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Rapid identification of pathogenic bacteria using
Raman spectroscopy and deep learning
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Mark Holodniy 8,9,10, Niaz Banaei5,6,10, Amr A.E. Saleh 2,11*, Stefano Ermon3* & Jennifer Dionne2*

Raman optical spectroscopy promises label-free bacterial detection, identification, and anti-

biotic susceptibility testing in a single step. However, achieving clinically relevant speeds and

accuracies remains challenging due to weak Raman signal from bacterial cells and numerous

bacterial species and phenotypes. Here we generate an extensive dataset of bacterial Raman

spectra and apply deep learning approaches to accurately identify 30 common bacterial

pathogens. Even on low signal-to-noise spectra, we achieve average isolate-level accuracies

exceeding 82% and antibiotic treatment identification accuracies of 97.0±0.3%. We also

show that this approach distinguishes between methicillin-resistant and -susceptible isolates

of Staphylococcus aureus (MRSA and MSSA) with 89±0.1% accuracy. We validate our results

on clinical isolates from 50 patients. Using just 10 bacterial spectra from each patient isolate,

we achieve treatment identification accuracies of 99.7%. Our approach has potential for

culture-free pathogen identification and antibiotic susceptibility testing, and could be readily

extended for diagnostics on blood, urine, and sputum.
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Bacterial infections are a leading cause of death in both
developed and developing nations, taking >6.7 million lives
each year1,2. These infections are also costly to treat,

accounting for 8.7% of annual healthcare spending, or $33 billion,
in the United States alone3. Current diagnostic methods require
sample culturing to detect and identify the bacteria and its anti-
biotic susceptibility, a slow process that can take days even in
state-of-the-art labs4,5. Broad spectrum antibiotics are often
prescribed while waiting for culture results6, and according to the
Centers for Disease Control and Prevention, over 30% of patients
are treated unnecessarily7. New methods for rapid, culture-free
diagnosis of bacterial infections are needed to enable earlier
prescription of targeted antibiotics and help mitigate anti-
microbial resistance.

Raman spectroscopy has the potential to identify the species
and antibiotic resistance of bacteria, and when combined with
confocal spectroscopy, can interrogate individual bacterial cells
(Fig. 1a, b). Different bacterial phenotypes are characterized by
unique molecular compositions, leading to subtle differences in
their corresponding Raman spectra. However, because Raman
scattering efficiency is low (~10−8 scattering probability8),
these subtle spectral differences are easily masked by back-
ground noise. High signal-to-noise ratios (SNRs) are thus
needed to reach high identification accuracies9, typically
requiring long measurement times that prohibit high-
throughput single-cell techniques. Additionally, the large
number of clinically relevant species, strains, and antibiotic
resistance patterns require comprehensive datasets that are not
gathered in studies that focus on differentiating between
species10,11, isolates (typically referred to as strains in the lit-
erature)12,13, or antibiotic susceptibilities14–19. In this work, we
address this challenge by training a convolutional neural net-
work (CNN) to classify noisy bacterial spectra by isolate,
empiric treatment, and antibiotic resistance.

Results
Deep learning for bacterial classification from Raman spectra.
In order to gather a training dataset, we measure Raman spectra
using short measurement times on dried monolayer samples, as
illustrated in Fig. 1. We ensure that the majority of individual
spectra are taken over single cells and preparation conditions are
consistent between samples (See Methods). We construct refer-
ence datasets of 60,000 spectra from 30 bacterial and yeast isolates
for 3 measurement times — these 30 isolate classes cover over
94% of all bacterial infections treated at Stanford Hospital in the
years 2016–17 and are representative of the majority of infections
in intensive care units worldwide20. We further augment our
reference dataset with 12,000 spectra from clinical patient isolates,
including MRSA and MSSA isolates (see Methods for full dataset
information). Previously, the lack of large datasets prohibited the
use of CNNs due to the high number of spectra per bacterial class
needed for training.

In recent years, CNNs have been applied with tremendous
success to a broad range of computer vision problems21–30.
However, while classical machine learning techniques have been
applied to spectral data11,12,14,31,32, relatively little work has been
done in adapting deep learning models to spectral data33–36. In
particular, state-of-the-art CNN techniques from image classifi-
cation such as residual connections have previously not been
applied to low SNR, 1D spectral data. Our CNN architecture
consists of 25 1D convolutional layers and residual connections37

— instead of two-dimensional images, it takes one-dimensional
spectra as input (see Methods for further detail). Unlike previous
work, we do not use pooling layers and instead use strided
convolutions with the goal of preserving the exact locations of

spectral peaks38. Empirically, we find that this strategy improves
model performance.

We train the neural network on a 30-class isolate identification
task, where the CNN outputs a probability distribution across the
30 reference isolates and the maximum is taken as the predicted
class. The model is trained on the reference dataset and tested on
an independent test dataset gathered from separately cultured
samples.

A performance breakdown for individual classes is displayed in
the confusion matrix in Fig. 2a. Here, we show data for 1 s
measurement times, corresponding to a SNR of 4.1 — roughly an
order of magnitude lower than typical reported bacterial
spectra10–12; classification accuracies increase with SNR, as
shown in Supplementary Fig. 1. On the 30-class task, the average
isolate-level accuracy is 82.2±0.3% (± calculated as standard
deviation across 5 train and validation splits). Gram-negative
bacteria are primarily misclassified as other Gram-negative
bacteria; the same is generally true for Gram-positive bacteria,
where additionally, the majority of misclassifications occur within
the same genus. In comparison, our implementations of the more
common classification techniques of logistic regression and
support vector machine (SVM) achieve accuracies of 75.7% and
74.9%, respectively.

Identification of empiric treatments and antibiotic resistance.
Species-level classification accuracy is the standard metric for
bacterial identification, but in practice, the priority for physicians
is choosing the correct antibiotic to treat a patient. Common
antibiotics often have activity against multiple species, so the 30
isolates can be arranged into groupings based on the recom-
mended empiric treatment if the bacterial species is known.
Classification accuracies can thus be condensed into a new con-
fusion matrix grouped by empiric antibiotic treatment (Fig. 2b),
where the average accuracy of our method is 97.0±0.3%. In
comparison, logistic regression and SVM achieve accuracies of
93.3% and 92.2%, respectively.

Beyond empiric first choice antibiotics, clinicians also conduct
antibiotic susceptibility tests to determine bacterial responses to
drugs. As a step toward a culture-free antibiotic susceptibility test
using Raman spectroscopy, we train a binary CNN classifier to
differentiate between methicillin-resistant and -susceptible iso-
lates of S. aureus. This model achieves 89.1±0.1% identification
accuracy (Fig. 3a). Because the consequences for misdiagnosing
MRSA as MSSA are often more severe than the reverse
misdiagnosis, the binary decision can be tuned for higher
sensitivity (low false negative rate), as shown in the receiver
operating characteristic (ROC) curve in Fig. 3b (dotted line
denotes performance of random guessing). The area under the
curve (AUC) is 0.953, meaning that a randomly selected positive
example (i.e., Raman sample from patient with MRSA) will be
predicted to be more likely to be MRSA than a randomly selected
negative example (i.e., sample from patient with MSSA) with
probability 0.953.

Extension to clinical patient isolates. To demonstrate that this
approach can be extended to new clinical settings, we test our
model on two groups of 25 clinical isolates derived from patient
samples, for a total of 50 patients, Within each patient group,
samples include 5 isolates from each of the 5 most prevalent39

empiric treatment groups (see Supplementary Table 2 and Sup-
plementary Fig. 4). We first consider isolates from 25 patients
collected from Palo Alto VA Medical Center in 2018. We aug-
ment our reference dataset with this clinical dataset comprised of
400 spectra per clinical isolate. To account for changes in the
relative prevalence of species and antibiotic resistances over time,
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the model may be fine-tuned on a small dataset that is repre-
sentative of current patient populations. We use a leave-one-
patient-out cross-validation (LOOCV) strategy for fine-tuning,
where we assign 1 patient in each class to the test set (5 patients
total) and use the other 4 for fine-tuning (20 patients total), fine-
tuning on 10 randomly sampled spectra per patient isolate — we
repeat this process 5 times, so all 25 patient isolates appear in the
held-out test set once. We then use 10 randomly sampled spectra
from each patient isolate in the test set to reach an infection
identification for that patient isolate. The sampling procedure for
identification is repeated for 10,000 trials, and we report the
average accuracy and standard deviation, and display a trial
representing the modal result in Fig. 4a (full experiment details
can be seen in Supplementary Note 1). A CNN pre-trained on the
reference dataset serves both as initialization for the fine-tuned
model and as a baseline, achieving 89.0±3.6% (± calculated as
standard deviation across 10,000 sampling trials) species identi-
fication accuracy, a statistically significant improvement over
logistic regression and support vector machine baselines (see
Methods for details). When the CNN is fine-tuned on clinical
data and then evaluated on the held-out patients, the identifica-
tion accuracy is improved to 99.0±1.9% (Supplementary Fig. 5).
Samples for the clinical tests were prepared separately for each
patient, so we conclude that the measured performance is not due
to batch effects from sample preparation or measurement
conditions.

Because patient samples may contain very low numbers of
bacterial cells without culturing (e.g. 1 CFU/mL or fewer in
blood40), only a few individual bacterial spectra per patient may
be available to make a diagnosis. As seen in Fig. 4c, just 10 cellular
spectra are enough to reach high identification accuracy. The rate
of correct identification using 10 spectra is 99.0%, within 1% of
the performance with 400 spectra (100.0%). While acquiring
spectra from 400 individual bacterial cells would likely necessitate
culturing, we achieve high accuracy on spectra from 10 individual
bacterial cells, commensurate with typical levels of bacterial cells
present in uncultured samples40,41.

For a proof-of-concept antibiotic susceptibility test on clinical
isolates, we collect Raman spectra on 5 additional clinical MRSA
isolates and test the binary MRSA/MSSA classifier that is pre-
trained on the reference MRSA and MSSA isolates. Using the
same LOOCV process, we fine-tune the binary classifier on the
clinical spectra. A representative result is shown in Fig. 4b; any
misclassifications of MSSA as MRSA are labeled as “suboptimal”,
indicating that Vancomycin (prescribed for MRSA) is also
effective on MSSA but is not considered optimal treatment and
may introduce adverse patient effects. On average, the pre-trained
binary classifier achieves 61.7 ± 7.3% accuracy and the fine-tuned
binary classifier achieves 65.4 ± 6.3% accuracy (Supplementary
Fig. 5).

Finally, to test the robustness of the fine-tuning approach over
multiple clinical datasets, we use our second patient group of 25
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one-dimensional residual network with 25 total convolutional layers (see Methods for details), low-signal Raman spectra are classified as one of 30
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isolates, collected from Stanford Hospital from February 2019 to
March 2019. We conduct additional fine-tuning of the model that
is pre-trained on the reference dataset and fine-tuned on the
original clinical dataset. The treatment group identification
accuracy on the new clinical dataset using only 10 spectra per
patient is 99.7±1.1% Fig. 4d, e, with improved performance for
both S. aureus and P. aeruginosa, demonstrating the potential for
continuous improvement of the trained model.

Discussion
In this work, we apply state-of-the-art deep learning techniques
to noisy Raman spectra to identify clinically relevant bacteria and
their empiric treatment. A CNN model pre-trained on our dataset
can easily be extended to new clinical settings through fine-tuning
on a small number of clinical isolates, as we have shown on our
clinical dataset. We envision that fine-tuning processes such as

the one demonstrated here could be important components for
continuously evaluating and improving deployed models. Our
model, applied here to the identification of clinically relevant
bacteria, can be applied with minimal modification to other
identification problems such as materials identification, or other
spectroscopic techniques such as nuclear magnetic resonance,
infrared, or mass spectrometry.

This study uses measurement times of 1 s, corresponding to
SNRs that are an order of magnitude lower than typical reported
bacterial spectra — while still achieving comparable or improved
identification accuracy on more isolate classes than typical Raman
bacterial identification studies. A common strategy for reducing
measurement times is surface-enhanced Raman scattering (SERS)
using plasmonic structures, which can increase the signal strength
by several orders of magnitude11,42,43. SERS spectra can be highly
variable and difficult to reproduce, particularly on cell
samples8,44, making it difficult to develop a reliable diagnostic
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Fig. 2 CNN performance breakdown by class. The trained CNN classifies 30 bacterial and yeast isolates with isolate-level accuracy of 82.2±0.3% and
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method based on SERS. However, with a dataset capturing the
breadth of variation in SERS spectra, a CNN could enable a
platform that processes blood, sputum, or urine samples in a
few hours.

Compared to other culture-free methods45 including single-cell
sequencing46–49 and fluorescence or magnetic tagging50, Raman
spectroscopy has the unique potential to be a technique for
identifying phenotypes that does not require specially designed
labels, allowing for easy generalizability to new strains.

To achieve treatment recommendations as fine-grained as
those from culture-based methods, larger datasets covering more
resistant and susceptible clinical isolates, greater diversity in
antibiotic susceptibility profiles, cell states, and growth media and
conditions would be needed. Though collecting such datasets is
beyond an academic scope, requiring highly automated sample
preparation and data acquisition processes, there is promise for
clinical translation. Similarly, studies applying the Raman-CNN
system to identify pathogens in relevant biofluids such as whole
blood, sputum, and urine are a promising future direction to
demonstrate the validity of the method as a diagnostic tool. When
combined with such an automated system, the Raman-CNN
platform presented here could rapidly scan and identify every cell
in a patient sample and recommended an antibiotic treatment in
one step, without needing to wait for a culture step. Such a
technique would allow for accurate and targeted treatment of
bacterial infections within hours, reducing healthcare costs and
antibiotics misuse, limiting antimicrobial resistance, and
improving patient outcomes.

Methods
Dataset. The reference dataset consists of 30 bacterial and yeast isolates, including
multiple isolates of Gram-negative and Gram-positive bacteria, as well as Candida
species. We also include an isogenic pair of S. aureus from the same strain, in
which one variant contains the mecA resistance gene for methicillin (MRSA) and
the other does not (MSSA)51 (see Supplementary Table 1 for full isolate infor-
mation). The reference training dataset consists of 2000 spectra each for the 30
reference isolates plus isogenic MSSA at 3 measurement times. The reference fine-
tuning and test datasets each consist of 100 spectra for each of the 30 reference
isolates. The first clinical dataset consists of 30 patient isolates distributed across
5 species, with 400 spectra per isolate. The second clinical dataset consists of 25
patient isolates distributed across the same 5 species, with 100 spectra per isolate.
Due to degradation in optical system efficiency, the measurement times for the
reference fine-tuning and test and second clinical datasets were increased from 1 s
to 2 s in order to keep SNR consistent across datasets. Antibiotic susceptibility was
performed by first genotypic testing for methicillin by detecting mecA using PCR
(PMID: 19741081). Then phenotypic antimicrobial susceptibility testing was per-
formed on the Microscan Walkaway instrument (Beckman Coulter, Brea, CA) and
VITEK® 2 (Biomérieux, Inc., Durham, NC).

Dataset variance. For our datasets, we observe that intra-sample variance is high,
as demonstrated by the pairwise spectral difference analysis summarized in Sup-
plementary Fig. 2. For 19 out of 30 isolates, spectra from at least one other isolate
are more similar on average than spectra from the same isolate, on average. For
example, when we rank isolates in order of similarity to E. faecalis 2 (Supple-
mentary Fig. 2c), there are 8 other isolates where the average difference between a
spectrum from E. faecalis 2 and a spectrum from the other isolate is smaller than
the average difference between two spectra from E. faecalis 2. When intra-sample
variance is high, a large number of spectra per sample may help to better represent
the full data distribution and lead to higher predictive performance.

Sample preparation. Bacterial isolates were cultured on blood agar plates each day
before measurement. Plates were sealed with Parafilm and stored at 4 °C for 20 min
to 12 h before sample preparation. Storage times varied to allow for multiple
measurement times per day; however all other sample preparation conditions were
kept consistent between samples. Differences in storage time were not found to
result in spectral changes greater than spectral changes due to strain or isogenic
differences. All clinical isolates were prepared in separate samples with consistent
sample preparation conditions. Because test samples were prepared separately from
samples used for training, we conclude that classifications are not due to batch
effects such as differences in sample preparation. We prepared samples for mea-
surement by suspending 0.6 mg of biomass from a single colony in 10 µL of sterile
water (0.4 mg in 5 µL water for Gram-positive species) and drying 3 µL of the
suspension on a gold-coated silica substrate (Fig. 1a, b). Substrates were prepared
by electron beam evaporation of 200 nm of gold onto microscope slides that were
pre-cleaned using base piranha. Samples were allowed to dry for 1 h before
measurement.

Raman measurements. We measured Raman spectra across monolayer regions of
the dried samples (Fig. 1a) using the mapping mode of a Horiba LabRAM HR
Evolution Raman microscope. 633 nm illumination at 13.17 mW was used with a
300 l/mm grating to generate spectra with 1.2 cm−1 dispersion to maximize signal
strength while minimizing background signal from autofluorescence. Wavenumber
calibration was performed using a silicon sample. The ×100 0.9 NA objective lens
(Olympus MPLAN) generates a diffraction-limited spot size, �1 µm in diameter.
A 45 × 45 discrete spot map is taken with 3 µm spacing between spots to avoid
overlap between spectra. The spectra are individually background corrected using a
polynomial fit of order 5 using the subbackmod Matlab function available in the
Biodata toolbox (see Supplementary Fig. 1 for examples of raw and corrected
spectra). The majority of spectra are measured on true monolayers and arise from
~1 cell due to the diffraction-limited laser spot size, which is roughly the size of a
bacteria cell. However, a small number of spectra may be taken over aggregates or
multilayer regions. We exclude the spectra that are most likely to be non-
monolayer measurements by ranking the spectra by signal intensity and discarding
the 25 spectra with highest intensity, which includes all spectra with intensities
greater than two standard deviations from the mean. We measured both mono-
layers and single cells, and found that monolayer measurements have SNRs of 2.5
± 0.7, similar to single-cell measurements (2.4 ± 0.6), while allowing for the semi-
automated generation of a large training dataset. The spectral range between 381.98
and 1792.4 cm−1 was used, and spectra were individually normalized to run from a
minimum intensity of 0 and maximum intensity of 1 within this spectral range.
SNR values are calculated by dividing the total intensity range by the intensity
range over a 20-pixel wide window in a region where there is no Raman signal.

CNN architecture & training details. The CNN architecture is adapted from the
Resnet architecture37 that has been widely successful across a range of computer
vision tasks. It consists of an initial convolution layer followed by 6 residual layers
and a final fully connected classification layer — a block diagram can be seen in
Fig. 1. The residual layers contain shortcut connections between the input and
output of each residual block, allowing for better gradient propagation and stable
training (refer to reference 37 for details). Each residual layer contains 4 con-
volutional layers, so the total depth of the network is 26 layers. The initial con-
volution layer has 64 convolutional filters, while each of the hidden layers has 100
filters. These architecture hyperparameters were selected via grid search using one
training and validation split on the isolate classification task. We also experimented
with simple MLP (multi-layer perceptron) and CNN architectures but found that
the Resnet-based architecture performed best.

We first train the network on the 30-isolate classification task, where the output
of the CNN is a vector of probabilities across the 30 classes and the maximum
probability is taken as the predicted class. The binary MRSA/MSSA and binary
isogenic MRSA/MSSA classifiers have the same architecture as the 30-isolate
classifier, aside from the number of classes in the final classification layer. We use
the Adam optimizer52 across all experiments with learning rate 0.001, betas (0.5,
0.999), and batch size 10. Classification accuracies are reported across 5 randomly
selected train and validation splits. We first pre-train the CNN on the reference
training dataset, then fine-tune on the reference fine-tuning dataset to account for
measurement changes due to degradation in optical system efficiency. For each of
the 5 splits, we split the fine-tuning data into 90/10 train and validation splits, train
the CNN on the train split, and use the accuracy on the validation split to perform

0 1
Specificity

0

1

S
en

si
tiv

ity

Random
 classification

MSSA/MRSA classifier

M
S

S
A

M
R

S
A

MSSA

MRSA

True

P
re

di
ct

ed

90 10

13 87

a b

AUC = 0.95

Fig. 3 Binary MRSA/MSSA classifier. a A binary classifier is used to
distinguish between methicillin-resistant and -susceptible S. aureus
(MRSA/MSSA), achieving 89.1±0.1% accuracy. b By varying the
classification threshold, it is possible to trade off between sensitivity (true
positive rate) and specificity (true negative rate). The ROC curve shows
sensitivities and specificities significantly higher than random classification,
with an AUC of 0.953

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12898-9 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4927 | https://doi.org/10.1038/s41467-019-12898-9 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


model selection. We then evaluate and report the test accuracy on the test dataset
which is gathered from independently cultured and prepared samples. The binary
MRSA/MSSA classifier is trained and fine-tuned using the same procedure. The
binary isogenic MRSA/MSSA classifier is trained using a similar procedure on data
from a single measurement series.

All error values reported for tests on the reference dataset are standard
deviation values across 5 splits.

While a high number of samples is good for ensuring dataset variation, deep
learning approaches can still benefit from having a high number of examples per
sample. When intra-sample variance is high, as we observe for our datasets, a large
number of spectra per sample may better represent the full distribution and lead to
higher predictive performance.

For the clinical isolates, we start by pre-training a CNN on the empiric
treatment labels for the 30 reference isolates. We then use the following leave-one-
patient-out cross-validation (LOOCV) strategy to fine-tune the parameters of the
CNN. There are a total of 25 patient isolates across 5 species. In each of the 5 folds,
we assign 1 patient in each species to the test set, 1 patient in each species to
the validation set, and the remaining 3 patients in each species to the training
(i.e., fine-tuning) set. We then use the clinical training set (consisting of isolates
from 15 patients) to fine-tune the CNN parameters, and use accuracy on the
validation set (5 patient isolates) to do model selection. The test accuracy for each
fold is evaluated on the test set (5 patient isolates) using the method
described below.

Clinical identification data analysis. To reach an identification for patient iso-
lates, 400 spectra are measured across a sample from each patient isolate. 10 of
these spectra are chosen at random to be classified. The most common class out of
the 10 spectral classifications is then chosen as the identification for each patient
isolate, with ties broken randomly. All error values reported for tests on the clinical
dataset are standard deviations across 10,000 trials of random selections of
10 spectra, with an upper accuracy bound of 100%. For the second clinical dataset,
we perform the same procedure, except that we choose 10 out of 100 spectra for
each patient isolate, and use a model that is both pre-trained on the reference
dataset and fine-tuned on the first clinical dataset.

Baselines. In all experiments where logistic regression (LR) and support vector
machine (SVM) baselines were used, we first used PCA to reduce the input
dimension from 1000 to 20— this hyperparameter was determined by plotting test
accuracies for different settings on one training and validation split for the 30
isolate task and picking a value near where the test accuracy saturated. Using only
the first 20 principal components not only decreases computation costs, but also
increases accuracy by reducing the amount of noise in the data. For each fold of the
cross validation procedure, we use grid search to choose the regularization
hyperparameter for each model achieving the best validation accuracy and report
the corresponding test accuracy. Using both the training and fine-tuning reference
datasets to train the baseline models, LR and SVM achieve 57.5% and 56.8% on the
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30-class task and 89.0% and 88.3% on the empiric treatment task, respectively.
Using only the fine-tuning reference dataset, LR and SVM achieve 75.7% and
74.9% on the 30-class task and 93.3% and 92.2% on the empiric treatment task,
respectively. The latter performance is higher because the baseline models do not
benefit from additional training data as the CNN does, but rather benefit from
training data the most closely matches the measurement conditions of the test data.

Two-sample test of sample means. We use the Welch’s two-sample t-test to test
whether the differences in mean clinical accuracy for the CNN and the SVM and
LR baselines were statistically significant. Welch’s t-test is a variation of the Stu-
dent’s t-test that is used when the two samples may have unequal variances. In each
case, we start by computing the pooled standard deviation as

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn1 � 1Þσ21 þ ðn2 � 1Þσ22
n1 þ n2 � 2

s

: ð1Þ

We then compute the standard error of the difference between the means as

se ¼ σ ´

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n1

þ 1
n2

s

: ð2Þ

Finally, we can compute the test statistic as

t ¼ μ1 � μ2
se

; ð3Þ
and then compute the p-value using the corresponding Student’s t-distribution. For
our computations, nCNN ¼ nLR ¼ nSVM ¼ 10000, μCNN ¼ 89:0, μLR ¼ 81:8,
μSVM ¼ 82:9, σCNN ¼ 3:6, σLR ¼ 6:0, and σSVM ¼ 5:9. In comparing the CNN with
LR, we computed a t-statistic of 102.9 and in comparing the CNN with SVM, we
computed a t-statistic of 88.3. In both cases, we reject the null hypothesis that the
means are equal at the 1e-6 p-level.

Biological materials availability. Unique isolates are available from the authors
upon reasonable request.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data needed to replicate these results are available at https://github.com/csho33/
bacteria-ID.

Code availability
All code needed to replicate these results is available at https://github.com/csho33/
bacteria-ID.
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