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Key Points

• In persons of AA, a poly-
genic risk score in the
top 10% (compared with
25%-75%) is associated
with an 80% increased
multiple myeloma risk.

•Common genetic varia-
tion contributes to the risk
of multiple myeloma in
men and women of AA.

Persons of African ancestry (AA) have a twofold higher risk for multiple myeloma (MM)

compared with persons of European ancestry (EA). Genome-wide association studies

(GWASs) support a genetic contribution to MM etiology in individuals of EA. Little is known

about genetic risk factors for MM in individuals of AA. We performed a meta-analysis of 2

GWASs of MM in 1813 cases and 8871 controls and conducted an admixturemapping scan to

identify risk alleles. We fine-mapped the 23 known susceptibility loci to find markers that

could better capture MM risk in individuals of AA and constructed a polygenic risk score

(PRS) to assess the aggregated effect of known MM risk alleles. In GWAS meta-analysis, we

identified 2 suggestive novel loci located at 9p24.3 and 9p13.1 at P , 1 3 1026; however,

no genome-wide significant association was noted. In admixture mapping, we observed

a genome-wide significant inverse association between local AA at 2p24.1-23.1 and MM
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risk in AA individuals. Of the 23 known EA risk variants, 20 showed directional consistency,

and 9 replicated at P , .05 in AA individuals. In 8 regions, we identified markers that better

captureMM risk in persons with AA. AA individuals with a PRS in the top 10%had a 1.82-fold

(95% confidence interval, 1.56-2.11) increased MM risk compared with those with average

risk (25%-75%). The strongest functional association was between the risk allele for variant

rs56219066 at 5q15 and lower ELL2 expression (P 5 5.1 3 10212). Our study shows that

common genetic variation contributes to MM risk in individuals with AA.

Introduction

Multiple myeloma (MM) originates from a malignant clone of plasma
cells, the terminally differentiated B-lymphocytes that produce
antibody upon antigen recognition. It is the second most common
hematologic malignancy in the United States, with ;160000 new
cases in 2018,1 and remains largely incurable, with a 50% 5-year
survival rate. Older age, male sex, African ancestry (AA), family
history, and obesity, especially in young adulthood, are factors
consistently associated with MM risk.2-4 In the United States, the
incidence rate of MM is twice as high in men and women of AA
compared with those of European ancestry (EA), for unknown
reasons.2 Case reports of familial clustering5 and a two- to threefold
increased risk among first-degree relatives6,7 suggest a genetic
contribution to the etiology of MM. We previously showed that 5 of
8 risk loci identified in persons of EA also contribute to risk in
persons of AA.8-10 Fifteen new MM risk loci have been identified
in EA populations,11-13 but these have not been examined in
populations of AA. Moreover, no genome-wide significant associ-
ations have been identified that explain MM risk specifically for AA
individuals. Here, we added a second genome-wide association
study (GWAS) in a meta-analysis, for a total of 1813 cases and
8871 controls, to assess the association between common genetic
variation and MM risk in the largest study of cases and controls of
AA conducted to date.

Methods

All studies contributing DNA samples had approval from their
Institutional Review Boards according to the Declaration of Helsinki
Ethical Principles for Medical Research for Human Subjects
(1964). Signed informed consent was obtained from all participants
at the time of specimen collection.

Study participants, genotyping, and quality control

There were 2 sets of study participants. Set 1 was a GWAS case-
control study that was previously conducted in 1179 AA MM
patients identified from 11 National Cancer Institute (NCI)
comprehensive cancer centers and nonprofit hospitals and 4 NCI
Surveillance, Epidemiology, and End Results cancer registries
participating in the African American Multiple Myeloma Study in
2010 to 2015. In addition, DNA samples from the Multiethnic
Cohort Study (n5 43), the University of California at San Francisco
study (n 5 32), and the Multiple Myeloma Research Consortium
(n 5 84) were included (total N 5 1338 cases), as described
elsewhere.8 Controls were AA subjects unaffected by MM and with
existing GWAS data, including 2631 female controls from the
African Ancestry Breast Cancer Consortium14 and 4447 male
controls from the African Ancestry Prostate Cancer Consortium.15

Cases were genotyped using the Illumina HumanCore GWAS
array, whereas controls were genotyped using the Illumina 1M-Duo.
Quality control (QC) measures for cases and controls were conduc-
ted separately. Cases with call rate , 0.98 (n 5 11), unexpected
replicates (n 5 14), first- or second-degree relatives (n 5 2), and
those who were sex discordant based on X chromosome genotypes
(n 5 6) were excluded.8 Single nucleotide polymorphisms (SNPs)
with a call rate, 0.98 or replicate concordance, 1 based on 100
QC replicate samples were removed. QC procedures among
controls were reported previously.14,15 Only SNPs that passed QC
measures directly genotyped in both cases and controls were
included in the imputation (n 5 188376).

Set 2 consisted of DNA samples from 421 AAMM patients from the
Myeloma Center, University of Arkansas for Medical Sciences and
132 additional samples from continued enrollment in the African
American Multiple Myeloma Study in 2016 (primarily from the MD
Anderson Cancer Center) (total N 5 553 cases). Controls
were 2398 unaffected AA participants from the Multiethnic Cohort
Study with existing GWAS data. Both cases and controls in Set 2
were genotyped using the Illumina MEGA array (total genotyped
SNPs ; 1.7 million). Cases and controls were subjected to the
same QC procedures. One case and 1 control were removed
because of cross-set replication. Additional individuals were removed
based on call rate , 0.95 (n 5 3), sex mismatch (n 5 13),
ancestry outlier (estimated African [AFR] global ancestry , 0.1 by
STRUCTURE16; n 5 4), and 1 in a first-degree relative pair
(estimated sharing identity by descent $ 0.375 by PLINK; n 5 10),
leaving 529 cases and 2389 controls for imputation. Control
data were cleaned previously combined with the National Hu-
man Genome Research Institute Population Architecture Using
Genomics and Epidemiology Consortium (NHGRI PAGE) sam-
ples17; thus, we first excluded SNPs that were low quality in these
samples. Further SNP QC included removing monomorphic SNPs,
variants with a call rate, 0.98, replication concordance, 1 based
on 10 replicate pairs in cases, cross-platform replication concor-
dance , 100% based on 8 replicate pairs in cases and controls, and
SNPs with poor clustering by visual inspection. Additional removal
criteria included SNPs with minor allele frequency (MAF) that
deviated from the AFR individuals in the phase 3 1000 Genome
Project (1KGP) data and indels not identified within 1KGP. SNPs found
in both cases and controls were used for imputation (N 5 1046801).

Shared identity by descent for Set 1 and Set 2 was calculated using
PLINK to remove duplicate samples across sets. We excluded 21
cases and 571 controls from Set 1 that were included in Set 2,
leaving a final analysis sample size for Set 1 of 7766 (1284 cases

182 DU et al 14 JANUARY 2020 x VOLUME 4, NUMBER 1



and 6482 controls). Genotyping, QC, and imputation procedures
are described in supplemental Figure 1.

Imputation

For this analysis, Set 1 and Set 2 data were imputed using the same
protocol. Genotype data were phased using SHAPEIT18 and then
imputed to a cosmopolitan reference panel from the Haplotype
Reference Consortium release 1 (N 5 32488 in total; n 5 661
AFR)19 using the Michigan Imputation Server. We excluded SNPs
with imputation quality score r2 , 0.5 and MAF , 0.01 in each
dataset, leaving a total of 12 683648 overlapping SNPs in Set 1
and Set 2 for statistical analyses.

Statistical analyses

GWAS analysis. Principal components (PCs) were calculated
using EIGENSTRAT.20 Risk allele frequencies (RAFs) were
calculated by taking the average frequencies in Set 1 and Set 2
controls. Per-allele odds ratios (ORs) and standard errors were
estimated using unconditional logistic regression, adjusted for age,
sex, and the first 10 PCs, separately for Set 1 and Set 2. A fixed-
effect meta-analysis with inverse variance weights was used to
obtain the combined effects for each SNP. The genome-wide
significance level was a 5 5.0 3 1028.

Admixture analysis. We estimated local ancestry separately in
Set 1 and Set 2 by RFMix v1.5.4,21 using European (EUR) and AFR
populations in phase 1 1KGP as reference. Genotyped SNPs that
passed our QC and were present in both sets were included in the
analysis. We calculated individual global ancestry by averaging local
AA values across the 22 autosomal chromosomes. For local
ancestry at each locus, we performed case-only and case-control
analyses22 using regression models adjusted for age and sex,
separately in each of the 2 GWAS datasets. The case-only analyses
compared local ancestry with global ancestry, whereas in case-
control analyses we tested whether the average deviation of local
ancestry from global ancestry was the same between cases and
controls. A fixed-effect meta-analysis was then conducted, using
P , 1 3 1025 to define genome-wide significance. Continuous
regions (adjacent regions with P , 1 3 1024) that were significant
in both case-only and case-control comparisons were considered
suggestive risk regions for MM.

To identify the set of independent SNPs within the local ancestry
signal region, we selected SNPs with marginal P , .001 and
conducted forward-selection logistic regression using inclusion
criteria of .001, adjusting for age, sex, and global AFR ancestry. To
examine whether the detected local ancestry signal could be
explained by variant dosage, we compared the marginal and
conditional P values and OR percentage changes in local ancestry
using logistic regression, adjusting for age, sex, and the first 10
PCs, with and without additional adjusting for allele dosage. We
adjusted for both known risk variants and the independent-risk
SNPs within the local ancestry signal region.

Association testing of known risk regions. We were able to
directly genotype or impute 23 known MM risk variants.9-13

rs34229995 was excluded because it is uncommon in the AA
population (,1%); thus, the following analyses of known risk
regions included 22 of the 23 reported EA risk alleles. Directional
consistency of effect was defined as ORs in the AA MM meta-
analysis that were in the same direction of effect (ie, .1) as those

reported in the EA population. A nominal P value of .05 was used to
determine statistical significance. We also examined the t(11;14)
translocation MM-specific risk allele rs603965 at 11q13.3 in
a pooled subset of our AA cases with that translocation (102 and
45 cases from Set 1 and Set 2, respectively), and in all 8871
controls, using logistic regression and adjusting for global AFR
ancestry, age, sex, and set.

We used the 22 reported EA risk alleles as index markers to search
for other markers within a 6250-kb region that could better
capture MM risk in the AA participants (defined as a “better AA
marker”). To minimize measurement error, we retained only those
SNPs with high imputation quality (r2 $ 0.8). In each region, we
examined SNPs with pairwise correlation (r2) $ 0.2 with the index
variant in the EA population in 1KGP likely to capture the functional
allele. To reduce false-positive associations, only SNPs with
a P value that was smaller by 1 order of magnitude compared
with the index variant were defined as a putative “better” marker of
risk in AA individuals. A secondary marker within the known risk
region was defined as a marker that had weak correlation (r2 , 0.2)
with the index SNP among the EUR and AFR populations in 1KGP
and P , 1 3 1026 after conditioning on the index SNP.

Polygenic risk score analysis. The aggregate effect of known
risk alleles was examined using a weighted polygenic risk score
(PRS) for each individual: PRSi 5+c

m51bmgim, where gim is the
risk allele dosage for individual i at SNP m, C defines risk SNPs at
22 known MM susceptibility loci, and bm is the weight for SNP m.
We explored 2 sets of weights for the index SNPs: the marginal log
ORs published from EA populations and log ORs in our AA MM
meta-analysis. We also substituted better AA markers for 8 index
SNPs and used weights of AA MM log ORs. The risk score in each
set was categorized according to its percentile (,10%, 10%-25%,
25%-75%, 75%-90%, and $90%), and the risk associated with
each category was estimated relative to the interquartile range of
25% to 75% using logistic regression and adjusting for the first 10
PCs, age, and sex. The PRS was constructed separately for each
set, the results were combined in a fixed-effect meta-analysis, and
the interaction between age at diagnosis and PRS scores was
tested.

Expression quantitative trait loci analysis. We performed
an expression quantitative trait loci (eQTL) analysis using Affymetrix
Human Genome U133 2.0 Plus Array data for CD1381 plasma
cells isolated from bone marrow aspirates, as recently described,23

from 292 patients from the University of Arkansas for Medical
Sciences included in the GWASs. Briefly, the expression data
were preprocessed, and the probabilistic estimation of expression
residuals method was applied to estimate nongenetic hidden
confounders.24 Linear regression was used to test the association
between the genotype of risk variants and gene expression of genes
within 1 Mb, adjusting for probabilistic estimation of expression
residuals factors. Risk variants, including suggestive novel signals,
known markers identified from previous EA studies, and better AA
markers, were examined in the eQTL analysis. A conservative
Bonferroni-corrected P value of .0001 was used to determine
statistical significance after correcting for 509 total tests.

Results

The GWAS meta-analysis indicated no evidence of overdispersion
(l 5 1.03). We did not observe any genome-wide significant

14 JANUARY 2020 x VOLUME 4, NUMBER 1 MYELOMA GWASs IN AFRICAN AMERICANS 183



association (P , 5 3 1028) between common alleles and MM risk
(supplemental Figure 2; supplemental Table 1). Seven regions
harbored signals with P , 1 3 1026; however, the signal in 4 of
them disappeared when a more stringent criterion (r2 $ 0.8) was
used to filter imputed SNPs (supplemental Table 1). The 2
remaining suggestive novel risk alleles were located at 9p24.3
(rs13296848; OR, 1.25; Wald P 5 3.44 3 1027; RAF, 0.33
[cases] and RAF, 0.28 [controls]) and 9p13.1 (rs7034061; OR,
1.32; Wald P 5 9.17 3 1027; RAF, 0.15 [cases] and RAF, 0.13
[controls]) (supplemental Figure 3).

In admixture mapping analysis, we found a region on chromosome
2 where lower local AA was statistically significantly associated
with MM risk in both case-only and case-control comparisons (P, 13
1025), ranging from 23.1 to 29.8 Mb (2p24.1-2p23.1), which covered
the known risk region at 2p23.3 (supplemental Figure 4; supplemental
Table 2). The strongest local ancestry–MM association was observed
at 28.8 to 29.2 Mb (2p23.2; OR per AFR chromosome, 0.79; 95%
confidence interval [CI]: 0.72-0.88; P 5 9.4 3 1026). The known risk
allele rs6746082 in that region, which is more common in the EA
population (RAF, 0.79) than in the AA population (RAF, 0.56), was not
significantly associated with MM risk in AA individuals (Table 1). When
conditioning on rs6746082, the local ancestry–MM association
became only slightly less significant, implying that the known risk allele
does not explain the admixture signal. However, when conditioning on
our AA MM better marker rs10180663 (identified in fine-mapping), the
signal was attenuated by .2 orders of magnitude. In the forward-
selection logistic regression, 3 independent SNPs, rs10180663,
rs10169985, and rs6734496, were identified (conditional P, .001)
as being associated with MM risk. When adjusting for these 3
SNPs, the admixture signal was no longer even nominally significant
(OR per AFR chromosome, 0.94; 95% CI, 0.83-1.06; P 5 .3)
(supplemental Figures 5 and 6).

Next, we focused on the 22 known MM risk variants, previously
identified in EA populations with MAF $ 0.01, in AA individuals to
assess their generalizability in the AA population (Figure 1; Table 1).
Our study had 80% statistical power to detect the reported effect
sizes at a significance level of a 5 0.05 for 18 of the 22 loci
(Table 1). Directional consistency was noted for 20 variants, 9 of
which were nominally statistically significantly associated with MM
risk (P, .05; Table 1). The average effect size for the AA population
(ORAA, 1.09) was significantly smaller (P 5 1.7 3 1024, Student
t test) compared with the reported values for the EA population
(OREA, 1.20). The average RAF was slightly larger in the AA
controls, but this difference was not statistically significant (RAFAA,
0.463; RAFEA, 0.451; P 5.87; Student t test); however, 5 alleles
had RAFs that differed greatly between the 2 populations (.0.2)
(Figure 1; Table 1). Two alleles, rs6746082 at 2p23.3 and
rs2811710 at 9p21.3, were more common among persons of EA,
and 3 alleles, rs1052501 at 3p22.1, rs4487645 at 7p15.3, and
rs1948915 at 8q24.21, were more common among persons of AA.
In fine-mapping of the 22 risk regions, 8 were found to harbor
a better marker for MM risk in persons of AA than the index variant
by our criteria stated in Methods (Figure 2; Table 1; supplemental
Figure 7). We found no significant evidence of secondary
association signals in these regions in persons of AA. The
association between rs603965 and t(11;14) MM risk replicated
in the subset of our AA cases with translocation information
at the nominal significance level (OR, 2.04; 95% CI, 1.41-2.95;
P 5 1.4 3 1024).

In PRS analyses with weights (ie, log ORs) from studies in EA
populations, AA individuals in the top 10% PRS stratum had
a 1.61-fold (95% CI, 1.38-1.88; P 5 1.4 3 1029) increased MM
risk compared with those with average risk (PRS in the 25th-75th
percentiles). Using weights from our AA MM meta-analysis, this OR
was 1.66 (95%CI, 1.43-1.94; P5 7.53 10211); when substituting
the 8 index EA SNPs with their corresponding better AA markers,
this association became slightly stronger (OR, 1.82; 95% CI,
1.56-2.11; P5 9.43 10215) (Table 2). The results of an unweighted
PRS were similar (supplemental Table 4). We did not detect any
significant interaction between PRS and age at diagnosis on MM risk
(data not shown).

In an eQTL analysis (supplemental Table 3), of the 2 suggestive novel
variants from the GWAS meta-analysis, only rs7034061 at 9p13.1
was found to be marginally associated (P 5 .046) with nearby gene
expression (EXOSC3); however, it did not remain significant after
correcting for multiple comparisons. Of the 22 known risk variants,
the strongest association was observed for risk variant rs56219066
at 5q15, with the risk allele being associated with lower ELL2
expression (P 5 5.1 3 10212). We also identified a significant
association between the risk allele of rs2790457 at 10p12.1 and
decreased expression of WAC (P 5 2.29 3 10211). Both eQTLs
were recently demonstrated in malignant plasma cells from EA
patients.13,25 The recently identified association between rs4487645
at 7p5.13 andCDCA7L expression in EA patients23 was also evident
at a borderline statistically significant level in malignant plasma cells
from AA patients (P 5 .067). Of the 8 better AA MM markers, 3
showed nominally significant associations with gene expression that
were not significant after correction for multiple testing: rs10180663
at 2p23.3 with HADHA, rs9290375 at 3q26.2 with GPR160, and
rs879882 at 6p21.33 with VARS2 and HCG27.

We further explored the potential overlap between suggestive novel
signals and their correlated SNPs (r2 . 0.2, AFR population in
1KGP) with the genome regulatory domains and eQTL regions
using the publicly available databases through HaploReg,26 UCSC
Genome Browser,27 and GTEx Portal.28 Neither of the 2 suggestive
novel risk alleles showed overlap with regulatory elements. However,
2 correlated variants of rs13296848 (rs7854502, r2 5 0.58;
rs13285101, r2 5 0.51; supplemental Figure 8) displayed enrich-
ments in promoter and enhancer histonemarkers in multiple tissues,29

and both were associated with KNmotif and ankyrin repeat domains 1
(KANK1) expression in Epstein-Barr virus–transformed lymphocytes,
spleen, and whole blood.28

Discussion

In this largest genetic study of MM in individuals of AA, we did not
identify any novel locus for MM risk. Of the 22 reported MM EA risk
alleles that we were able to examine, 20 were directionally
consistent and 9 achieved nominal statistical significance in AA
individuals, suggesting a common shared underlying risk variant in
these regions. Although most of the reported risk alleles had
a modest association (OR , 1.2) with MM risk in AA individuals, in
aggregate, we observed that those in the top 10% risk stratum had
a 1.6- to 1.8-fold increase in MM risk compared with the population
average risk (25th-75th percentile of the PRS distribution).

Overall, the effect sizes among persons of AAs were smaller than in
the corresponding discovery reports among patients of EAs. The
possible explanations for the smaller effect sizes include bias
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caused by “winner’s curse” in the EA discovery set, random errors
from sampling across different studies, modification by environ-
mental factors, and different linkage disequilibrium structure across
ethnic groups between the index risk alleles and the functional
causal SNPs. Although our study has sufficient statistical power
(.80%) to replicate 18 of the risk alleles at a significance level
of 0.05, more than half of them did not achieve nominal significance,
implying that the index SNP in EA populations may not be a valid
proxy for the causal variant in AA populations; thus, our fine-
mapping of those risk regions in persons of AA was warranted.

Our previous study identified 5 better AA markers among 7 of the
reported EA MM risk variants.8 Here, we identified better AA
markers in 8 of the 22 regions that we examined. Our current study
had greater power in characterizing AA MM risk variants as the
result of improved imputation coverage by using the Haplotype

Reference Consortium reference panel and increased AA sample
size. Notably, we identified a better marker, rs10180663, in 2p23.3
with a much stronger association in the AA population than in our
previous study.8 In this region, previous GWAS studies in the EA
population have reported 2 MM risk variants, rs67460829 and
rs7577599,11 and a pleiotropic risk variant rs6546149 for B-cell
malignancies, including chronic lymphocytic leukemia, Hodgkin
lymphoma, and MM.30 Our better AA marker rs10180663 is
correlated with all 3 of the aforementioned risk variants in the EA
population (r2 . 0.25 in EUR population in 1KGP) and displayed
the strongest association amongAA populations. Variant rs10180663
was also previously identified as a suggestive risk allele for
the t(11;14)(q13;q32) MM molecular subtype among the EA
population (P 5 2 3 1026).31 Moreover, it overlapped with
H3K4Me1 enrichment in hematopoietic stem cells and B cells26

and was predicted to be located at an enhancer region,29
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suggesting that it might be a better surrogate for the causal MM
variant in the 2p23.3 region in AA individuals.

Although no genome-wide novel variants were found, we did observe
suggestive associations with rs13296848 located at 9p24.3, with
a RAF of 0.33 among AA cases and a RAF of 0.28 among AA
controls. This variant is located in the intron of the KANK1 gene,
a candidate tumor suppressor for renal cell carcinoma.32 KANK1may
have a role in KPb-associated thrombocythemia,33 which was found
to be occasionally associated with MM.34 The correlated alleles of
rs13296848 displayed enrichments in promoter and enhancer
histone markers and were associated with KANK1 expression in
Epstein-Barr virus–transformed lymphocytes, spleen, and whole
blood.28 The other suggestive novel MM risk allele, rs7034061, was
located at 19 kb 59 of the gene insulin like growth factor binding
protein like 1 (IGFBPL1), whose epigenetic inaction was reported as
being involved in breast cancer pathogenesis.35 Moreover, serum
fasting IGFBP1 concentration was associated with MM risk in
a nested case-control study.36 However, no overlap of genome
regulatory elements or IGFBPL1 expression enrichment was
detected for rs7034061 or its correlated SNPs in publicly available
databases. Fine-mapping in larger samples of AA cases and
controls is needed to determine whether this region harbors a true
risk variant that is associated with MM risk.

Our study is the first to examine the association between local ancestry
and MM risk. Compared with GWASs, admixture mapping has
enhanced power (fewer tests requiring correction) but a lower
resolution for discovering disease risk regions.37 We found that the
level of local AA in a continuous region that covered the known risk
region 2p23.3 was inversely associated with MM risk (P, 13 1025).
The signal could not be explained by the known risk marker
rs6746082, but it was completely explained by conditioning on the
3 independent SNPs, including rs10180663. Thus, the previously
noted signal in this region was detected in a different population
using admixture mapping.

Unlike prostate cancer, in which variants at a single locus (8q24) were
discovered by admixture mapping in men of AA,38 we did not identify
a single locus that explains the excess risk for MM in AA individuals,
although our study was well powered (80% power to detect a single
locuswith anORof 1.7). It is possible that multiple loci with small effects,
rather than a single region with a large effect, contribute toMM risk in AA
individuals, which would require a much larger sample size than we have

here. It is also possible that there is etiologic heterogeneity by molecular
subtype and that, by combining them, we diluted the signal.

From the gene expression studies in malignant plasma cells from
AA MM patients, the only risk variants that significantly impacted
gene expression after correcting for multiple tests were rs2790457
at 10p12.1 (WAC) and rs1423269 at 5q15 (ELL2), 2 eQTLs
that were recently shown in EA MM patients.11,25 The functional
basis of the majority of MM risk variants remains elusive, and further
studies, perhaps in circulating B-memory lymphocytes from healthy
individuals, are required to understand the underlying biology.

A possible limitation of our study is that the AA MM cases and
controls in Set 1 were genotyped on different platforms. To minimize
this bias, we conducted stringent pre- and postimputation QCs,
including eliminating SNPs with low cross-platform replicate concor-
dance and imputation to the same reference panel. There were only
188376 genotyped SNPs overlapping between cases and controls in
Set 1, because of the low density on the Illumina Human Core
(298930 SNPs) used for the cases. As a result, our imputation-based
coverage of common variation was suboptimal for fine-mapping. A
denser genotyping array may help to better localize causal variants in
the AA population. In addition, given the low risk associated with these
signals in some regions, a larger sample size is required to differentiate
the causal variant from the index SNP. Moreover, because MM is
characterized clinically by molecular subgroups,39 it is possible that
genetic susceptibility may vary across these subtypes.12,31 The
prevalence of each molecular subtype is ,50%, and we did not have
complete records of clinical molecular subtypes for all patients; thus,
we could not evaluate subtype-specific associations. Although we had
adequate power to examine most of the known risk variants at
P , .05, the sample size was still not large enough for discovery
of novel AA-specific genetic markers at a genome-wide significance
level. Obtaining patient samples for such an uncommon cancer
among a minority population is challenging. Nevertheless, this is the
largest study in AA individuals to examine associations between
common genetic variation and MM risk; our results show a role for
genetic susceptibility in AA MM.
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