Skip to main content
. 2019 Dec 26;18:153–161. doi: 10.1016/j.csbj.2019.12.005

Table 1.

Performance comparison of our doc2vec + RF model with Alguwzizani et al.’s and Barman et al.’s methods using Barman et al.’s dataset.

Method SN (%) SP (%) ACC (%) PPV (%) NPV (%) MCC AUC F1 (%)
Our model 81.85 76.45 79.17 77.83 80.67 0.584 0.871 79.79
Alguwzizani et al.’s SVMa,b 73.72 83.48 78.60 81.69 76.06 0.575 0.847 77.50
Barman et al.’s SVMa,c,d 67.00 74.00 71.00 72.00 NA 0.440 0.730 69.41
Barman et al.’s RFa,c,d 55.66 89.08 72.41 82.26 NA 0.480 0.760 66.39
a

The performance was assessed through 5-fold cross-validation.

b

The corresponding values were retrieved from [54].

c

The corresponding values were retrieved from [53].

d

NA means the corresponding parameter is not available. SN: Sensitivity; SP: Specificity; ACC: Accuracy; PPV: Positive Predictive Value (PPV = Precision); NPV: Negative Predictive Value (NPV = TN/(TN + FN)); MCC: Matthews Correlation Coefficient; AUC: the area under the ROC curve; F1 = 2 × (Precision × Recall)/(Precision + Recall).