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Abstract: Visual stimuli from photographs and artworks raise corresponding emotional responses.
It is a long process to prove whether the emotions that arise from photographs and artworks are
different or not. We answer this question by employing electroencephalogram (EEG)-based biosignals
and a deep convolutional neural network (CNN)-based emotion recognition model. We employ
Russell’s emotion model, which matches emotion keywords such as happy, calm or sad to a coordinate
system whose axes are valence and arousal, respectively. We collect photographs and artwork images
that match the emotion keywords and build eighteen one-minute video clips for nine emotion
keywords for photographs and artwork. We hired forty subjects and executed tests about the
emotional responses from the video clips. From the t-test on the results, we concluded that the
valence shows difference, while the arousal does not.

Keywords: emotion recognition; CNN; artwork; Russell model; DEAP dataset

1. Introduction

Emotion recognition is one of the most interesting research topics in neuroscience and human
computer interface. Emotion is quantified through various emotion recognition methods that employ
various bio-signals including EEG, photoplethysmography (PPG), and electrocardiography (ECG),
etc. Most of the emotion recognition methods use either handcrafted features or deep learning
models. The handcrafted feature-based methods recognize emotions through classical classification
schemes such as support vector machine, decision tree, and principal component analysis. Recently,
deep learning models such as convolutional neural network, recurrent neural network, and long
and short term memory models, have been widely used since they have improved performance on
emotion recognition.

Visual stimuli are known to raise corresponding emotional responses. For example, a photograph
of a smiling baby give rise to a "happy’ emotion, and a thrilling scene such as homicide gives rise
to a ‘fear” emotion. The cause of visual stimuli comes from either photographs that capture the real
world or artifactual images that are produced through various artistic media, such as pencil and brush.
Emotions arisen from artwork are commonly assumed to be different from those from photographs.
However, we have rarely found a quantified comparison between the emotional responses from
photographs and artwork images.

In this paper, we employ EEG signals captured from human and a deep CNN structured
recognition models to clearly prove that the emotional responses from photographs and artworks
are different. We build an emotion recognition model from EEG signals based on a deep neural network
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structure and train the model using the DEAP dataset [1]. Then, we collect emotional responses from
human subjects watching photographs and artwork images that convey similar contents and compare
them to prove our argument that the emotion recognition from photographs and artwork images
are distinguishable.

We build a 2D emotion model whose x-axis is valence and y-axis is arousal. Widely-known
emotion keywords such as ‘excited’, ‘happy’, ‘pleased’, ‘peaceful’, ‘calm’, ‘gloomy’, ‘sad’, ‘fear’,
and ‘suspense’ are located in the 2D space according to Russell’s model, which is one of the most
frequently-used emotion models (see Figure 1).
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Figure 1. Russell’s emotion model.

Our emotion recognition model is based on a state-of-the-art multi-column convolutional neural
network structure. The model is trained using the DEAP dataset, one of the most widely-used EEG
big-signal datasets. The output of the model is normalized bi-modal: One for valence and the other
for arousal. From the valence and arousal, we match the emotion keywords in Russell’s emotion model.
The overview of our model is illustrated in Figure 2.

We hire forty human subjects and partition them into two groups: One for photographs and the
other for artwork images. They watch nine one-minute long videos while their emotion is recognized
from their EEG signals. The emotional response from each video is predefined. We compare the
recognized emotions from both groups and compare the difference of emotional response from
photographs and artwork images.

We suggest a quantitative approach to measure the differences of emotional responses from
photographs and artworks. The recent progress in deep neural network research and sensor techniques
presents us a set of tools to capture biosignals from users and to measure their emotional responses with
high accuracy. Our work can be applied in many SNS applications. As of recent, many applications
rely on various visual contents including photographs and video clips. These applications inquire
whether photographs and artworks may invoke different emotional responses. If they can conclude
that the artworks may invoke more positive emotional reactions than photographs, then they will
focus on developing a series of filters that would render photographs into artistic styles.
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Figure 2. The overview of the algorithm.

This paper is organized as follows. In Section 2, we briefly review the studies on emotion
recognition and the relation between visual contents and emotion. In Sections 3 and 4, we outline
the emotion recognition model and data collection process, then explain the structure of our model.
We present the experiment’s details and results in Section 5 and the analysis of the results in Section 6.
Finally, we draw conclusions of our work and suggest a future plan in Section 7.

2. Related Work

In this section, we describe previous studies around deep learning, emotion recognition
approaches and emotional responses from visual contents.

2.1. Deep Learning-Based Emotion Recognition Studies

2.1.1. Early Models

Early studies including [2-8] utilized handpicked features and applied various machine learning
techniques such as support vector machine and principal component analysis (PCA) to the features.
While these studies show viable accuracy, performances are restricted from feature selection.

To resolve the restriction, many studies adopted deep learning without feature selection.
Jirayucharoensak et al. [9] developed a model for recognizing emotions from nonstationary EEG signals.
Stacked autoencoder (SAE) is adopted to learn the features extracted from EEG signals. Additionally,
they applied principal component analysis (PCA) that extracts the most important components
and covariate shift adaptation in order to minimize the nonstationary effect; this also leads to
less overfitting.

Khosrowabadi et al. [10] developed a multilayer feedforward neural network for discriminating
human emotions from unstationary EEG signals. The network is a composition of spectral filtering
layers that analyze input signals and a shift register memory layer. They discriminate the emotion
from EEG signals and represents it with valence and arousal levels, according to Russell’s model.

2.1.2. CNN-Based Models

Earlier approaches had the common restriction that features had to be picked by a human expert.
With the evolution of convolution neural networks, many studies utilize CNN to eliminate
this restriction.
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Tang et al. [11] built a deep CNN-based classification model for motor imagery. The model
had F-scores of 87.76~86.64% for classification of motor imagery for left and right hands. While the
performance of the model is not significantly better than conventional hand-picked feature-based
models, the model has shown viability of multi-layer CNN for EEG recognition.

Croce et al. [12] deployed a CNN model for classification of brain and artifactual
independent components. While the study is not directly related to emotion recognition, independent
component analysis is essential for the classic feature selection approach. They show that high CNN
classification performances (92.4% for EEG) were achieved through heuristical selection of machinery
hyperparameters and through the CNN self-selection of the features of interest

Tripathi et al. [13] developed a CNN-based model that recognizes emotions from EEG signals.
The DEAP dataset is used to train two different neural network models: A deep neural
network with simpler layers and a convolutional neural network. According to their experiment,
the CNN-based model demonstrated an improved performance of 4.96% more than the existing,
simple layer-based models. The study has shown the possibility of CNN upon EEG signal analysis.

Salama et al. [14] proposed a 3D CNN model to recognize emotions from EEG signals of
multi-channel structure. EEG signals have a spatio-temporal aspect, hence 3D CNN is appropriate to
train with the signals. Moreover, a data augmentation phase is introduced to improve the accuracy
of the model, possibly reducing overfitting. They tested that their model with a DEAP dataset and
recorded accuracies of 88.49% for arousal and 87.44% for valence.

Moon et al. [15] presented a CNN-based emotion recognition model for EEG signals. A major
difference of their approach is its brain connectivity features, used to account for synchronous
activation of many different brain regions. For this reason, their method can effectively capture
various asymmetric brain activity patterns that play a key role in emotion recognition. While their
approach does not solely rely on CNN, they show the CNN-based approach can be improved with
partial feature selection.

Yang et al. [16] presented a multi-channel structured-CNN model to recognise emotions from
unstationary EEG signals. Their model is composed of several independent recognition modules,
which are designed based on the DenseNet model [17]. The individual decisions of the modules are
merged to build a final decision of the model. They employed the DEAP dataset for a comparison,
and showed an excellent accuracy for valence and arousal.

Zhang et al. [18] presented an effective spatial attention map (SAM) to weigh the multi-hierarchical
convolutional features. SAM help reduce the filter values corresponding to background features.
A multi-model adaptive response fusion (MAF) mechanism is also presented for adaptive weighted
fusion of multiple response maps generated by attentional feature.

2.1.3. RNN-Based Models

Recurrent neural network (RNN), which is known to be effective in processing time series data,
has been employed for recognizing emotions from EEG signals which are definitely time series.

Alhagry et al. [19] presented a long-short term memory (LSTM) RNN-based model that recognizes
emotions from unstationary EEG signals. Their model recognizes emotions in three axes: Arousal,
valence and liking. As a result, they recorded accuracy of greater than 85% for the three axes of emotion.

Li et al. [20] developed an RNN-based emotion recognition model. The model considers three
characteristics of EEG signals: Temporal, spatial and frequency. Their model extracts rational
asymmetry (RASM) to describe the frequency and spatial domain characteristic of EEG signals.
The last characteristic, temporal correlation, is explored by an LSTM RNN model. They tested their
model using the DEAP dataset and demonstrated 76.67% mean accuracy.
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Xing et al. [21] presented an emotion recognition framework using multi-channel EEG. A linear
EEG mixing model and an emotion time model composes their framework, which decomposes the
EEG source signals from the collected EEG signals and improves classification accuracy. The EEG
mixing model is based on a stacked auto encoder (SAE) and the emotion timing model is based on
LSTM RNN. As a result, their framework achieved accuracies of 74.38% for arousal and 81.10% for
valence with the DEAP dataset.

2.1.4. Hybrid Models

As in other domains, deep learning-based models can be improved with traditional
feature-selection models if appropriate. Several studies integrate deep learning-based models into the
other machine learning techniques, while others utilize multiple different deep learning-based models.

Yang et al. [22] presented a hybrid neural network-based model that combines CNN and RNN
to classify human emotions. They consider baseline signals as an effective pre-processing method to
improve the recognition accuracy, like in traditional feature-based approaches. On the other hand, their
model learns spatio-temporal representation of unstationary EEG signals for emotion classification.
The CNN module estimates inter-channel correlations among physically adjacent EEG signals, while
The RNN module extracts contextual information of the signals. They tested the model with the DEAP
dataset and demonstrated accuracies of 91.03% for arousal and 90.80% for valence.

Yoo et al. [23] developed a neural network-based model that recognizes six emotional states
including joy, happiness, fear, anger, despair, and sadness. They designed their model using an artificial
neural network and tested various multi-model bio-signals including EEG, ECG, PPG, and GSR for
emotion recognition.

2.2. Emotional Response from Visual Contents

Kim and Kim [24] investigated the sensitivity preference perceived differently according to the
difference in color temperature. They extracted six pairs of words such as warm—cold, tender-wild,
dynamic-static, complicated—simple, light-heavy, and positive-negative from various expressions
on colors and surveyed fifty human subjects whether the emotions in the color temperature range
matched these words. This investigation reveals that some emotional expressions from human subjects
are located in a specific range of the color temperature.

Lechner et al. [25] studied the relationships between color and emotion in various industries.
They recognized the mismatch between the existing color table for color designers and the emotions
sensed by users. They surveyed ninety focus groups in related fields to build the relationship between
color tables and emotions. As a result, they presented a group of colors that match the emotions
located in Russell’s emotion model. They also named each group of colors according to the frequently
used terminologies in the fashion industry, their color model is very practical to many experts in the
fashion and design industry (see Figure 3a).

Yang et al. [26] presented an emotion enhancement scheme by controlling the color of
visual contents. They arranged the color table in Russell’s model and modified the colors of a famous
animation to enhance the emotional responses from users. They executed a user study that proves the
effectiveness of their approach. One group watches a video clip from the original animation, and the
other group watches a different video clip re-rendered by applying their color enhancement scheme to
the original animation. The emotional responses from the latter group are clearly distinguished from
the former group (see Figure 3b).
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Figure 3. Examples from related works.
3. Emotion Model

3.1. Russell’s Model

Russell [27] presented a classical emotion model that decomposes an emotion into two axes:
Valence and arousal. In this model, valence and arousal are independent terms. Therefore, valence
does not influence arousal, and vice versa. In this model, an emotion such as sadness, suspense,
excitement, or happiness is decomposed into a pair of two values (valence and arousal). This pair is
located in a 2D space whose x-axis corresponds to valence and y-axis to arousal (see Figure 1).

3.2. Emotion Dataset Construction

Our emotion dataset is constructed in the process illustrated in Figure 4.

Dataset Verification Movie clip
collection by expert group, construction

Figure 4. Our emotion dataset construction process.

3.2.1. Dataset Collection

In our approach, we select nine emotions and map them into Russell’s model. The emotion
keywords we selected are ‘excited’, ‘happy’, ‘pleased’, ‘peaceful’, ‘calm’, ‘gloomy’, ‘sad’, ‘fear’,
and ‘suspense’. To build a dataset for these emotion keywords, we searched webpages with these
keywords and collected images. We built two datasets: One for photographs and the other for
artwork images. We also categorized the images into two groups: Portraits and landscapes. A sample
of our dataset is illustrated in Figure 5. We collect five portraits each for both photographs and artwork,
and five landscapes each for both photographs and artwork.
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Figure 5. Sampled images of our dataset.

3.2.2. Verification by Expert Group

To verify that the images in our dataset are correctly bound to the emotion keyword we have aimed
at, we collected an expert group composed of eight experts: Three game designers, two cartoonists and
three animation directors. They were asked to pair the images to the most proper emotion keyword
among the nine emotion keywords. After they paired the images to emotion keywords, we accepted
images which were paired to an identical keyword by more than six experts. For the discarded images,
we reselected candidate images and tested them again until they were paired to a target keyword by
more than six experts. The dataset is presented in Appendix A.

3.2.3. Movie Clip Construction

We built eighteen one minute-length video clips from the images in our dataset. In each movie clip,
ten images of the same emotion keyword are played for six seconds. Nine clips were produced from
photographs and another nine clips from artwork. Each movie clip was paired to an emotion keyword.
For example, a movie clip was named “photo-happy’ or artwork-sad.

4. Emotion Recognition Model

4.1. Multi-Column Model

We employ a multi-column structured model, which shows state-of-the-art accuracy in
recognizing emotion from EEG signals [16]. This model is composed of several recognizing modules
that process the EEG signal independently. Each recognizing module is designed using a CNN
structure, which is illustrated in Figure 6a. We sample 1024 samples from EEG signals for one minute
and reorganize them into 32 x 32 rectangular form. The EEG signal in rectangular form is fed into
each recognizing module of our model and the decisions from the individual modules are merged to
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form the final decision of our model. We apply a weighted average scheme to the individual decisions
(v;) for the final decision (vf;,4;) as follows:

k
Y1 Wiv;
k
Zi:1 wij

Ofinal = ’
where v; is a binary value having +1 or —1 and w; is the predicted probability of the i-th module.

The whole structure of our model is illustrated in Figure 6b. According to [16], the best accuracy
is achieved for a model of five recognizing modules. Therefore, we built our model with five
recognizing modules.

(3x3x16) x 16

3x3x1 convolution (12x12x32) x
(16 filters) 64
(Bx3x16) x 32 (3x3x32) x 32 ' 64 x 32
conv3-16 conv3-16 maxpool 32 x 16

conv3-32 conv3-32

\
Sampling .
e \
oo 19 o) .
W A i
., I
EEG Signals
/ —
weighted sum

multi-columned structure
(b) The overall structure of our model

Figure 6. The structure of our emotion recognition model.

4.2. Model Training

To train our model, we employed the DEAP dataset, which is one of the most frequently
used EEG signal dataset. For the 32 participants of the DEAP dataset, we selected EEG signals
from 22 participants for training dataset, 5 for validation and 5 for test. Each participant executed
40 experiments. We decomposed the EEG signal from a participant by sampling 32 values from
7680/ (32 x k) different positions, where we set k to 5.

k is the number of recognition modules in our multi-column emotion recognition model.
Yang et al. [16] tested four values for k: 1, 3, 5 and 7. Among the four values of k, k = 5 shows
the highest accuracy for valence and the second highest accuracy for arousal. Furthermore, k = 5
shows faster computation time than k = 7, which shows the second highest accuracy for valence and
the highest accuracy for arousal. Therefore, we select k as 5.
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From this strategy, we collect 33~80 EEG training data for a participant of a video clip, and this leads
to a training dataset of 29,040~70,400. Similarly, we built datasets of 6600~16,000 for the validation and
test sets, respectively.

For training, we set the learning rate of our model as 0.0001, which is decreased by 10 times
according to the decrease of an error in a validation dataset. The weight decay is assigned as 0.5 and
the batch size as 100. The training process takes approximately 1.5 hours.

For training, we recorded 95.27% accuracy for valence and 96.19% for arousal. For test,
we recorded 90.01% and 90.65% accuracies for valence and arousal, respectively. Based on these
accuracies, we decided to employ the multi-column model in [16], which is one of the state-of-the-art
EEG-based emotion recognition models, for our study. We did not need to retrain this model in this
study, since the training of the model was already finished.

5. Experiment and Result

In this section, we describe details about our experiment and its result. Our research goal is to find
out the difference of intensity and/or class for emotional response against artwork and photographs.

5.1. Experiment Setup

As described before, our emotion recognition model is trained with a DEAP dataset. Therefore, it is
assumed our experiment setup was prepared as similar to that of DEAP. While the DEAP experiment
utilizes 16 auxiliary channels beside 32 EEG channel, our experiment excluded those channels because
our emotion recognition model solely depends on EEG channels.

We use LiveAmp 32 and LiveCap [28], which allow us to set up 32 channels following a standard
10/20 system [29]. Our participants are asked to watch eighteen one-minute videos, and recordings
are converted to .EEG files. Time of start and end of each playback is required to keep track of
the experiment and synchronize EEG and playback events. Because of differences between our
equipment and that of the DEAP experiment, We took extra precautions with our preprocessing.
We deployed event markers during our recordings to slice them precisely. Table 1 shows these markers
and their descriptions.

Table 1. Index for event markers.

Marker Code Event Description Estimated Event Length

1 start of baseline recording (3000 ms)

2 start of video playback 1 60,000 ms

3 end of video playback 1 5000 ms

4 start of video playback 2 60,000 ms

35 end of video playback 17 5000 ms

36 start of video playback 18 60,000 ms

37 end of video playback 18 5000 ms

38 end of recording -

Each participant was asked to watch our videos under our surveillance. We controlled both the
start of the recording and playback, and recorded each starting time. We used 3 s of baseline recording,
then started playback.
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5.2. Experiment

Recordings from forty participants are converted into the widely-used .EEG format using the
proprietary converter from LiveAmp. We use EEGLab with MATLAB to preprocess those recordings
alongside the channel location file. Detailed info about the preprocessing is as follows:

The data was downsampled to 128 Hz.

A bandpass frequency filter from 4.0-45.0 Hz was applied.

The EEG channels were reordered so that they all follow that of DEAP.

The data was segmented into eighteen 60-second trials and one baseline recording.
Detrending was performed.

In general, the goal of the preprocessing is to streamline our results with the DEAP dataset.
Preprocessed results were put into our multi-column emotion recognition model, and the model
estimated valence and arousal values for each result.

5.3. Result

We hired forty subjects for our experiment: Twenty for photographs and twenty for artwork.
We hired forty subjects to average out the difference of the emotional reactions on photographs
and artworks that may come from the personal preferences of the subjects. Furthermore, we also
carefully checked the age, sex and background of the subjects to decrease the personal differences.
The distributions of the subjects for age, sex and background are shown in Table 2.

Table 2. The distributions of the subjects.

Photograph Group Artwork Group

in20s 10 12

age in30s 6 5
in 40 s or older 4 3

sum 20 20

female 9 10

sex male 11 10
sum 20 20

engineering and science 8 6

social science 7 8

background art 3 4
other 2 2
sum 20 20

Their responses for valence and arousal are presented in Tables A1l and A2. These values are
illustrated in Figure 7a,b. In Figure 7c, we compare the average responses from photographs and from
artwork, respectively. The graphs in Figure 7c show the difference of the emotional responses from
photographs and artwork.
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Figure 7. The result of our experiment.

6. Analysis

6.1. Quantitative Analysis Through t-Test

To analyze the results from our experiment, we built a hypothesis that the valence from the group
watching artwork images increases compared to the valence from the group watching photographs.
Therefore, the purpose of this analysis is to prove that the valences from the nine emotional keywords
are different for the artwork group and photograph group. We apply the t-test for the nine emotion
keywords and estimate p value. The p values of two groups for emotion keywords are shown in Table 3.

According to the t-test, we conclude that the difference of the valence for ‘gloomy’ and ‘suspense’
is significant at a confidence level of p < 0.05 and the difference of the valence for other emotion
keywords is significant at a confidence level of p < 0.01. Furthermore, the difference of the arousal for
‘gloomy’, ‘sad’, and ‘suspense’ is significant at a confidence level of p < 0.01 and the difference of the
arousal for other emotion keywords is not significant.

Table 3. p Values for the valences and arousals of nine emotion keywords.

Excited Happy Pleased Peaceful Calm Gloomy Sad Fear Suspense
valence 459 x 1078 7.89 x 1077 466 x107° 779x 10710 145x107° 370x107° 224x10°° 158x10® 6.33x10°*
arousal 1.02x 107! 134x107' 248 x 107! 251x107! 613x107! 688x107% 425x107% 732x1072 338x107°

6.2. Further Analysis

In our quantitative analysis, the emotional responses from artworks show greater valence than the
responses from photographs, while the arousal is not distinguishable. From this analysis, we conclude
that the magnitude for the responses of pleasant emotions such as ‘excited’, ‘happy’, ‘pleased’,
‘peaceful’, and ‘calm’ increases, while the magnitude for unpleasant emotions such as ‘gloomy’,
‘sad’, ‘fear’, and ‘suspense’ decreases.
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We find that many artworks that represent positive emotions such as excited or happy
are exaggerated. In Figure 8a, the happy actions in artworks to the left of the arrow represent
some actions that would not exist in the real world. Such an exaggeration can be a reason of our
result that the valence of positive emotions from artworks becomes higher than the valence of positive
emotions from photographs. We also admit that users may feel happier emotion from photographs of
a baby’s smile than artworks of a baby’s smile. However, the efforts of artists to exaggerate positive
emotions can increase the valence responses from artworks.

On the other hand, artists tend to reduce unpleasant emotions from scenes they draw.
Furthermore, the artistic mediums such as pigment from pencil or brush convey less unpleasant
emotions than real scenes. We can observe the reduction of unpleasant scenes in some practical
illustrations such as anatomical illustrations (see Figure 8b). To decrease the unpleasant feelings from
real objects, artistic illustration is employed.

The type of artwork such as portrait or landscape does not affect the emotional responses from
human subjects.

(a) Artworks emphasize happy emotions (b) Artworks reduce unpleasant emotions

Figure 8. The increase of valence in artwork results in different effects: Increase of happy emotion and
decrease of unpleasant emotion.

6.3. Limitation

In our analysis, valence shows a meaningful difference, but the arousal does not. Our study has
a limitation in that it cannot specify the reason why the arousal does not show a meaningful difference.
The scope of our study is to measure the difference of emotional reactions for photographs and artwork.
Measuring the time required for an emotional reaction may be required to analyze the difference of
arousal for photographs and artworks.

7. Conclusions and Future Work

In this paper, we attack the question whether the visual stimuli that come from photographs
and artwork are different or not, using an EEG-based biosignal and multi-column structured emotion
recognition model. We employ Russell’s emotion model, which matches emotion keywords to valence
and arousal. Various photographs and artwork images that match nine emotion keywords were
collected to build eighteen video clips for test with humans. Forty subjects in two groups watched the
video clips and the emotions from the subjects were recognized through EEG signals and our emotion
recognition model. The t-test on the results shows that valence in the two groups is different, while the
arousal is not distinguishable.

As visual content such as photos and video clips is widely used in social networks, many social
network service companies try to improve the visual satisfaction of their visual contents by evoking
emotional reactions from users. Therefore they present many filters that enhance the emotions
embedded in their visual contents. We assume that the result of our paper can present theoretical
backgrounds for this trend. Even though it is hard to convert a photograph into artwork, many filters
that endow photographs with the feeling of artwork can enhance or enfeeble the emotional reactions
from the photographs.



Sensors 2019, 19, 5533 13 of 21

Author Contributions: Conceptualization, H.Y., J.H. and K.M.; Methodology, H.Y. and J.H.; Software, H.Y.;
Validation, H.Y. and K.M.; Formal Analysis, J.H.; Investigation, J.H.; Resources, H.Y.; Data Curation, J.H.;
Writing—Original Draft Preparation, H.Y.; Writing—Review & Editing, ].H.; Visualization, K.M.; Supervision, J.H.
and K.M.; Project Administration, J.H.; Funding Acquisition, J.H. and KM

Funding: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the
Korea government(MSIT) (No. 2017R1C1B5017918 and NRF-2018R1D1A1A02050292)

Acknowledgments: We appreciate Prof. Euichul Lee for his valuable advices.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This appendix presents the table for the user test and the images in the dataset we employed for
our study. It contains photographic portrait in Figure Al, artwork portrait in Figure A2, photographic
landscape in Figure A3 and artwork landscape in Figure A4.

Table A1. The emotions estimated from twenty subjects for photograph (Val. for valence and Arou.
for arousal).

Excited Happy Pleased Peaceful Calm Gloomy Sad Fear  Suspense

subl Val. 0.2 0.4 0.6 0.5 0.1 -0.2 -0.7 -0.6 -0.2
Arou. 0.6 0.5 0.3 -0.2 -0.6 —-0.6 -0.3 0.2 0.7
sub2 Val. 0.15 0.33 0.58 0.52 0.12 -0.17 -075 —-0.5 -0.15
Arou. 0.5 0.47 0.32 —0.52 —0.67 —0.62 -025 0.21 0.8
sub3 Val. 0.21 0.46 0.53 0.52 0.02 -0.25 —-0.65 —0.58 -0.17
Arou. 0.71 0.51 0.28 -0.15 -0.7 —0.65 -027 015 0.65
sub4 Val. 0.18 0.42 0.59 0.51 0.07 —0.21 —-0.68 —0.62 —0.21
Arou. 0.65 0.51 0.31 -0.17 —0.58 —0.61 -029 017 0.61
subb Val. 0.19 0.41 0.57 0.53 0.09 —0.22 -071 —-0.57 —0.19
Arou. 0.52 0.49 0.33 -0.17 —0.51 —0.62 -022 0.16 0.65
sub6 Val. 0.22 0.45 0.59 0.48 0.05 —0.23 -0.75 —0.59 —0.18
Arou. 0.59 0.51 0.35 —0.21 —0.55 —0.59 -031 0.19 0.75
sub?7 Val. 0.23 0.42 0.61 0.52 0.05 —0.16 —-0.62 —0.65 —0.13
Arou. 0.63 0.52 0.32 —0.19 —0.53 —0.57 —-025 0.23 0.67
sub8 Val. 0.17 0.3 0.69 0.52 0.03 —0.12 —-0.67 —0.59 —0.21
Arou. 0.54 0.58 0.29 —0.15 —0.49 —0.48 -031 019 0.7
sub9 Val. 0.21 0.48 0.59 0.45 0.05 —0.12 -059 —0.61 -0.29
Arou. 0.7 0.55 0.32 —0.25 —0.61 —0.55 -032 021 0.85
subl0  Val. 0.2 0.31 0.51 0.52 0.05 —0.14 -059 —-0.54 —0.21
Arou. 0.59 0.52 0.31 —0.19 —0.55 —0.54 -027 0.23 0.71
subll  Val 0.13 0.34 0.63 0.47 0.06 —0.24 —-0.73 —0.54 -0.17
Arou. 0.59 0.46 0.33 —0.18 —0.59 —0.63 —-030 0.16 0.76
subl2  Val 0.13 0.29 0.55 0.49 0.13 —0.21 -0.79 —048 —0.16
Arou. 0.51 0.47 0.34 —0.21 —0.69 —0.60 —-025 0.28 0.79
sub13  Val 0.21 0.39 0.54 0.48 0.03 —0.24 -0.72  —-0.55 —-0.21

Arou. 0.76 0.48 0.28 —0.15 —0.68 —0.59 —-024 0.14 0.69
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Table Al. Cont.
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Excited Happy Pleased Peaceful Calm Gloomy Sad Fear Suspense

subl4 Val. 0.21 0.49 0.55 0.56 0.02 —0.24 —-074 —0.68 —0.26
Arou. 0.72 0.50 0.26 —0.14 —0.54 —0.66 —0.24 0.12 0.65

sub15 Val. 0.17 0.37 0.62 0.46 0.08 —0.20 -0.75 —0.56 —0.21
Arou. 0.46 0.49 0.39 —0.22 —0.46 —0.69 —0.26 0.14 0.64

sub16 Val. 0.17 0.39 0.64 0.50 —0.01 —0.18 -079  —0.59 —0.25
Arou. 0.62 0.46 0.33 —0.25 —0.50 —0.61 —0.33 0.15 0.72

sub17 Val. 0.24 0.43 0.67 0.46 0.03 —0.12 —-058  —0.68 —0.06
Arou. 0.66 0.51 0.28 —0.20 —0.48 —0.54 —0.26 0.23 0.69

sub18 Val. 0.16 0.27 0.63 0.56 —0.01 —0.05 —-072  —0.65 —0.17
Arou. 0.51 0.60 0.34 —0.22 —0.55 —0.49 —0.26 0.22 0.74

sub19 Val. 0.25 0.45 0.61 0.48 0.10 —0.16 —-056  —0.66 —0.28
Arou. 0.75 0.52 0.27 —0.26 —0.62 —0.59 —0.37 0.22 0.73

sub20 Val. 0.25 0.29 0.52 0.54 0.04 —0.14 —-054 053 —0.28
Arou. 0.56 0.57 0.27 —0.16 —0.57 —0.54 —0.27 0.27 0.65

average  Val 0.194 0.385 0.590 0.504 0.055 —-0.180 —0.682 —0.589 —0.200
Arou.  0.608 0.510 0.312 -0.195 -0574 —-0.588 —0.278  0.193 0.708

Table A2. The emotions estimated from twenty subjects for artwork (Val. for valence and Arou.

for arousal).

Excited Happy Pleased Peaceful Calm Gloomy  Sad Fear  Suspense
sub21 Val. 0.32 0.53 0.67 0.61 0.18 -0.13 —-0.55 —047 -0.14
Arou. 0.67 0.52 0.31 -0.21 —0.61 -0.15 -028 0.21 0.59
sub22  Val 0.26 0.42 0.71 0.69 0.25 -0.1 —-045 045 —0.09
Arou. 0.61 0.49 0.33 -0.25 —0.69 -0.59 -021 015 0.49
sub23  Val 0.33 0.53 0.63 0.72 0.14 —0.08 -045 -0.39 -0.07
Arou. 0.72 0.49 0.29 -0.13 -0.73 -0.49 -0.19 0.2 0.6
sub24  Val. 0.21 0.52 0.69 0.62 0.19 —0.08 —-047 —-0.42 —0.1
Arou. 0.61 0.52 0.35 —0.18 —0.52 —0.48 -021 015 0.52
sub25  Val. 0.29 0.51 0.69 0.62 0.21 -0.17  —0.68 —0.52 -0.1
Arou. 0.59 0.54 0.34 -0.19 —0.55 —-0.49 -015 0.14 0.55
sub26  Val. 0.42 0.61 0.71 0.55 0.19 —-0.1 —0.68 —0.17 0.42
Arou. 0.68 0.53 0.35 -0.2 —0.53 —0.45 —-0.14  0.68 0.67
sub27  Val. 0.33 0.56 0.72 0.65 0.23 -011 -051 —0.1 0.33
Arou. 0.71 0.54 0.35 —-0.21 -052 —-049 —-015 059 0.71
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Table A2. Cont.
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Excited Happy Pleased Peaceful Calm Gloomy Sad Fear Suspense
sub28 Val. 0.29 0.49 0.75 0.61 0.1 —0.07 —0.5 -0.17 0.29
Arou. 0.65 0.59 0.3 —0.16 —0.51 —0.39 —0.25 0.59 0.65
sub29 Val. 0.31 0.54 0.69 0.55 0.12 —0.09 -049  —-0.19 0.31
Arou. 0.78 0.56 0.34 —0.27 —0.62 —0.48 —0.21 0.69 0.78
sub30 Val. 0.39 0.48 0.65 0.72 0.59 —0.29 -058  —0.27 0.39
Arou. 0.62 0.53 0.32 —0.21 —0.56 —0.5 —0.21 0.65 0.62
sub31 Val. 0.29 0.59 0.65 0.65 0.17 —0.11 —-049 041 —0.11
Arou. 0.74 0.56 0.24 —0.20 —0.59 —0.43 —0.22 0.23 0.65
sub32 Val. 0.26 0.43 0.71 0.71 0.23 —0.07 -038 —0.38 —0.13
Arou. 0.57 0.50 0.35 —0.19 —0.66 —0.53 —0.23 0.11 0.45
sub33 Val. 0.38 0.51 0.63 0.79 0.17 —0.08 -039 —-0.38 —0.08
Arou. 0.70 0.48 0.36 —0.14 —0.71 —0.55 —0.15 0.17 0.59
sub34 Val. 0.22 0.50 0.69 0.64 0.24 —0.07 —-042 046 —0.14
Arou. 0.59 0.49 0.32 —0.22 —0.58 —0.44 —0.18 0.22 0.48
sub35 Val. 0.26 0.57 0.68 0.61 0.19 —0.18 -0.73  —047 —0.07
Arou. 0.52 0.49 0.40 —0.20 —0.52 —0.48 —0.13 0.09 0.50
sub36 Val. 0.37 0.63 0.77 0.59 0.24 —0.15 —-0.64  —0.60 —0.20
Arou. 0.62 0.53 0.32 —0.27 —0.55 —0.40 —0.10 0.19 0.74
sub37 Val. 0.33 0.60 0.78 0.60 0.27 —0.07 —-050 —0.54 —0.12
Arou. 0.71 0.47 0.28 —0.23 —0.55 —0.45 -0.11 0.08 0.55
sub38 Val. 0.22 0.50 0.78 0.65 0.12 —0.11 -045 037 —0.12
Arou. 0.60 0.63 0.35 —0.19 —0.54 —0.38 —0.23 0.20 0.57
sub39 Val. 0.26 0.57 0.74 0.62 0.18 —0.10 —-044 047 —-0.23
Arou. 0.75 0.63 0.32 —0.32 —0.57 —0.53 —0.19 0.24 0.75
sub40 Val. 0.33 0.51 0.69 0.72 0.63 —0.29 -0.62  —0.50 —0.29
Arou. 0.57 0.52 0.28 —0.24 —0.58 —0.46 —0.15 0.13 0.70
average  Val 0.304 0.529 0.701 0.646 0.232 —-0.122 —-0.521 —0.470 —0.145
Arou.  0.650 0.531 0.324 -0210 0585 0476 —0.185 0.167 0.596
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Figure A1. Dataset for photographic portrait.
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Figure A2. Dataset for artwork portrait.
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Figure A3. Dataset for photographic landscape.
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Figure A4. Dataset for artwork landscape.
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