASH patients is significantly
decreased while a fatty disappears after the liver operation. Both CD44 gene knockout
and wild type mice with methionine and choline deficient diet were fed to induce
NAFLD[36].  In this  study,  abnormal CD44 expression had a relationship between
NAFLD with liver ballooning and malignant transformation of hepatocytes. Although
the complex molecular mechanisms of CD44 in rat hepatocarcinogenesis needs to be
explored further,  the  molecular  profiling  of  NAFLD related to  increasing CD44
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Table 1  Dynamic alterations of liver or serum CD44 and alpha-fetoprotein at protein level in rat hepatocarcinogenesis

Group n Liver CD44, ng/per mg liver Serum CD44, ng/mL Liver AFP, ng/per mg liver Serum AFP, ng/mL

Control 12 1.465 ± 0.341 9.193 ± 1.176 1.757 ± 0.452 0.881 ± 0.092

NAFLD 24 1.920 ± 0.311a 10.432 ± 2.288 2.185 ± 0.553 0.958 ± 0.131

Denaturation 17 1.830 ± 0.460a 19.913 ± 7.277a 3.023 ± 0.797a 1.460 ± 0.394a

Precancerosis 15 2.203 ± 0.303a 20.628 ± 2.756a 3.282 ± 0.683a 1.622 ± 0.418a

HCC 10 2.577 ± 0.425a 29.597 ± 6.907a 3.877 ± 0.625a 1.830 ± 0.537a

aP < 0.05 vs control group. NAFLD: Nonalcoholic fatty liver disease; AFP: Alpha-fetoprotein; HCC: Hepatocellular carcinoma.

expression  during  HCC  development  holds  great  translational  potential  for
individualized surveillance, prevention, and therapy[16].

Recent evidence indicated that HCC contains a small subpopulation of cells called
CSCs that were key drivers of HCC formation and progression, especially relating to
invasion and metastasis[33,37]. Among potential CSCs markers, such as CD44, CD133,
and aldehyde dehydrogenase 1, several studies similarly utilized CD44 positivity to
isolate cells with stem cell-like and cancer-initiating properties from other cancer cells.
Interestingly,  some  CSCs  biomarkers  have  been  used  to  identify  by
immunohistochemistry CSCs in HCC[10,38]. In this study, both CD44 and AFP were
involved in HCC progression, with abnormal expression at the protein or mRNA
level and provided a concise overview on the molecular pathogenesis of the NAFLD-
NASH-HCC sequence, suggesting that CD44 as a hepatic progenitor might be an
important factor in hepatocyte malignant transformation.

In conclusion, to the best of our knowledge, this is the first report to investigate the
relationship between increasing CD44 activation and malignant transformation of
hepatocytes.  The findings are promising, and the initial  evidence confirmed that
hepatic  CD44 was one of  the early molecules from NAFLD to HCC progression.
However,  the  investigation of  liver  histology had not  analyzed the  relationship
between CD44 level and liver fibrosis. Future studies should evaluate liver tissues
concerning  the  degree  of  fibrosis  and  CD44  activation,  clarify  the  molecular
mechanisms or HCC-related signal pathways of the upregulation of CD44 expression,
and elucidate  the  role  of  CD44 as  a  hepatic  progenitor  in  hepatocyte  malignant
transformation[39,40].
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Table 2  Dynamic alterations of liver CD44 mRNA and AFP mRNA expression in rat hepatocarcinogenesis

Group n Liver CD44 mRNA, × 107/per mg tissues Liver AFP mRNA, × 108/per mg tissues

Control 12 1.844 ± 0.305 4.859 ± 0.636

NAFLD 24 2.234 ± 0.441 4.150 ± 0.439

Denaturation 17 3.008 ± 0.436a 5.575 ± 1.672

Precancerosis 15 2.942 ± 0.530a 6.749 ± 0.949a

HCC 10 3.593 ±1.554a 5.731 ± 0.404a

aP < 0.05 vs control group. AFP: Alpha-fetoprotein; HCC: Hepatocellular carcinoma; NAFLD: Nonalcoholic fatty liver disease.

ARTICLE HIGHLIGHTS
Research background
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and its
prevalence is rapidly increasing worldwide. The severe form of NAFLD can progress to liver
cirrhosis and hepatocellular carcinoma (HCC). Recently, several related papers expounded that
CD44 played an important role in NAFLD and that there was rather little known knowledge
about CD44 expression in different stages of hepatocyte malignant transformation correlated
with fatty accumulation.

Research motivation
Although CD44 is initially regarded as an adhesion molecule, which has a close relationship with
tumor growth, invasion, and metastasis of HCC, the abnormal activation of CD44 in NAFLD has
yet  to  be  discovered,  and  the  fact  that  CD44  is  overexpressed  in  hepatocytes  with  fatty
accumulation needs to be investigated.

Research objectives
CD44 is a non-kinase transmembrane glycoprotein, and its expression is high in malignant
tumors and low in benign and low-metastatic tumors. This new mechanism of CD44 expression
with fatty metabolism was worthy to be explored. The objective of this study was to initiate the
investigation  of  the  relationship  between  CD44  activation  and  hepatocyte  malignant
transformation under nonalcoholic lipid accumulation

Research methods
In order to clarify the mechanism of CD44 high expression and NAFLD, the models with lipid
accumulation were constructed and then the malignant transformation of rat hepatocytes was
induced with 2-fluorenylacetamide. Histopathological alterations were identified from normal
liver cells to denaturation at the early-, to precancerosis at the middle-, and to HCC formation at
last-stage by hematoxylin and eosin examination, with increasing CD44 activation from NAFLD
involving inflammation with abnormal metabolism to HCC progression.

Research results
CD44 in hepatocarcinogenesis of rat liver cells was increased from NAFLD to HCC at the protein
or mRNA level. Significant difference of CD44 was found between the control group and the
NAFLD, denaturation, precancerosis, or HCC group, respectively. Serum CD44 levels in HCC or
precancerous  rats  were  significantly  higher  than  those  in  any  of  the  other  rats.  Positive
correlations were found between liver CD44 mRNA and circulating CD44 or alpha-fetoprotein.

Research conclusions
To the best of our knowledge, this is the first report to investigate the relationship between
increasing CD44 activation and malignant transformation of hepatocytes. Hepatic CD44 mRNA
and circulating CD44 expression are early molecules  contributing to the progression from
NAFLD to HCC. The new findings are promising, and the initial evidence confirmed that hepatic
CD44 is one of the early molecules leading to the progression from NAFLD to HCC.

Research perspectives
CD44 represents a continuous increasing expression during the entire process of hepatocyte
malignant transformation associated with fatty accumulation. Targeting CD44 might prevent
NAFLD from turning into HCC and might become a potential therapeutic strategy for HCC.
Moreover, further experiments should be conducted to collect the data of CD44 in normal people
and of NAFLD, hepatitis, cirrhosis, and HCC and to clarify the molecule mechanism of high
expression and carcinogenesis of CD44.
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