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INTRODUCTION

Quantification of the muscle and fat mass of the body, 
which is referred to as body morphometry, is an essential 
part of health evaluation. Increasing rates of occurrence 
of obesity have been observed in the past few decades, 
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and extensive research has been conducted to explore the 
relationship between body fat and various diseases (1, 2). 
Recently, sarcopenia (the loss of skeletal muscle mass) 
has emerged as a biomarker for assessing the prognosis in 
various cancer patients (3-5), morbidity/mortality rate after 
major surgery (6-8), and general health status (9). 
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CT is a useful tool for evaluating body muscle and fat, as 
areas of muscle and fat tissue can be accurately visualized 
on the basis of CT attenuation values. Recent evidence 
suggests that abdominal CT-based measurements of muscle 
mass correlate well with the actual muscle mass (10, 11), 
and abdominal CT has also been proven as an accurate 
method for quantitative assessment of abdominal visceral 
fat (12).

Semi-automated segmentation methods requiring manual 
error correction or complex hand-crafted, feature-selection 
processes have been used for the segmentation of muscle 
and fat on cross-sectional images (10, 13-16). However, 
these approaches cannot usually be applied to large datasets 
because of the human resource and time requirements. 
These limitations might be overcome by a fully automated 
segmentation method using deep learning. With its power 
to use neural networks and convolutional layers to learn 
the hierarchy of features in a large amount of given data 
(17), deep learning systems can be trained to analyze 
body morphometry. A deep learning system that could 
automatically and accurately segment muscle and fat on 
CT images would be useful for clinical practice and various 
research purposes requiring body morphometry analysis.

There have been several studies reporting the accuracy 
of automatic quantification of abdominal muscle area 
using deep learning (18-22). The algorithms used were 
different across studies, such as U-net neural network 
model, multi-atlas segmentation model, fully convolutional 
network (FCN), and augmented active shape model. In this 
study, we aimed to develop a deep learning system using 
the FCN model combined with imaging pre-processing 
for automated segmentation of muscle on abdominal CT 
images and to evaluate its performance on internal and 
external validation sets.

MATERIALS AND METHODS

Study Subjects 
This study was approved by the Institutional Review 

Board (IRB) of the three participating institutions, and 
the requirement for informed consent was waived for this 
retrospective analysis. This study included CT examinations 
from subjects with gastric cancer, pancreatic cancer, and 
sepsis and healthy individuals who were referred to the 
imaging core lab of our institution by various physicians at 
the three participating institutions for body morphometric 
analysis. The subjects were consecutively recruited for 

separate clinical studies of the referring physicians (not yet 
published). Under the agreement of referring physicians and 
IRB approval, we included the abdominal CT scans referred 
to our imaging core lab in 2017 and 2018 for abdominal 
muscle quantification. 

The deep learning system was developed using a training 
dataset of 883 CT scans from 467 subjects referred from our 
hospital in 2017. The trained system was then validated 
on two independent datasets of 479 total subjects: a 
temporally distinct internal validation dataset of 426 
CT scans from 308 subjects referred from our hospital in 
2018 and an external validation dataset of 171 CT scans 
from 171 subjects referred from two outside hospitals in 
2018 (Fig. 1). The clinical characteristics of the subjects 
in the training and validation datasets are summarized in 
Table 1. In the datasets, the gastric and pancreatic cancer 
groups included patients who were surgically treated with 
curative intent, ranging from stage I to III according to 
the AJCC 8th edition. The sepsis group included patients 
who were admitted to the emergency department for septic 
shock with refractory hypotension or hypoperfusion. The 
no disease group included subjects undergoing liver donor 
work-up (training and internal validation sets) or routine 
check-up (external validation set). A subset of patients had 
two or more CT scans for evaluation of chronological change 
of body morphometry (i.e., before and after gastrectomy or 
treatment for sepsis). In our study, we used the CT scan as 
a basic unit for training and validation.

CT Imaging
CT scanners from various manufacturers (Sensation 

16, Somatom Definition, Somatom Definition flash, and 
Somatom Definition AS + scanners, Siemens Healthineers, 
Erlangen, Germany; LightSpeed 16, LightSpeed plus, and 
LightSpeed VCT scanners, GE Healthcare, Milwaukee, WI, 
USA; Ingenuity and iCT 256 scanners, Philips Healthcare, 
Amsterdam, Netherlands; and Aquilion scanner, Toshiba, 
Tokyo, Japan) were used. In training and validation 
datasets as a whole, Siemens scanners were most commonly 
used (n = 974), followed by GE (n = 361), Philips (n = 111), 
and others (n = 34), as detailed in Supplementary Table 1. 
The scan parameters varied according to the institutional 
policy at each participating hospital; tube voltage was 80, 
100, 120, or 140 kVp and tube current was 170–250 mAs. 
No low-dose CT protocol was included in the study datasets. 
The images were reconstructed in the axial plane and ranged 
from 2.5 to 5 mm in thickness at 2.5 to 5 mm intervals. 
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Images were reconstructed using filtered back projection 
(B30f, B30s, B41f, B41s) or iterative reconstruction (I30s, 
I30f). Pixel size ranged from 0.57 to 0.77 mm. 

The training and validation datasets contained both 
contrast-enhanced CT scans (977 scans) and non-enhanced CT 
scans (503 scans). The proportions of non-enhanced CT scans 
were 20.7% (183 scans), 56.5% (241 scans), and 46.2% 
(79 scans) for the training, internal validation, and external 
validation datasets, respectively. For the contrast-enhanced 
CT scans, contrast medium (100–150 mL of 300–370 mgI/mL 
non-ionic iodine contrast) was intravenously administered at 
a rate of 2–3 mL/sec and portal venous phase images were 

obtained by using a fixed 75-second delay.

Generation of Ground Truth Labels
A single axial image from the level of the inferior endplate 

of the 3rd lumbar vertebra was extracted from each CT 
scan and used for the analysis. Ground truth segmentation 
maps were created using semi-automated segmentation 
software (AsanJ-MorphometryTM, Asan Image Metrics, Seoul, 
Korea, http://datasharing.aim-aicro.com/morphometry). 
An expert image analyst (with 8 years’ experience) created 
segmentation maps of abdominal wall muscle, visceral 
fat, and subcutaneous fat, which served as ground truth 

Table 1. Subject Characteristics of Training and Validation Datasets
Characteristics Training Dataset Internal Validation Dataset External Validation Dataset

Number of subjects* 467 (883 CTs) 308 (426 CTs) 171 (171 CTs)
Age (years)† 56.1 ± 13.9 (18–86) 56.6 ± 14.2 (20–86) 61.1 ± 11.1 (18–85)
Female (%, female:male) 36.6 (171:296) 44.1 (136:172) 39.8 (68:103)
Height (m)† 1.7 ± 0.1 (1.4–1.9) 1.6 ± 0.1 (1.4–1.8) 1.6 ± 0.1 (1.4–1.8)
Weight (kg)† 62.1 ± 11.0 (36.0–97.2) 63.6 ± 12.2 (34.0–115.7) 65.2 ± 10.2 (36.8–95.4)
BMI (kg/m2)† 23.2 ± 3.3 (13.9–37.7) 23.4 ± 3.5 (15.7–45.2) 24.6 ± 3.1 (18.0–36.5)
Underlying disease (n)*

Gastric cancer 221 (497 CTs) 95 (95 CTs) 98 (98 CTs)
Sepsis 124 (264 CTs) 116 (234 CTs) 0
Pancreatic cancer 78 (78 CTs) 0 0
No disease 44 (44 CTs) 97 (97 CTs) 73 (73 CTs)

*Data are number of subjects, with number of CT scans in parenthesis, †Data are mean ± standard deviation, with range in parenthesis. 
BMI = body mass index

Subjects who were referred to imaging core lab of Asan Medical Center
for body morphometry analysis using abdomen CT in 2017 and 2018

(946 subjects with 1480 CTs)

Subjects who underwent abdomen CT
scan at Asan Medical Center and 

referred in 2017
(467 subjects with 883 CTs)

Training dataset

Gastric cancer group (n = 221) Gastric cancer group (n = 95) Gastric cancer group (n = 98)

Healthy group (n = 73)Sepsis group (n = 116)

Healthy group (n = 97)

Pancreas cancer group (n = 78)

Sepsis group (n = 124)

Healthy group (n = 44)

Internal validation dataset External validation dataset

Subjects who underwent abdomen CT
scan at Asan Medical Center and 

referred in 2018
(308 subjects with 426 CTs)

Subjects who underwent abdomen CT
scan at two other institutions and 

referred in 2018
(171 subjects with 171 CTs)

Fig. 1. Overview of patient recruitment process. 
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labels. The abdominal muscles included psoas, paraspinal, 
transversus abdominis, rectus abdominis, quadratus 
lumborum, and internal and external obliques and were 
demarcated using predetermined thresholds (-29 to +150 
Hounsfield unit [HU]) (23). The visceral and superficial fat 
was also demarcated using fat tissue thresholds (-190 to 
-30 HU) (23). The total number of pixels and cross-sectional 
area (CSA; cm2) of the segmented regions were obtained. 
All segmentation maps were reviewed and corrected as 
necessary by a board-certified abdominal radiologist (with 
5 years of clinical experience).

Development of the FCN-Based Segmentation System
The FCN-based segmentation system was developed 

using supervised learning of the ground truth labels 
(24). By using data augmentation, 11167 training data 
images were generated from the 883 CT scans. The data 
augmentation was performed using random combinations of 
affine transformations, Gaussian filtering, and anisotropic 
diffusion filtering (25-27). 

To generate the input data for training our FCN-based 
segmentation system, the HU information required 
conversion to grayscale information. However, converting 
each CT image to grayscale with the commonly used HU 
range for the target tissue might have yielded inaccurate 
segmentation results, as the HU values vary according to 
the scanner type and scanning protocol (28). Several pre-
processing steps were used to overcome this limitation: 
Otsu thresholding, seeded region growing, morphological 

filtering, and histogram equalization (29, 30). First, 
using Otsu thresholding, a region of a patient’s image was 
extracted from the background. Then, hole filling and noise 
removal were performed on the region by seeded region 
growing and morphological filtering. Finally, the histogram 
distribution of the region was normalized to generate 
consistent grayscale information, irrespective of the scanner 
type and protocol.

In deep learning-based imaging processes, the image 
resolution is lowered by the application of multiple 
convolutional layers and pooling processes (17); this 
is generally not problematic for image detection or 
classification tasks. However, for segmentation of a certain 
region in an image, adequate image resolution is key to 
obtaining accurate results. By adding upsampling layers, 
the FCN enables pixel-wise segmentation of each body 
region by producing output layers with a resolution restored 
to that of the original input image (24). Furthermore, more 
refined results can be obtained by fusing information from 
layers with different strides; to this end, the fusion process 
was extended by fusing the final layer and pooling layers 4 
to 1 (Fig. 2). During training, the segmentation results were 
assessed three times, both qualitatively and quantitatively, 
by two board-certified abdominal radiologists, and 
recognized errors were back-propagated to optimize the 
architecture and parameters of the neural network. All 
experiments were run on Intel® CoreTM i7–7700K GPU (8M 
Cache, 4.20 GHz, Santa Clara, CA, USA).

Conv 1

2 x upsampled
prediction

High resolution Low resolution

FCN
2 s ∑ ∑ ∑ ∑

FCN
4 s

FCN
8 s

FCN
16 s

FCN
32 s

4 x upsampled
prediction

8 x upsampled
prediction

16 x upsampled
prediction

32 x upsampled
prediction

Conv 2 Conv 3 Conv 4 Conv 5 Conv 6–8Pool 1 Pool 2 Pool 3 Pool 4 Pool 5

Fig. 2. Overview of FCN. In our FCN training process, several upsampling layers were added, which enabled convolutional network to produce 
output layers with image resolution restored to original dimensions. FCN-32 s up-samples stride 32 predictions back to pixels. FCN-16 s combines 
predictions from both final layer and pooling 4 layers, allowing net to predict finer details while retaining high-level semantic information. FCN-8 s, 
FCN-4 s, and FCN-2 s receive additional predictions from pooling 3, pooling 2, and pooling 1, respectively, and thereby provide further precision. 
Conv = convolutional layer, FCN = fully convolutional network
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Clinical Validation

Segmentation Performance of the Deep Learning System
The accuracy of the FCN-based segmentation was 

validated with separate internal and external validation 
datasets. After data of validation datasets were input 
into the system, it returned results in the form of the 
total number of pixels and CSA (cm2) of skeletal muscle, 
subcutaneous fat, and visceral fat. An overview of the 
segmentation process using training and validation datasets 
is depicted in Figure 3.

The performance of the FCN-based segmentation system 
was evaluated using the Dice similarity coefficient (DSC) 
and CSA error. The DSC is a spatial overlap index and 
reproducibility validation metric ranging from 0 (no spatial 
overlap) to 1 (complete overlap) (31). The DSC was used 
to compare the degree of overlap between the number 
of pixels of the ground truth data and the deep learning 
system-derived segmentation data, which was calculated 
according to the following equation:

                       2 x TP
DSC = ________________
           2 x TP + FP + FN

where true positive (TP) represents the number of pixels 
correctly detected (i.e., pixels included in both ground 
truth labels and FCN-based segmentation), false positive 
(FP) represents the number of pixels falsely detected (i.e., 
pixels included in the FCN-based segmentation but not in 
the ground truth labels), and false negative (FN) represents 
the number of pixels included in the ground truth labels 
but not in the FCN-based segmentation. Thus, a high DSC 
implies high segmentation performance.

CSA error represents a standardized measure of the 
percentage difference in the area between the ground truth 
labels and FCN-based segmentation; thus, a low CSA error 
implies high segmentation performance, and was calculated 
as follows:

CSA error (%) =

|Ground truthCSA - FCN-based segmentationCSA|_____________________________________ x 100
                       Ground truthCSA

Training images Test imagesGT labels

Generation of
GT lablels 
by expert

Clinical data
anonymization

Clinical data
anonymization

Data adaptive
pre-processing

Data adaptive
pre-processing Data

pre-processing

Semantic segmentation of
muscle and fat using FCN

Data
augmentation

ADF Original Gaussian

Translation Scaling Rotation Shearing

Training

Segmentation results
using FCN

Fig. 3. Overview of FCN-based segmentation system. ADF = anisotropic diffusion filter, GT = ground truth
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In addition, to evaluate the spatial accuracy of the 
FCN segmentation results (i.e., whether each region was 
segmented in the correct location), two board-certified 
abdominal radiologists performed visual assessment of all 
FCN-based segmentation maps from the validation datasets. 
Images were classified as spatially accurate or requiring 
manual adjustment, and the region requiring adjustment 
was identified. 

Factors Influencing the Performance of the Deep 
Learning System

To explore any factors influencing the segmentation 
performance of the FCN-based segmentation system, 
subgroup analyses were performed according to intravenous 
contrast use, size of the segmented area, and disease type 
of the patients in the validation datasets. To evaluate the 
influence of the intravenous contrast, the segmentation 
performance was compared between CT scans acquired 
with (46.4%, 277/597) and without (53.6%, 320/597) 
intravenous contrast media in all validation datasets. 
To evaluate the effect of the segmented area, a total of 
597 CT scans from all validation datasets were divided 
into subgroups according to the quartiles of muscle area, 
subcutaneous fat area, and visceral fat area. The relationship 
of body mass index and segmentation performance was 
also investigated. Lastly, the influence of disease type was 
evaluated only in the internal validation dataset, for which 
clinical information was available. A total of 426 CT scans 
were divided according to disease type into a gastric cancer 

group (n = 95), sepsis group (n = 234), or healthy group (n 
= 97), and the performance of the FCN-based segmentation 
system was compared across the subgroups.

Statistical Analysis
Agreement of the segmentation results between 

the ground truth labels and FCN-based segmentation 
was measured using Bland-Altman plots. The limits of 
agreement of the Bland-Altman plots were defined as the 
mean differences ± 95% confidence intervals. To explore 
any factors influencing the performance of the FCN-based 
segmentation system, pairwise comparisons between 
subgroups were performed using independent t tests or 
analysis of variance with post-hoc t tests using Bonferroni 
correction. The correlation between body mass index and 
performance parameters was analyzed by Pearson correlation 
tests. SPSS version 21 (IBM Corp., Armonk, NY, USA) and 
MedCalc 12.7.0 (MedCalc Software, Mariakerke, Belgium) 
were used for statistical analyses. A p value < 0.05 was 
considered to represent statistical significance. 

RESULTS

Performance of the FCN-Based Segmentation System
Our FCN-based segmentation system successfully generated 

segmentation results for all CT scans in the internal and 
external validation datasets. Segmentation process per 
image took 0.05 seconds on average. The results for all 
validation datasets (n = 597) are summarized in Table 2. The 

Table 2. Performance of FCN-Based Segmentation System on Validation Datasets

Parameter

All Validation Datasets

(n* = 597)

Internal Validation Dataset

(n* = 426)

External Validation Dataset

(n* = 171)

MA SFA VFA MA SFA VFA MA SFA VFA

CSA from ground 

  truth (cm2)†

109.44 ± 

31.86

134.27 ±

 69.75

107.61 ± 

56.26

107.78 ± 

33.49

126.41 ± 

67.10

104.77 ± 

57.94

113.58 ± 

27.02

153.86 ± 

72.52

114.68 ± 

51.33

CSA from 

  FCN-based 

  segmentation (cm2)†

110.11 ± 

31.93

132.61 ± 

68.33

106.55 ± 

55.82

107.74 ± 

33.21

126.63 ± 

66.41

104.21 ±

57.69

116.01 ± 

27.72

147.51 ± 

70.93

112.40 ± 

50.56

p value 0.715 0.677 0.744 0.987 0.962 0.886 0.411 0.413 0.679

DSC†
0.96 ± 0.02

(0.75–0.99)

0.97 ± 0.03

(0.34–0.99)

0.97 ± 0.01

(0.90–0.99)

0.96 ± 0.03

(0.75–0.99)

0.97 ± 0.04 

(0.34–0.99)

0.97 ± 0.01

(0.90–0.99)

0.97 ± 0.01

(0.93–0.97)

0.97 ± 0.01

(0.93–0.99)

0.97 ± 0.01

(0.92–0.99)

CSA error (%)†

2.26 ± 2.41

(< 0.01–

0.36)

4.02 ± 13.60

(0.03–

326.36)

1.93 ± 1.80

(0.01–

14.84)

2.08 ± 2.52

(< 0.01,–

20.36)

3.79 ± 16.02

(0.03–

326.36)

1.76 ± 1.83

(0.01–

14.84)

2.70 ± 2.04

(< 0.01–

10.51)

4.59 ± 2.54

(0.07–

11.89)

2.33 ± 1.61

(0.01–

8.60)

Data are presented as mean ± standard deviation, with range in parenthesis. *‘n’ indicates number of CT scans, †Data are mean ± standard 
deviation, with range in parenthesis. CSA = cross-sectional area, DSC = Dice similarity coefficient, FCN = fully convolutional network, MA = 
muscle area, SFA = subcutaneous fat area, VFA = visceral fat area
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mean segmentation areas of muscle, subcutaneous fat, and 
visceral fat did not differ significantly between ground truth 
results and FCN-based segmentation results, for either the 
internal validation cohort (107.78 vs. 107.74 cm2, 126.41 
vs. 126.63 cm2, and 104.77 vs. 104.21 cm2, respectively; p 
> 0.88) or the external validation cohort (113.58 vs. 116.01 
cm2, 153.86 vs. 147.51 cm2, and 114.68 vs. 112.40 cm2, 
respectively; p ≥ 0.411).

The mean DSC values for muscle, subcutaneous fat, and 
visceral fat were high for both the internal (0.96, 0.97, 
and 0.97, respectively) and external (0.97, 0.97, and 0.97, 
respectively) validation datasets. The mean CSA errors for 
muscle, subcutaneous fat, and visceral fat were low for 
both the internal (2.08%, 3.79%, and 1.76%, respectively) 
and external (2.70%, 4.59%, and 2.33%, respectively) 
validation datasets. One CT scan of a patient diagnosed 
with sepsis showed an exceptionally low DSC value (0.34) 
and high CSA error (326.36%) for subcutaneous fat; this 
case also showed the lowest CSA on ground truth and FCN-
based segmentation (0.48 and 1.59 cm2, respectively).

The Bland-Altman plots for all validation datasets 
(Fig. 4) indicated good agreement between ground truth 
measurements and those of the FCN-based segmentations 
for muscle, subcutaneous fat, and visceral fat, with mean 
differences (± limits of agreement) of 0.7 ± 6.6, 1.7 ± 9.3, 
and 1.1 ± 4.6 cm2, respectively. Bland-Altman plots of 
the internal and external validation datasets are shown in 
Supplementary Figure 1. 

Assessment of the visual quality of the FCN-based 
segmentation maps revealed that 574 out of 597 CT scans 
(96.1%) were successfully segmented without requiring 
adjustment. Among the 23 CT scans requiring manual 
adjustment, 20 belonged to the sepsis group of the internal 
validation dataset, while the other three belonged to the 
external validation dataset and had metallic orthopedic 
hardware. Subcutaneous edema frequently (n = 18, 78.3%) 
caused under-segmentation of subcutaneous fat and over-
segmentation of muscle. Metallic artifacts caused under-
segmentation of adjacent tissue (n = 3, 13.0%). There 
was also a case of over-segmentation of muscle due to an 
enterostomy stump (n = 1, 4.3%), and a case of under-
segmentation of muscle due to marked intramuscular fat 
infiltration (n = 1, 4.3%). The mean DSC values for muscle 
area, subcutaneous fat area, and visceral fat area of the 
23 CT scans requiring manual adjustment were 0.92, 0.91, 
and 0.97, respectively, and the CSA errors of muscle area, 
subcutaneous fat area, and visceral fat area were 3.89%, 

Fig. 4. Bland-Altman plots of muscle (A), subcutaneous fat (B), 
and visceral fat (C) for validation datasets. 
Mean differences are equal to or less than 1.7 cm2, with limits of 
agreement being equal to or less than 9.7 cm2, suggesting comparable 
segmentation performance between ground truth and FCN-based 
segmentation results. SD = standard deviation
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19.86%, and 2.71%, respectively (Supplementary Table 2). 
Representative examples of FCN-based segmentation are 
demonstrated in Figures 5 and 6. 

Factors Influencing the Performance of the Deep 
Learning System

An overview of the subgroup analyses of the factors 
influencing the performance of the FCN-based segmentation 
system is presented in Table 3. The segmentation results 
for each subgroup are shown in Supplementary Table 3. In 
terms of the influence of intravenous contrast injection, 
the DSC values and CSA errors did not differ significantly 
between the contrast-enhanced group (n = 277) and non-
enhanced group (n = 320) in any of the compared pairings 
(p ≥ 0.128), indicating that intravenous contrast media 
had little effect on the performance of the FCN-based 
segmentation system.

Regarding the influence of the size of the segmented 
area, the group in the highest quartile of segmentation area 

(n = 149) had significantly higher DSC values and lower 
CSA errors than did the lowest quartile group (p ≤ 0.022 
in all pairs of comparison) for segmentation of muscle, 
subcutaneous fat, and visceral fat. Among the 20 CT scans 
in the sepsis group requiring manual adjustment of the FCN-
based segmentation maps, 10 were in the lowest quartile 
group for subcutaneous fat. In particular, three CT scans 
from cachexic patients with a subcutaneous fat area less 
than 10 cm2 (therefore included in the lowest quartile 
group for subcutaneous fat) showed high CSA errors of 
20.18–326.36%. There were no significant correlations 
between body mass index and performance parameters 
(Supplementary Fig. 2).

As to the influence of the various diseases, of the three 
subgroups (gastric cancer group, sepsis group, and healthy 
group) in the internal validation dataset, the sepsis group 
showed the lowest DSC values and highest CSA errors in all 
areas of analysis. This group showed significantly smaller 
DSC values than did the other groups for muscle and 

Fig. 5. Example of appropriately evaluated FCN-based segmentation map. 
A. Fusion image of all segmented areas. B-D. Segmentation maps of subcutaneous fat (B, coded in red), skeletal muscle (C, coded in purple), 
and visceral fat (D, coded in green). Dice similarity coefficients are 0.98, 0.99, and 0.98 for subcutaneous fat, skeletal muscle, and visceral fat, 
respectively. 
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subcutaneous fat (p < 0.001), but not for visceral fat (p = 
0.644). The sepsis group also showed significantly higher 
CSA error for muscle and visceral fat than did the other 
groups (p < 0.001), but non-significantly higher CSA error for 
subcutaneous fat and visceral fat (p ≥ 0.318). Furthermore, 
the ground truth segmentation values of all areas were lowest 
in the sepsis group (Supplementary Table 3). 

DISCUSSION

Our FCN-based segmentation system allowed accurate 
segmentation of muscle, subcutaneous fat, and visceral fat 
on abdominal CT images, showing DSC values higher than 
0.96 and CSA errors lower than 5% for segmentations on the 
validation datasets. The differences between measurements 
by human experts and those by the FCN-based segmentation 
system were small (less than 10 cm2), indicating 
comparable measurement performance of the FCN-based 
segmentation system. Segmentation maps created by the 
system were regarded as visually appropriate for 96.1% of 
the validation datasets. Our FCN-based segmentation system 

showed robust performance across different CT scanners 
and image acquisition protocols, for data from both our 
institution and from two outside institutions. In addition, 
it was not significantly influenced by intravenous contrast 
media injection. However, the performance of the FCN-
based segmentation system could be influenced by various 
clinical conditions, including 1) conditions causing severe 
muscle/fat wasting (resulting in a low segmented area) 
such as cachexia and sarcopenia; 2) conditions causing fluid 
retention such as subcutaneous edema or ascites; and 3) 
conditions changing the normal anatomy such as abdominal 
surgery or spine surgery. 

Our subgroup analysis demonstrated that the lowest 
quartile group showed the lowest segmentation performance 
for muscle, subcutaneous fat, and visceral fat. In particular, 
the segmentation error markedly increased in subjects with 
extremely small target segmentation areas. Almost half 
of the subjects in validation datasets requiring manual 
adjustment of the FCN-based segmentation maps belonged 
to the lowest quartile group for subcutaneous fat, including 
extremely cachexic patients with a subcutaneous fat area 

Fig. 6. Example of segmentation error. 
A. Fusion image of all segmented areas. B. Segmentation map of subcutaneous fat (coded in red). There are areas with higher density compared 
with fat in subcutaneous area, which represent edema (dotted yellow line). Parts of subcutaneous fat abutting edema are not included in 
segmented subcutaneous fat (arrows). C. Segmentation map of skeletal muscle (coded in purple). Note subcutaneous edema segmented as muscle 
(arrowheads). D. Segmentation map of visceral fat. Some subcutaneous fat is erroneously segmented as visceral fat (arrows). Dice similarity 
coefficients are 0.78, 0.92, and 0.96 for subcutaneous fat, skeletal muscle, and visceral fat, respectively.
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less than 10 cm2 showing high CSA errors up to 326.36%. 
However, even human experts have difficulty in segmenting 
the target area accurately because the abdominal wall 
muscle and subcutaneous fat can be extremely thin and ill-
demarcated in cachexic patients.

When subcutaneous edema is present, the X-ray 
attenuation of the subcutaneous fat area is increased due 
to high interstitial fluid content within the fatty tissue; 
this may cause difficulty in demarcating the boundary 
between subcutaneous fat and abdominal muscles (32, 33). 
Among the cases requiring manual adjustment of the FCN-
based segmentation map, the majority (78.3%) showed 
diffuse subcutaneous edema. However, when subcutaneous 
fluid accumulation occurs in dependent regions such as 
the posterior back (i.e., dependent edema), even human 
experts may have difficulty in accurately segmenting the 
subcutaneous fat and muscle areas. 

The conditions of muscle/fat wasting and subcutaneous 
edema, which may considerably influence the segmentation 
performance of FCN, are both closely related to disease 
type. In the internal validation dataset composed of gastric 
cancer patients, sepsis patients, and healthy subjects, the 

segmentation performance was both quantitatively and 
qualitatively the poorest in the sepsis group. The sepsis 
group showed the smallest muscle, subcutaneous fat, 
and visceral fat segmentation areas and had the highest 
proportion of patients with subcutaneous edema requiring 
manual adjustment (8.5%, 20 out of 234 CT scans). Sepsis 
may frequently accompany muscle wasting, such as in 
sepsis-induced myopathy, fat wasting, and subcutaneous 
edema, which possibly hindered accurate discrimination 
between muscle and fat. 

Although FCN successfully generated results in all cases, 
some portions of the FCN-based segmentation were not 
qualitatively appropriate. Segmentation maps of 23 cases 
(3.9%) in the validation datasets showed errors in the 
segmentation of muscle or subcutaneous fat, mainly due to 
subcutaneous edema and presence of metallic artifacts from 
surgical devices. The majority of these errors occurred in 
the sepsis group (20 out of 234 CT scans); thus, our system 
should be further refined with regard to these difficult 
cases. We plan to train the deep learning system on larger 
datasets of more than 10000 patients from a broader 
range of clinical settings including sepsis, cancer patients 

Table 3. Subgroup Analyses to Evaluate Factors Influencing Performance of FCN-Based Segmentation System on Validation Cohorts

Influential 

Factors 
Subgroups

DSC CSA Error (%)

MA SFA VFA MA SFA VFA

Contrast 

  enhancement 

  (n* = 597)

Used 

  (n = 277)

0.96 ± 0.02

(0.84–0.99)

0.97 ± 0.02

(0.84–0.99)

0.97 ± 0.01

(0.92–0.99)

2.38 ± 1.96

(0.02–10.51)

3.35 ± 3.14

(0.05–23.30)

2.00 ± 1.92

(0.02–14.84)

Not used 

  (n = 320)

0.96 ± 0.00

(0.75–0.99)

0.97 ± 0.05

(0.34–0.99)

0.97 ± 0.03

(0.90–0.99)

2.15 ± 2.73

(< 0.01–20.36)

4.60 ± 18.34

(0.03–326.36)

1.86 ± 1.69

(0.01–12.74)

p value† 0.927 0.128 0.369 0.231 0.229 0.350

Segmented area

  size (n* = 597)

Highest quartile 

  (n = 149)

0.97 ± 0.02

(0.79–0.99)

0.98 ± 0.02

(0.87–0.99)

0.98 ± 0.00

(0.94–0.99)

1.80 ± 2.11

(0.03–20.36)

2.35 ± 1.67

(0.04–8.30)

1.61 ± 1.40 

(0.01–8.01)

Lowest quartile 

  (n = 149)

0.95 ± 0.03

(0.84–0.99)

0.95 ± 0.06

(0.34–0.99)

0.97 ± 0.01

(0.92–0.99)

2.79 ± 3.07

(0.05–18.78)

7.43 ± 26.68

(0.08–326.36)

2.70 ± 2.35

 (0.01–14.84)

p value† < 0.001 < 0.001 < 0.001 0.001 0.022 < 0.001

Disease type 

  (n* = 426)

Gastric cancer 

  (n = 95)

0.97 ± 0.02

(0.84–0.99)

0.98 ± 0.01

(0.94–0.99)

0.97 ± 0.01

(0.92–0.99)

2.32 ± 1.93

(0.02–10.51)

3.18 ± 2.28

(0.05–10.54)

1.94 ± 1.75

(0.02–10.11)

Sepsis 

  (n = 234)

0.95 ± 0.03

(0.75–0.99)

0.96 ± 0.05

(0.34–0.99)

0.97 ± 0.01

(0.93–0.99)

2.74 ± 3.08

(0.05–20.36)

5.06 ± 21.48

(0.04–326.36)

2.01 ± 1.92

(0.01–14.84)

Healthy 

  (n = 97)

0.97 ± 0.01

(0.91–0.99)

0.98 ± 0.02

(0.89–0.99)

0.97 ± 0.01

(0.90–0.99)

1.52 ± 1.48

(< 0.01–10.41)

3.55 ± 2.83

(0.03–18.25)

1.80 ± 1.66

(0.01–12.75)

p value‡ < 0.001 < 0.001 0.644 < 0.001 0.318 0.521

Contrasted 

  pairings§

Cancer > sepsis 

(p < 0.001)

Healthy > sepsis 

(p < 0.001)

Cancer > sepsis 

(p < 0.001)

Healthy > sepsis 

(p < 0.001)

None

Sepsis > healthy 

(p < 0.001)

Cancer > healthy 

(p = 0.003)

None None

Data are presented as mean ± standard deviation, with range in parenthesis. *‘n’ indicates number of CT scans, †p values of independent t 
test, ‡p values of analysis of variance, §Pairings showing significant difference in Bonferroni corrected post-hoc t tests.
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undergoing chemotherapy, and liver cirrhosis patients 
awaiting transplantation. 

As to the other observed causes of segmentation error, 
it is likely that metallic artifacts might cause under-
segmentation by masking parts of muscle tissue (n = 
3), whereas an enterostomy stump might cause over-
segmentation by being incorrectly classified as muscle 
tissue (n = 1). In a case that required manual correction 
with marked intramuscular fat infiltration (n = 1), the intra-
muscular fat components were intermingled with muscle 
tissues and lowered the muscle density; thus, accurate 
discrimination between muscle and fat might have been 
limited. However, in all other cases with intramuscular fat 
infiltration, the segmentation was adequate and did not 
require manual correction. This issue is closely associated 
with the evaluation of muscle quality and myosteatosis, 
requiring further studies. In our current system, we could 
measure the muscle density in HUs from the segmented 
area; however, further studies are required with regard to 
muscle quality maps or myosteatosis indices. 

Recently, several researchers showed acceptable 
performance in the automated segmentation of abdominal 
muscle and/or fat (18-22, 34, 35). These include Lee et 
al. (18), who showed reasonable performance using FCN-
based automated segmentation of abdominal wall muscle 
and Weston et al. (21), with similarly good performance 
using U-Net based quantification of body composition. 
The performance of our FCN-based segmentation system 
for muscle (DSC: 0.96, CSA error: 2.26%) was a little 
higher than that of the Lee et al. (18) model (DSC: 0.93, 
CSA error: 3.68%). The larger sample size and more varied 
pathologies included in the training data may have 
improved the performance of our FCN-based segmentation 
system in comparison with theirs. Moreover, our FCN-based 
segmentation performance was equivalent or slightly higher 
than that of the Weston et al. (21) model, trained with 
2430 CT examinations, in which the DSC values for muscle 
and visceral fat in their test dataset were 0.96 and 0.94, 
respectively. Before training the FCN-based segmentation 
system, we performed data augmentation generating 11167 
training images, several data-adaptive preprocessing steps 
prior to assigning grayscale information to each pixel in 
consideration of the suboptimal consistency of HUs across 
different CT images, and we consider these preparation 
processes instrumental in achieving the high performance of 
our deep learning system.

There are some limitations to this study. First, this was 

a retrospective study, and the patient recruitment process 
was not consecutive; it depended on physicians referring 
their patients to the imaging core lab of our institution, 
and this may have resulted in selection bias. Second, 
although we included subjects with varied pathologies 
including cancer, sepsis, and healthy individuals, the study 
population may still not be representative of the general 
population. Furthermore, external validation was performed 
using data from a limited number of subjects from only 
two institutions; large-scale external validation might be 
necessary.

In conclusion, our FCN-based segmentation system 
exhibited high performance in the accurate segmentation of 
abdominal muscle and fat. Therefore, this fully automated 
segmentation system could be utilized in various clinical 
and research protocols for the quantitative analysis of body 
morphometry.
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The Data Supplement is available with this article at 
https://doi.org/10.3348/kjr.2019.0470.
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