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Abstract

The accurate estimation of cell growth or the substrate consumption rate is crucial for the understanding of the current
state of a bioprocess. Rates unveil the actual cell status, making them valuable for quality-by-design concepts. However, in
bioprocesses, the real rates are commonly not accessible due to analytical errors. We simulated Escherichia coli fed-batch
fermentations, sampled at four different intervals and added five levels of noise to mimic analytical inaccuracy. We computed
stepwise integral estimations with and without using moving average estimations, and smoothing spline interpolations to
compare the accuracy and precision of each method to calculate the rates. We demonstrate that stepwise integration results
in low accuracy and precision, especially at higher sampling frequencies. Contrary, a simple smoothing spline function
displayed both the highest accuracy and precision regardless of the chosen sampling interval. Based on this, we tested three

different options for substrate uptake rate estimations.

Keywords Bioprocess development - Cubic smoothing spline - Fed-batch fermentation - Growth rate - Substrate uptake rate

Introduction

State variables, such as biomass, substrates, and product,
are quantified via off-line measurements during cultiva-
tion processes of microbial, mammalian and yeast cells to
understand how the process states evolve. To shed light into
the biological subsystem, i.e., the cell state, as well as the
metabolism [4, 6, 8, 12] or to compare different cultivations
on the biological level, e.g., for media selection or cell line
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development [13, 16, 19], specific production/consumption
rates are a necessity.

Principle approaches to rate estimation

There are several approaches for estimating rates of a bio-
process [7, 15, 21]. A very simple method is to calculate the
first derivative of a cubic smoothing spline function [15, 21].
The result is a continuous rate over the whole course of a
bioprocess such as a fed-batch process, where for every time
point, a rate value can be derived.

Although the applicability of this non-parametric method
on bioprocess data is known for a longer time [3, 15], it still
does not seem to be the method of choice for researchers in
upstream bioprocess engineering, or related fields of biol-
ogy. In most cases, the integral approach, a simple step-
wise integral estimation is used [5, 10, 11, 25]. Hereby two
measurements, one derived from sampling time point t; and
the other from sampling time point t;, ;, are considered to
estimate a rate for this interval (¢;, ¢, ;). The same methodol-
ogy is then applied to the next interval (¢, , t;,,) and so on,
estimating one rate value for each time interval, resulting in
a trend over the course of the cultivation process. This, in
turn, means that the rate is assumed to be constant for each
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sampling interval, for which it was calculated, independent
on its length.

Parameters impacting rate estimation quality

Some parameters do have a high impact on the outcome of
these rate estimations and if treated in the wrong way result
in false estimations. For instance, dynamic process trends
can remain unnoticed, e.g., if the sampling frequency is too
low. In addition, if larger measurement errors are present,
the rate is not feasible to describe the process anymore due
to this inaccuracy. This can lead to a reduction of the accu-
racy of the rates and to a reasonably weakened hypothesis
on the influences of certain variables or parameters. To
make the calculations more applicable, different smooth-
ing approaches for rates can be used. An often described
and simple method is the moving average [9, 26]. Here, the
rates from several sampling points are smoothed by taking
the average value from a sampling window. In addition,
more advanced moving average filters such as low-pass and
Savitzky—Golay were already retrospectively used for rate
modeling of bioprocesses [14, 17]. Such advanced filters
require settings and appropriate knowledge for the ideal
window size and smoothness, which are dependent on the
process they are applied on. Using these methods, the true
covariance matrix is often underestimated and the lack of
automatic constraints for state variables may lead to subop-
timal performances [23].

Accurate estimation of a rate

Key figures existing in every cultivation process are the
growth rate u, which is defined as the time derivative of
the logarithm of the change in population size and specific
substrate uptake rates, which are feed dependent. Although
stepwise integral estimation gives a simple estimation of the
growth rates, this calculation possesses several drawbacks.
One discrete estimation from one sampling time point to the
next one is suboptimal for non-linear trends. Due to inac-
curate biomass measurements, which is, in particular, true
for cell culture cultivations, cell growth rates vary strongly
between the samplings, indicating a false process status. On
the other hand, variations in the amount of fed substrate
can have substantial impacts on the specific uptake rate
estimation due to error propagation. A switch in the cell’s
behavior is more likely to happen continuously and not spon-
taneously. It can be expected that calculations and model
building attempts with these obtained biased values can lead
to unreliable results containing much noise. To yield better
descriptions of cultivation processes continuous rates should
be preferred over sudden changes to yield.

Since the “true” rate is not accessible in a real fer-
mentation process, because of the existence of analytical
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measurement errors [20] and biological differences from
cultivation to cultivation, we present a simulated case
study, at which linear and inhibited cell growth were simu-
lated in-silico. Noise was added to the dataset to mimic a
range of typical analytical measurement errors. 100 single
fed-batch processes were simulated to obtain a statisti-
cal meaningful dataset. We compared the performance of
the stepwise integral estimation including post-smoothing
with a simple moving average with the cubic smoothing
spline function. Hereby, different sampling intervals and
analytical measurement errors have been simulated and
both approaches were elucidated with respect to their pre-
cision and accuracy to obtain the real rates. Additionally,
we also highlight an optimal solution to describe the sub-
strate uptake rates, since for estimating substrate uptake
rates, the feeding rate and feeding substrate concentration
need to be taken into account. Any analytical error in this
part can have a huge impact on the level of noise in the
data.

The unique combination of different rate calculations
applied on data with varying sampling frequencies and
analytical deviations is very valuable for process under-
standing and modeling.

Materials and methods

The detailed cultivation settings for the different simulated
in-silico fed-batch fermentations (table 1) and all the nec-
essary equations (Eqgs. 1-4) are given in the Bioprocess
Simulation section of the Online Resource 1.

Noise generation

To account for process and analytic related variance, ran-
domly generated multivariate normal distributed numbers
were added, accounting for different precision levels in
each process variable. Such noise was added to volume
(1%), substrate (1%), and biomass, for every sampling
point. For the biomass, five different levels of coefficient
of variation (CV) were utilized (2.5, 5, 7.5, 10 and 12.5%).
The CV (Eq. 1) is the standardized standard deviation,
independent of the extent of the value and, therefore, a
good estimation for accuracy:

(¢
CV = —x100.
3 (1)

The CV describes the magnitude of variation for 68.2%
of the data with the standard deviation ¢ and the average
value X.
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Stepwise integral estimation

The most commonly used method, the stepwise integral
estimation, of calculating specific growth rates using
the measured cell dry mass is described in the following
equation:

In (22
X(1—1) ' )
dt

As in Takuma et al. [22], u is estimated for each time
interval between two measurements by dividing the cur-
rent total biomass X(¢) with the value of the previous
measurement X(z — 1). This equation assumes that u is
constant for the described time interval.

Moving average

A moving average filter was applied to smooth the step-
wise integral estimation by calculating the mean of the
observations using a fixed window size as stated in the
following equation:

Hiy + oo+ Hipno)

Hva = 1 > 3

with py,, as the smoothed value, u the growth rate, and the
chosen window size n.

Cubic smoothing spline

For the specific growth rate estimation via cubic smoothing
spline, the MATLAB function csaps(x,y,p) was applied with
x the total time of the process, the total cell mass y, and the
chosen value for the fitting parameter p. This function is an
implementation of the Fortran function SMOOTH [18]. The
fitting parameter p determines the relative weight to either
smooth or perfectly match the data. Here, the least-squares
solution (p=0) is a straight line fit, while p =1 is the natural
cubic spline interpolation matching each data point. To find
the optimal fit, the p value was screened with a resolution
of 0.1 and applied to the data. By choosing an appropriate
value for p, the current growth rate can be determined by
computing the functions respective time derivative (Eq. 4):

= uxV, 4

with x representing the biomass concentration and V the
volume. The MATLAB script to apply the described cubic
smoothing spline function to real data can be found in the
Online Resource 2.

Specific substrate uptake rate

For the calculation of the specific substrate uptake rate in g/g/h
(g9), different approaches were considered and compared with
regard to the respective accuracy. For the following equations,
uf represents the feed flowrate, Sf the substrate feed concen-
tration, S the substrate concentration, V the volume, and x the
biomass concentration. The change in substrate over time is
determined by the amount of consumed and added substrate
in the reactor (Eq. 5), accordingly:

d@sv)

7 qSxV + ufSf. 5)

Option 1

For the first approach, the total substrate consumption (i.e.,
accumulation minus input) was calculated and set into a rela-
tionship to the ¢S (Eq. 6). Accordingly, rearranging and inte-
grating Eq. (5) resulted in:

d(SV = SgVo — [ ufSfdn) 1
dt xV

(6)

A cubic smoothing spline fit was performed on the total
consumption (SV — SV, — / ufSf dt) and on the biomass
term (xV).

Option 2

For the second approach, the total amount of substrate in
the supernatant was taken into consideration for the spline
function and set into relation with the ¢S (Eq. 7). The cubic
smoothing spline fit was performed on the substrate term (SV)
and on the biomass term (xV'):

< d(sv)

1 —
” —ufo))W/—qS. 7

Option 3

The last approach is similar to the second one, but only takes
the substrate concentration in the supernatant into account.
Accordingly, it follows from Eq. (5):

dsv) _ ds | dv

S— =gSxV ,
dr dr * a P +ufs
av (3)
ith— =
wi ” uf,
V% — ufSf + ufS = qSxV,
of ©)
with D = —,
Vv
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(d—S —D(Sf - S))% = gS.

ar (10)

For this, an additional variable must be introduced, the dilu-
tion rate D, which is defined as the ratio of ufto V (Eq. 10).
The cubic smoothing spline fit was performed on the substrate
concentration term (S) and on the biomass term (xV).

RMSE and MAPE calculation

The root-mean-square error (RMSE) was calculated according
to Eq. (11) and the mean absolute percentage error (MAPE)
according to Eq. (12), where y describes the actual value, y the
desired target value and n the number of samples:

G0 - y(1)?

n

RMSE = (11)

s
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MAPE = % 100.
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Fig.1 Simulated a Monod and b non-competitive model process
parameters and biomass concentration variation due to random sam-
pling error at 12.5%, 7.5% and 2.5% CV for the Monod model (c)
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Results
Bioprocess simulation

The two different bioprocess setups are displayed in Fig. 1.
Simulation 1 describes a bioprocess were the cells are not
induced or do not exhibit any growth inhibition (Fig. 1a).
The second simulation describes a typical biomass trend of
an induced microbial process (Fig. 1b). Due to this setup,
we obtained completely different trends for the biomass as
well as for the substrate concentrations. This allows to test if
the distinct curvature of those trends leads to any unwanted
effects when the different methods calculating the growth
rate are applied.

When a process is performed with exactly the same pro-
cess parameters for an infinite number of runs and with

the exact same time interval at which samples are drawn,
still random errors are likely to occur. Due to the analytical
method precision, which depends on the utilized device dif-
ferent amounts of CV can be expected. The CV of biomass
determination, for instance, is obviously depending on the
used method. Gravimetric dried biomass determination for
E. coli is expected to be quite accurate, whereas the meas-
urement of the viable cell count via a microscope using a
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with a sampling interval of 0.5 h and the non-competitive model (d)
with a sampling interval of 1 h are presented. For ¢, d the number of
simulated fed-batch processes n=100
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hemocytometer can be rather imprecise [1, 2]. The generated
variations between 2.5 and 12.5% already represent very
precise cell measurements. For instance, at 7.5% CV, the
biomass at 20 g/L varies with 1.5 g/L, which is an abso-
lutely realistic value (see Fig. lc, d).

Rate estimations via stepwise integral estimation
and elucidation of sampling interval impact

In the first step, the growth rates for the 100 simulated fed-
batch experiments were calculated and the accuracy and
precision of the growth rate estimations were determined.
For each rate y(i) at time point #(i), the average and the
standard deviation were calculated (n=100). On average,
the stepwise integral estimation is able to determine the rate
quite precisely, independently if the growth rate is constant
(Fig. 2a) or not (Fig. 2b). However, it is attended by low
accuracy and further depends on the sampling interval and
biomass accuracy. At an interval of 0.5 h, for instance, the
minimal CV is already around 50% (Fig. 2c, d). Addition-
ally, at a low biomass determination accuracy, the CV even
increases fivefold. If the growth rate is following a dynamic
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Fig.2 a, b The estimated growth rates at different sampling inter-
vals and their respective standard deviations (depicted by the area)
at a biomass determination precision of 2.5% coefficient of variation
(CV). ¢, d The resulting CV of the growth rate u as a function of the

trend, the maximum CV at the highest sampling frequency
is almost 400%. For both bioprocesses, the CV for almost
half of the dataset was higher than 50%.

This behavior of the stepwise integration has huge impli-
cations on the evaluation of the current growth rates. For
instance, if the growth rate would be rapidly changed back
and forth due to a modification in the experimental condi-
tion, the stepwise integration approach would not be able
to recognize this and the information would remain hidden
because of the weak performance.

Rate estimation via cubic smoothing spline

The cubic smoothing spline function was applied to the
whole data for each run. The performance of the smooth-
ing spline curve is displayed in Fig. 3. Additionally for
the smoothing spline, also the perfect value for a general
purpose of p was screened. A fitting parameter p of 1 led
to a very low error but also to a generalization of the data
and a p of 0 to an increasingly high error due to the simple
straight line fit (Fig. 3a). Therefore, both were not displayed
in Fig. 3b. To obtain the optimal p, the RMSE (Eq. 11) of
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CV of biomass determination). b RMSE as a function of the sampling
interval, the CV of biomass determination and the fitting parameter
p of the spline function. ¢ RMSE at a p of 0.4 at different sampling
intervals. The coefficient of variation (CV) of the growth rate for the

the rates for 100 simulated fed-batch experiments at different
sampling frequencies and CV for biomass determination was
calculated (Fig. 3b) and described as a function of p, added
noise, and sampling frequencies. The RMSEs of all the
sampling intervals resulted in a similar shape. The surface
exhibited a minimum at a p around 0.4 for all noise and sam-
pling frequency combinations except for noise levels > 10%
and the lowest sampling frequency of 4 h where a slightly
lower p of 0.2 would be more preferable (see also Fig. 3c).
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Consequently, a fitting parameter of 0.4 was chosen for all
further processes. At this magnitude, also the overall error
at high sampling intervals and large measurement errors is
reasonable low. Once the fit is applied sufficiently, the time
derivative of this function represents the current growth rate.
A very precise and accurate fit can be generated, which is
sampling interval independent using the applied smoothing
spline function. Even if the rate estimations became slightly
inaccurate at the beginning and at the end of the processes,
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still the precision for the rate estimations via spline is high.
No differences between the estimation of a constant and a
decreasing growth rate were evident. Also, if large noise was
present, the spline was still able to estimate the rates correct
and precise (Fig. 3d, e). With a biomass measurement error
of 12.5%, the calculated CV ranged around 50% (n=100).

Methodical comparison: stepwise integral
estimation and cubic smoothing spline

The combination of stepwise integration and a moving aver-
age is a widely used approach for gathering smoothed rates.
In the following, we elucidate the differences of using this
combined method with the cubic smoothing spline.

The rate estimations described via the cubic smoothing
spline outperformed the stepwise integral estimation. While
the spline is considering the whole data, the stepwise inte-
gral estimation only takes two consecutive time points into
account. Hence, smoothing splines can better deal with the
error in the data compared to stepwise integral estimations.
Regarding stepwise integral estimation, the error in the data
is further propagated into the rate calculation. The spline
fit already smooths the data before it gets even further pro-
cessed. Considering this fact, it is obvious that spline func-
tions are more accurate and precise.

A very common approach to further process the rates
derived from stepwise integral estimations is to apply a mov-
ing average filter to smooth the data. For this study, we have
chosen an averaging window size of 3 and 4. As expected
the larger is the window size, the smaller the variations.
Even with a window size of 3, the RMSE was reduced to
an acceptable level. At a window size of 4, the error in the
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Fig.4 Comparing the RMSE values of the stepwise integral esti-
mations (a) and stepwise integral estimations using a moving aver-
age (n=4) as a function of the sampling interval and CV of biomass
determination. b The timely deviation (%) from the time point when

rate estimations in some cases was even better than the ones
calculated with the cubic smoothing spline (Fig. 4).
However, due to the moving average, the rate change will
seem to occur at different time points than it is the case. This
is, in particular, a problem for non-constant rates (Fig. 4b).
This effect will get even stronger at lower sampling fre-
quencies. Further, averaging rates over several time points
reduces the ability to describe the dynamics in the system,
whereas exactly this should be described by the rates. The
more likely process changes occur and the larger the averag-
ing window is, the more likely they are overseen. Hence, the
increased precision is traded for a reduced rates description.
The user also has to face the so-called endpoint problem.
Due to the application of the moving average, the end of the
process is not determined. Depending on the window size,
the timeline of the rates will be inevitable shorter. Conse-
quently, the utilization of moving average will reduce varia-
tion in the prediction, but will also lead to a reduced descrip-
tiveness of the process and to misleading assumptions.

Specific substrate uptake rate estimations
via the cubic smoothing spline

Other important process characteristics are substrate uptake
rates. In this specific case, the amount of fed substrate must
be incorporated into the calculation and with it any possible
variations and errors, which might come along. Since we
already verified the superiority of a cubic smoothing spline
we only focused on the performance of this approach. A sim-
ulation of 100 fed-batch processes using the non-competitive
model was performed in which a feed variation of 1% occurs.
The sampling interval was chosen to be 1 h and the worst
case of 12.5% CV for the biomass determination was used
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and the fitting parameter p was set to 0.4. There are three
possible options for the estimation of a feed-dependent rate.
Either the total amount of consumed substrate (Option 1),
the total amount of substrate in the supernatant (Option 2) or
the substrate concentration in the supernatant (Option 3) can
be taken into consideration for the cubic smoothing spline
fitting (Fig. Sa—c).

All three options can in average accurately describe
the specific substrate uptake rate (Fig. 5d). However, the
incorporation of the feed into the calculation beforehand
increased the precision to a great extent (Option 1) and
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Fig.5 Specific substrate uptake rate estimation via option 1 (a) 2 (b)

and 3 (c) over the time course of a fed-batch (n=100) for a sampling

interval of 1 h and precision of 12.5% CV for the biomass determina-
tion are presented. The averaged values and their respective standard
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also the feeding noise can be almost completely erased.
Interestingly, between option 2 and 3, respectively, using
the total amount of substrate or the substrate concentra-
tion, no significant difference was observed (see Fig. 5e).
Only at the end of the fed-batch process, option 2 under-
estimates the specific substrate uptake rate. However,
already 1% variation in the feeding system can have a
substantial impact. As a consequence of using the wrong
approach, the error will increase almost fourfold (Fig. 5f)
from around 5% up to 20% MAPE (Eq. 12). If the feed is
not incorporated into the calculation beforehand, such as it
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deviations of the three different options over the time course of the
process (d), the resulting RMSE values for each option and sampling
point (e), and MAPE for all three options (f) are displayed. The num-
ber of simulated processes n=100
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is the case in Option 2 and 3, the feeding error propagates
further into the rate estimation.

Discussion
Stepwise integral estimation issues

The key to process development and process modeling is to
estimate rates accurately and precisely. In average (n=100),
the stepwise integral approach calculated an accurate rate
value. This was expected considering that a large number
of repetitive experiments should always meet in average the
desired target value. But, we demonstrated that the step-
wise integral estimation will end up in large variations. It
is not surprising that the inaccuracy rises with an increased
sampling frequency [24], but such an increasing variation at
higher sampling frequencies was on first sight rather unex-
pected. Due to the magnitude of the sampling errors, the
slope of the linear function will either be more positive or
negative, in comparison to the real value. Every new sam-
pling point will add its failure to it and, consequently, the
deviation will increase over the time course of the cultiva-
tion. Therefore, with an increased sampling frequency, the
rate estimation error increases although the measurement
error remains constant. Since this behavior is counterintui-
tive, it is most likely overseen. This is a major disadvantage
since for accurate process characterization and to gather
process know-how a large dataset, thus a high sampling fre-
quency, is a necessity. The application of the moving average
would be a simple tool to reduce such variances but the user
will eventually end up in less accurate values. Therefore,
rates calculated by stepwise integral estimation should be
handled carefully for modeling purposes.

Application of cubic spline and specific substrate
rate estimation

In this study, we focused on the cubic smoothing spline func-
tion as an alternative to rate estimations via stepwise inte-
gral estimation. With a reduced precision of the analytical
determination, also the variation in the estimation increased
but not to the same extent as when the stepwise integral
estimation was applied. In the best case, at a high sampling
frequency and biomass determination inaccuracy, the CV
was around a factor of 4 lower. Moreover, the cubic smooth-
ing spline was not affected by the sampling frequency. In real
bioprocesses, a good trade-off between sampling frequency,
process dynamics and the analytical error should be consid-
ered. For high analytical errors and slow process dynamic
changes, a high sampling interval does not increase precision
and accuracy.

Additionally, we elucidated three different approaches for
estimating substrate uptake rates via the established spline
fit. If the substrate feed is not incorporated beforehand a
cubic spline is performed, feed variations can have a sub-
stantial impact on the propagated error. Hence, it is impor-
tant to first calculate the total amount of consumed substrate
before the rates are estimated.

The only “drawback” using the cubic smoothing spline
function is that one degree of freedom is present, the fit-
ting parameter p. Therefore, before processing the optimal p
must be reconsidered with respect to the given magnitude of
the x ordinate. Another powerful alternative to spline func-
tions can be found in Gaussian distributions. It was shown
that for processes with high sampling numbers (100-1000),
the Gaussian distribution outperforms the spline function
while for samplings below 100, it is vice-versa [21]. Typi-
cally, mammalian cell culture processes lead to only 10-20
observations. Likewise, also microbial fermentations do not
comprise such a high sampling frequency, also resulting in
only 15-25 observations per process. These considerations
and the remarkably easy use of this method due to no data
pre- or post-processing are clearly stating the advantage of
the smoothing spline compared with other methods.

Conclusion

In this study, the specific growth rate and the specific sub-
strate uptake rate were chosen as representative examples.
It was shown that cubic spline estimations are a simple but
powerful tool to determine rates, compared to the most com-
monly used standard procedure the stepwise integral estima-
tion. The presented method:

e s easy to apply and to implement for off-line analytical
purposes,

e is to a major extent sample interval independent,

e can cope with large analytical variances,

e allows the user to assess a rate value at every time point.

In addition, we showed that a small error in the feeding
system can lead to huge impacts in the estimation of specific
substrate uptake rates. Hereby, it is important to take the
feeding into account before the actual spline fit takes part.

For this level of complexity, the spline is sufficiently
enough and more complex algorithms such as the Gaussian
distribution or functions with more degrees of freedom (e.g.,
Kalman filters) are not necessary. It is easy to implement
into existing codes and can add a reasonable value to process
development and process comparability.
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