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METHODOLOGY

The mosquito electrocuting trap 
as an exposure‑free method for measuring 
human‑biting rates by Aedes mosquito vectors
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Abstract 

Background:  Entomological monitoring of Aedes vectors has largely relied on surveillance of larvae, pupae and 
non-host-seeking adults, which have been poorly correlated with human disease incidence. Exposure to mosquito-
borne diseases can be more directly estimated using human landing catches (HLC), although this method is not 
recommended for Aedes-borne arboviruses. We evaluated a new method previously tested with malaria vectors, the 
mosquito electrocuting trap (MET) as an exposure-free alternative for measuring landing rates of Aedes mosquitoes 
on people. Aims were to (i) compare the MET to the BG-sentinel (BGS) trap gold standard approach for sampling host-
seeking Aedes vectors; and (ii) characterize the diel activity of Aedes vectors and their association with microclimatic 
conditions.

Methods:  The study was conducted over 12 days in Quinindé (Ecuador) in May 2017. Mosquito sampling stations 
were set up in the peridomestic area of four houses. On each day of sampling, each house was allocated either a MET 
or a BGS trap, which were rotated amongst the four houses daily in a Latin square design. Mosquito abundance and 
microclimatic conditions were recorded hourly at each sampling station between 7:00–19:00 h to assess variation 
between vector abundance, trapping methods, and environmental conditions. All Aedes aegypti females were tested 
for the presence of Zika (ZIKV), dengue (DENV) and chikungunya (CHIKV) viruses.

Results:  A higher number of Ae. aegypti females were found in MET than in BGS collections, although no statistically 
significant differences in mean Ae. aegypti abundance between trapping methods were found. Both trapping meth‑
ods indicated female Ae. aegypti had bimodal patterns of host-seeking, being highest during early morning and late 
afternoon hours. Mean Ae. aegypti daily abundance was negatively associated with daily temperature. No infection by 
ZIKV, DENV or CHIKV was detected in any Aedes mosquitoes caught by either trapping method.

Conclusion:  We conclude the MET performs at least as well as the BGS standard and offers the additional advantage 
of direct measurement of per capita human-biting rates. If detection of arboviruses can be confirmed in MET-collected 
Aedes in future studies, this surveillance method could provide a valuable tool for surveillance and prediction on 
human arboviral exposure risk.

Keywords:  Zika, Dengue, Chikungunya, Arbovirus, Host-seeking, Aedes aegypti, Mosquito electrocuting trap, BG 
sentinel trap, Vector surveillance, Ecuador
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Background
Mosquito-borne viruses (arboviruses) are an important 
cause of diseases in humans and animals. In 2017, esti-
mates suggested that mosquitoes were responsible for 
approximately 137 million human arboviral infections 
with dengue (DENV), chikungunya (CHIKV) and Zika 
virus (ZIKV) being the most important [1]. Arbovirus 
transmission to humans depends on multiple factors that 
involve spatial movement and immunity of human popu-
lations [2–4], socio-economic factors and access to basic 
services (especially water) [5, 6], and the ecology and 
distribution of the mosquito vectors that transmit them 
[7–9]. These factors combine to determine the distribu-
tion and intensity of arboviral transmission and gener-
ate often complex and highly heterogeneous patterns of 
exposure and infection [10, 11]. As safe and effective vac-
cines for DENV, CHIKV and ZIKV are not yet available 
[12–14], control of the Aedes mosquito vectors remains a 
primary strategy for reducing transmission [15–17].

Knowledge of where and when humans are at great-
est risk of exposure to infected mosquito bites is vital for 
prediction of transmission intensity and effective deploy-
ment of vector control [18–20]. In the case of malaria, 
this information is used to estimate a time or site-specific 
“Entomological Inoculation Rate” (EIR); defined as the 
number of infected mosquito bites a person is expected 
to receive. This metric is usually derived from conduct-
ing human landing catches (HLCs); a method in which a 
participant collects and counts the number of mosquito 
vectors landing on them over a given sampling period, 
then the sample is tested for the presence of a pathogen 
[21]. By providing a direct estimate of human exposure, 
the HLC provides sensitive predictions of malaria trans-
mission [19, 22–24]. However, this method raises ethical 
concerns due to the requirement for human participants 
to expose themselves to potentially infectious mosquito 
bites [25]. In the case of malaria, this risk can be mini-
mized by providing participants with prophylaxis [26]. 
However, such remediation is not possible for arbovi-
ruses where often no prophylaxis is available, and there-
fore HLCs are not recommended for the surveillance of 
Aedes-borne arboviruses [27, 28].

Standard entomological monitoring for Aedes vectors 
is usually based on “exposure-free” surveillance of lar-
vae or non-biting adults. This includes surveys of larvae 
or pupae in water containers [29, 30], and collection of 
adult mosquitoes resting inside and/or around houses to 
indirectly estimate human-vector contact rates [29, 31]. 
While such surveillance methods are useful for confirm-
ing vector abundance and distribution, they are poor 
predictors of epidemiological outcomes such as disease 
incidence and outbreak potential [32, 33]. Consequently, 
there is a need for vector sampling methods that can 

provide more reliable entomological indicators of arbo-
viral transmission.

Human exposure to arboviral infection is likely best 
assessed by surveillance of “host-seeking” (human-biting) 
Aedes mosquitoes. Several methods have used to sample 
host-seeking Aedes including a variety of fan-operated 
traps that use visual attraction cues (e.g. Fay [34], the 
Fay-Prince trap [35], the black cylinder suction trap [36], 
duplex cone trap [37]) and lure-based traps. For the lat-
ter, artificial odours and attractants have been developed 
and tested for use in traps such as kairomone blends [38, 
39], BG-Lure® cartridges [40, 41] and carbon dioxide 
(CO2) [42]. Additionally, other trapping methods have 
been developed that use live hosts as lures (e.g. animal-
baited traps [43] and human-baited traps [44, 45]). Only 
a few studies have directly compared such alternative 
trapping methods against the HLC with most being out-
performed by the latter [44, 45]. Out of all these meth-
ods, the BG-sentinel (BGS) trap has been demonstrated 
as one of the most effective and logistically feasible [46, 
47], and thus often considered a gold standard for Aedes 
surveillance [48, 49]. In a range of trap evaluation stud-
ies, the BGS outperformed other methods for Aedes vec-
tors except for HLC [50]. Despite these advantages of the 
BGS, its ability to accurately reflect the biting rates expe-
rienced by one person remains unclear. Consequently, 
there is still a need for a safe alternative for direct assess-
ment of human biting rates.

Recently, a new mosquito electrocuting trap (MET) 
was developed as an exposure-free alternative to the HLC 
for sampling malaria vectors [51–53]. This trap was built 
on previous work using electrified nets and grids to trap 
tsetse flies [54, 55] and mosquitoes [56, 57] attracted to 
hosts or their odours. Similar to the HLC, this sampling 
method also uses human participants to lure mosquito 
vectors and trap them. However, the MET provides par-
ticipants with full protection from mosquito bites so 
that no exposure is required. The MET consists of four 
squared-shaped electrocuting surfaces that are assem-
bled around the legs of a host, with the rest of their body 
being protected by netting. Host-seeking mosquitoes 
are attracted towards the host by odour and heat cues as 
normal but are intercepted and killed before landing. In 
previous trials in Tanzania, the MET matched the perfor-
mance of the HLC for sampling malaria vectors in rural 
and urban settings [51–53]. This trap has also been used 
to assess host preference by baiting with human and live-
stock hosts [53], although it has not yet been evaluated 
for sampling Aedes vectors. If successful in this context, 
the MET could significantly improve ability to moni-
tor and predict arboviral transmission by facilitating an 
exposure-free direct estimation of EIR.
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This study reports the first evaluation of METs for sam-
pling host-seeking Aedes vectors in a hotspot of DENV 
and ZIKV transmission in coastal region of Ecuador. 
This region is endemic for such arboviral diseases and 
has accounted for most of the cases reported in Ecuador. 
For instance, during the CHIKV outbreak in 2015, a total 
of 33,625 cases were reported in Ecuador, from which 
96.02% was reported in the coastal region [58]. A simi-
lar pattern occurred during the ZIKV outbreak in 2016 
and 2017, where approximately 98.49% of the cases were 
reported in this region from a total of 5303 cases [59, 60]. 
DENV has been reported every year in high numbers and 
considering 2016 and 2017, 84.78% of cases came from 
the coastal region from a total of 25,537 cases [60, 61].

The objectives of this study were to: (i) evaluate the 
performance of the MET relative to the BGS trap for 
sampling host-seeking Ae. aegypti and other mosquitoes 
in the study area; and (ii) use the MET to characterize 
the biting time of Ae. aegypti and other relevant mos-
quito species and their association with microclimatic 
conditions.

In addition, we took the opportunity to test for the 
presence of arboviruses in the collected Aedes females by 
both trapping methods to investigate arboviral transmis-
sion in the local area.

Methods
Location and time of the study
This study was conducted in the neighbourhood of “Los 
Higuerones” (0°19′34″N, 79°28′02″W, 78  meters above 
sea level), located in the city of Quinindé (Rosa Zárate) 
(Ecuador). This neighbourhood is located in an urban set-
ting dominated by small, closely packed houses (Fig. 1c), 
bordering the eastern side with the Blanco River (Fig. 1d). 
Quinindé is located in the Province of Esmeraldas, the 
northernmost province in the coastal region of Ecua-
dor. During the 2015 outbreak of CHIKV, this province 
accounted with the highest disease burden in the country, 
with a total of 10,477 cases [58]. While for DENV, dur-
ing 2016, Quinindé alone accounted for 52% of the cases 
within Esmeraldas Province, with a total of 689 cases out 
of a total of 1319. In 2017, the number of DENV cases 
in Quinindé was much lower compared with 2016, where 
only 87 cases were reported out of 334 in the Province of 
Esmeraldas. Although there is a permanent incidence of 
arbovirus cases along the year, a higher incidence is usu-
ally reported during the first half of the year [6].

The study was carried out across 12 days in May 2017 
(4th–12th, and 16th–18th). On each day of the study, 
mosquito sampling was conducted over 12  h, from 
7:00–19:00 h. Mosquito sampling was conducted within 
the peridomestic area (garden/yard) of four households 
(Fig.  1d). These houses were selected on the basis of 

being physically accessible, and having residents present 
and willing to participate during an initial tour of the area 
with a local guide. Houses were separated by approxi-
mately 90 m from one another.

Trapping methods
Over the study period, host-seeking mosquitoes were 
sampled by two different methods as described below.

BG‑Sentinel trap (BGS)
The BG-Sentinel® trap (BioGents, Regensburg, Germany) 
is a white, cylinder-shaped trap made of plastic with a 
gauze cloth covering the top and a hollow black cylinder 
in the top centre of the trap (Fig. 2a). The trap operates 
with a 12 V battery that powers an internal fan that pro-
duces inwards artificial air currents. In this study, each 
trap was baited with two BG-Lure® cartridges and a 1.4 l 
cooler bottle filled with dry ice in order to maximize the 
attractiveness of traps to Aedes; as it is known that CO2 
increases the catch efficiency of BGS traps [46, 47, 62]. 
Mosquitoes are attracted towards the baited traps and 
then sucked through the hollow black cylinder into an 
internal mesh bag that can be easily removed for subse-
quent processing.

Mosquito electrocuting trap (MET)
The METs used here consisted of four 30 × 30 cm panels 
which are assembled into a box around the lower legs of 
a seated person (Fig. 2b). Each panel is made up of stain-
less-steel electrified wires set within a PVC frame. The 
wires are positioned 5 mm apart, which is close enough 
so that mosquitoes could not pass through without mak-
ing contact. Wires are vertically arranged in parallel, 
alternating positive with negative. When mosquitoes try 
to go through, contact is made and the voltage between 
wires kills them.

Mosquitoes attracted towards the volunteer were inter-
cepted and killed on contact with these panels. The MET 
is powered by two 12 V batteries connected in series to 
a power source giving a power output of approximately 
6  W (10  mA, 600  V). As an additional safety feature, a 
protective inner panel made from wide non-conductive 
plastic grid was fit into each frame preventing accidental 
contact between users and the electrified wires.

As an additional accessory to the MET, a retractable 
aluminium frame was built to cover the rest of the volun-
teer’s body with untreated mosquito-proof netting. Thus, 
volunteers were completely protected from mosquito 
bites during their participation in trapping. A plastic tar-
paulin was erected over the MET station at a height of 
2 m to protect users from direct rain and sunlight. Each 
MET was also set up on top of a white plastic sheet to 
isolate it from the ground and make it easier to see and 
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collect shocked mosquitoes that fell onto the ground 
after touching the MET.

Experimental design
Every day of the study, four traps (two METs and two 
BGS traps) were set up in the peridomestic area of the 
four households (one trap per household) at the ground 
level under shade conditions. Traps were rotated among 
households each day, so that a different trapping method 
was used every consecutive day in each house. At the end 

of the study, this resulted in 6 days of trapping being con-
ducted with each of the 2 methods at all houses.

MET collections were carried out by members of the 
research team, who were all adult men (30–50 years-old). 
During each hour of the collection period, one mem-
ber sat within the MET for 45 min, with the trap being 
turned off for the remaining 15 min to allow volunteers 
to take a break. Members of the study team took turns 
sitting in the trap so that different collectors lured every 
hour. During the 15 min period when traps were turned 

Fig. 1  View of the urban area of the city of Quinindé. a Location of Ecuador in the Americas highlighted in red (taken from [96]). b Location of the 
city of Quinindé in the Pacific Coastal region, spotted by the red circle. c City of Quinindé showing Los Higuerones neighbourhood enclosed by the 
red line. d Enlarged view of Los Higuerones with the houses sampled spotted by the orange circles

Fig. 2  Trapping methods used in this study. a Typical set-up of a BGS trap. b Set-up of a MET with a technician luring mosquitoes
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off, mosquitoes were recovered from trap surfaces and 
the ground below using a pair of forceps, counted and 
placed in empty 15 ml falcon tubes; which were labelled 
with a unique code linked to the date, household ID, trap 
ID, hour period and collector ID. Tubes were stored in a 
cooler box of 45 l capacity filled with dry ice to kill, pre-
serve and transport the specimens.

Each BGS was baited with two BG-Lure® cartridges on 
each day of sampling; with lures exchanged between the 
two BGS traps each day to minimize bias due to differ-
ential lure efficiency. BGS traps were further baited with 
carbon dioxide by adding one 1.2 l Coleman® polyethyl-
ene cooler bottle filled with dry ice. Dry ice containers 
were topped up every day. Like the MET, BGS sampling 
was conducted for 45  min of each sampling hour, with 
mosquito collection bags being checked and emptied 
during 15 min break periods. Mosquitoes from BGS col-
lection bags were emptied into pre-labelled plastic bags 
and transferred into a cooler box with dry ice to kill and 
preserve the mosquitoes.

Temperature and relative humidity data were collected 
every 10  min at each mosquito sampling point using 
TinyTag® Plus 2 TGP-4500 (Gemini Co., Chichester, UK) 
data loggers. Data loggers at the BGS sampling stations 
were tied and hung inside each of the traps, and loggers 
at MET sampling points were placed on top of the bot-
tom border of the netting frame, next to the MET.

Morphological analysis
Mosquitoes collected in the field were transported 
to the Medical Entomology and Tropical Medicine 
Laboratory of the San Francisco de Quito University 
(LEMMT-USFQ) in cooler boxes filled with dry ice. At 
LEMMT-USFQ, mosquitoes were morphologically iden-
tified using taxonomic keys [63–65], counted and sorted 
into different cryo-vials according to date, household, 
trap type, hour of collection, species, sex and physiologi-
cal status of females (blood-fed/gravid and non-blood-
fed). All female Ae. aegypti specimens were retained for 
subsequent molecular analysis to test for the presence 
of ZIKV, DENV and CHIKV. These Ae. aegypti samples 
were grouped into pools of a maximum of 5 individuals.

Molecular detection of arboviruses
All pools of female Ae. aegypti specimens were screened 
for the presence of CHIKV, DENV and ZIKV. Details on 
the RNA extraction, reverse-transcription and PCR pro-
cedures are given in Additional file 1: Text S1, Table S1 
and Table S2.

Data analysis
Statistical analyses were performed in R 3.5.0 and R Stu-
dio 1.1.419. Generalized linear mixed models (GLMM) 

were used to investigate variation in the abundance of 
host-seeking mosquitoes (per day and per hour) using 
the package lme4 in R [66]. As mosquito abundance data 
were overdispersed, all models were fitted with a negative 
binomial distribution. For all response variables of inter-
est as described below, model selection was carried out 
through a process of backward stepwise elimination from 
a maximal model using likelihood ratio tests (LRT) [67].

Statistical analysis was performed for Ae. aegypti and 
Culex quinquefasciatus as the latter was the only other 
mosquito species found in high abundance in the study 
area. Culex quinquefasciatus is a nuisance biting mos-
quito and also a known vector of West Nile virus (WNV) 
[68].

The BGS traps functioned continuously across all 
days and sampling hours. However, the METs stopped 
running during some sampling hours; generally, under 
conditions of very high humidity due to rainfall which 
resulted in dampness on the traps and some temporary 
short circuiting (e.g. observed as plumes of smoke at the 
bottom junction with the frames). When these malfunc-
tions occurred, the damaged traps were turned off and 
repaired. This resulted in variation in the total number 
of hours sampled with each trapping method (MET: 
229 h; BGS: 270 h). This variation in sampling effort was 
accounted for in the statistical analysis. Days having less 
than 9 h were excluded from the analysis.

Four models were built to assess the variation in the 
abundance of each mosquito species and sex combina-
tion, respectively. For each of these four response varia-
bles, a maximal model was constructed that included the 
fixed explanatory variables of sampling effort (total num-
ber of hours of collection), trap type (MET or BGS), daily 
mean relative humidity (%RH), and daily mean tempera-
ture (°C). In addition, the interaction between daily mean 
temperature with relative humidity was also included. 
Sampling day (1 through 12), household ID, trap ID and 
attractant ID (BG-Lure cartridge ID or MET volunteers 
ID) were included as random effects.

Mosquito biting activity was assessed through analysis 
of variation in the mean number of females (Ae. aegypti 
and Cx. quinquefasciatus) caught per hour. Here, each 
mosquito species was analysed separately. Each model 
included the explanatory variables trap type (MET or 
BGS), sampling hour, mean temperature (°C) per hour, 
mean relative humidity (%RH) per hour, and the inter-
action between hourly temperature and relative humid-
ity. Sampling hour was defined as a continuous variable 
recoding the first hour of trapping (7:00–8:00 h) into 1, 
and increasing “hour” by one digit for each subsequent 
hour until 12  h (17:00–18:00  h). Sampling hour was 
fit both as a linear and quadratic term, with the latter 
being used to test for peaks in biting time as have been 
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previously reported for these mosquito species [69]. In 
addition, sampling day, trap ID, cluster ID, household ID 
(nested within cluster ID) and attractant ID (BG-Lure 
cartridge ID or MET volunteer ID) were fitted as random 
effects.

Results
Mosquito species and abundance
During the 12  day-experiment, a total of five mos-
quito species were collected by both trapping methods 
(Table 1). Culex quinquefasciatus was the most abundant 
species (78.6%) followed by Ae. aegypti (15.63%), and 
small numbers of Aedes angustivittatus (2.69%), Limatus 
durhami (2.33%) and Psorophora ferox (0.15%). A small 
proportion of mosquitoes could not be identified (0.51%, 
Table  1). Overall, more mosquitoes were collected with 
the BGS trap (60.77%) than with the MET (39.23%), 
but the numbers of Ae. aegypti were relatively similar 
(Table 1).

In the BGS traps, some non-target insects includ-
ing house flies, butterflies, crane flies, and many fruit 
flies were caught. No insect taxa other than mosquitoes 
shown in Table 1 were caught in MET collections.

The mean daily abundance of Ae. aegypti was approxi-
mately 2 females and 3 males for the BGS trap, and 4 
females and 4 males for the MET, but no significant dif-
ferences between trapping methods were found (Table 2, 
Fig.  3a, b). The only significant predictor of daily abun-
dance of females Ae. aegypti was temperature, which 
exhibited a negative association (Table 2, Fig. 4a). Simi-
larly, the mean daily abundance of Cx. quinquefascia-
tus females did not significantly differ between trapping 
methods (Table 2, Fig. 3c, d); however, confidence inter-
vals (especially for males) around estimates were very 
large, indicating that larger sample sizes may be required 
to robustly test if there were differences between trap 
types. The number of female Cx. quinquefasciatus per 
day varied between 16–207, with variation being even 
more pronounced for males where a high of 576 was 

caught on one day. The daily abundance of female Cx. 
quinquefasciatus was negatively associated with daily 
temperature (Table  2, Fig.  4b) and positively associated 
with the number of hours sampled in a day, while no sig-
nificant differences were found in Cx. quinquefasciatus 
regarding any covariate (Table 2).

Mosquito biting activity
Hourly mosquito catches recorded for BGS and METs 
were used to characterize the biting activity of female 
Ae. aegypti and Cx. quinquefasciatus. Variation in the 
hourly biting activity of female Ae. aegypti was best 
explained by a quadratic association between hourly 
mosquito abundance and time (Table  3), with activity 
being highest in the early morning and late afternoon, 
and little activity during the middle of the day (Fig. 5a). 
After taking this hourly variation in biting rates into 
account, there was no additional impact of trapping 
method on the number of female Ae. aegypti collected 
per hour (Table 3, Fig. 6). Variation in the hourly biting 
activity of Ae. aegypti was also significantly associated 
with an interaction between temperature and rela-
tive humidity (Table 3). This interaction arose because 
the number of Ae. aegypti caught per hour was nega-
tively associated with temperature under conditions of 
low relative humidity; but the strength of this associa-
tion was lower as humidity increased (Table 3, Fig. 7), 
although temperature and humidity were strongly asso-
ciated (Additional file 2: Figure S1).

The biting activity of female Cx. quinquefasciatus also 
varied significantly across the sampling day. As with Ae. 
aegypti, this pattern was characterized as a quadratic 
relationship in which mosquito activity peaked during 
the early morning and late afternoon (Table 3, Fig. 5b). 
Accounting for this activity pattern, there was no differ-
ence in the number of Cx. quinquefasciatus caught per 
hour in different trapping methods (Table  3, Fig.  6b), 
and no association with temperature or humidity.

Table 1  Abundance of mosquito species collected by MET and BGS traps

Notes: Mosquito species abundances are split by sex and feeding status of females. The total sampling effort with the two METs was 229 h, while for BGS traps was 
270 h over the 12 days of sampling

Species Mosquito electrocuting trap (MET) BG-Sentinel (BGS) trap Grand total

♂ ♀ Unfed ♀ Fed Total ♂ ♀ Unfed ♀ Fed Total

Aedes aegypti 100 99 19 218 93 91 27 211 429

Culex quinquefasciatus 496 238 44 778 960 345 77 1382 2160

Aedes angustivittatus 4 38 6 48 0 24 2 26 74

Limatus durhami 0 22 0 22 0 42 0 42 64

Psorophora ferox 0 1 2 3 0 1 0 1 4

Unknown 0 5 3 8 0 5 1 6 14

Total 1077 1668 2745
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Molecular screening for ZIKV, DENV and CHIKV
Aedes aegypti females were tested for ZIKV, DENV 1-4 
and CHIKV and none of the samples were found posi-
tive. For a detailed description on the molecular results, 

please see Additional file 1: Text S2 and Additional files 
3, 4, 5, 6, 7, 8, 9, 10: Figures S2–S9. In Additional files 
4, 5, 6, 7, 8, 9, 10: Figures S3–S9, asterisk indicates the 
samples that had a weak band at the corresponding 

Table 2  Summary for the terms tested from mosquito daily abundance

*Significant values
a  Fixed effect indicating interaction term

Notes: Chi-square (χ2), degrees of freedom (df) and P-values (P) are provided for each sex within species

Explanatory variable Aedes aegypti Culex quinquefasciatus

Males ♂ Females ♀ Males ♂ Females ♀

χ2 df P χ2 df P χ2 df P χ2 df P

Sampling effort 3.38 1 0.07 1.95 1 0.16 0.31 1 0.58 15.91 1 < 0.001*

Trap type 2.18 1 0.14 0.60 1 0.44 0.95 1 0.33 1.5 1 0.22

Temperature 0.22 1 0.64 4.62 1 0.03* 0.06 1 0.8 6.86 1 < 0.01*

Relative humidity 1.14 1 0.29 2.17 1 0.14 1.23 1 0.27 1.1 1 0.29

Temperature × Humiditya 2.22 1 0.14 1.24 1 0.26 1.07 1 0.3 1.27 1 0.26

Fig. 3  Predicted mean daily abundance of mosquitoes caught with different trapping methods. a, b Data for Ae. aegypti. c, d Data for Cx. 
quinquefasciatus. a, c Data for females (♀). b, d Data for males (♂). Error bars indicate the 95% confidence intervals (CI)
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expected size, and ^ indicates the samples that showed 
a size close to the expected one. The red dashed line is 
positioned at the corresponding expected size for each 
PCR run.

Discussion
Identifying an accurate method to predict the expo-
sure of humans to infected mosquito vectors has been 
an enormous challenge for Aedes-borne pathogens [70, 
71]. Here, we present the MET as a potential alterna-
tive for safe measurement of Aedes landing rates on 
humans. When tested in Ecuador, the MET provided 

similar estimates of Ae. aegypti abundance and biting 
activity as the current gold standard, the BGS sentinel 
method. While the BGS uses artificial odour baits and 
carbon dioxide (CO2) to lure mosquitoes into a stand-
ardized trap, the MET directly estimates the number 
of Aedes host-seeking within the immediate vicinity of 
a real host. The MET can also be used to measure bit-
ing rates on a range of different host species (e.g. [53]), 
which currently cannot be performed with the BGS and 
other methods. The standardization provided by the BGS 
makes it easy and effective to use in widescale surveil-
lance [48, 50], although a limitation is that non-biogenic 
CO2 sources are not always available [72]. However, the 
degree to which BGS collections accurately reflect per 
capita human biting rates is unclear. For example, BGS 
trapping efficiency may vary with the type and number 
of lures used, rate of CO2 released (quantity per time), 
location and colour of the trap (e.g. BGS 1 and BGS 2) 
[38, 46, 73], making it difficult to infer how different vari-
ants translate into exposure experienced by one person 
in that environment. An advantage of the MET is that it 
is more directly analogous to the human landing catch in 
sampling mosquitoes in the process of host-seeking on a 
person and also estimate variability in attraction between 
individuals. This could also be seen in the total catches 
of the other mosquito species when compared to the 
total numbers trapped by the BGS. The MET could thus 
provide a useful supplementary surveillance method for 
estimation and validation of human-biting rates and the 
associated entomological inoculation rate (EIR).

By facilitating a safe and more direct estimation of the 
EIR for Aedes-borne viruses, the MET could provide 
robust and precise entomological indicators of transmis-
sion intensity [51–53]. Such indicators are much needed 
to understand heterogeneity in transmission [33, 74, 75] 
and evaluate the efficiency of vector control interven-
tions. However, this relies on the assumption that the 

Fig. 4  Predicted relationship between mean temperature and 
number of female mosquitoes collected. a Ae. aegypti females. b Cx. 
quinquefasciatus females. The solid line indicates the mean predicted 
abundance and the shaded area indicates the 95% confidence 
intervals (CI)

Table 3  Summary for the terms tested for association with female mosquito hourly abundance

*Significant values
a  Fixed effect indicating interaction term

Notes: Chi-square (χ2), degrees of freedom (df) and P-values are provided for females of each species. “na” indicates “not applicable” values for which single term 
significance was not possible because of their involvement in significant higher order terms

Explanatory variable Aedes aegypti females ♀ Culex quinquefasciatus females ♀

χ2 df P χ2 df P

Trap type 0.60 1 0.44 7e-04 1 0.98

Time (linear) na na na na na na

Time (quadratic) 8.70 1 < 0.01* 142.1 1 < 0.001*

Temperature na na na 2.07 1 0.15

Relative humidity na na na 0.09 1 0.77

Temperature × Humiditya 6.60 1 0.01* 0.09 1 0.76
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MET accurately reflects the true Aedes exposure of one 
person per unit of time. Estimates of human exposure to 
the malaria vector An. gambiae (s.l.) from the MET were 

similar to those of the human landing catch in some stud-
ies [53, 76], whereas in others mosquito abundance was 
underestimated by the MET compared to the HLC [52]. 

Fig. 5  Predicted abundance of biting mosquitoes between 7:00–19:00 h. a Ae. aegypti females. b Cx. quinquefasciatus females. Dots represent the 
observed values which correspond to the right Y-axes. The red line corresponds to the predicted mosquito abundance and the shaded area to the 
95% confidence intervals (CI); both correspond to the left Y-axes

Fig. 6  Predicted hourly abundance of mosquitoes using different trapping methods. a Ae. aegypti. b Cx. quinquefasciatus. The error bars indicate the 
95% confidence intervals (CI)
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Here, it was not possible to directly compare the MET to 
the HLC because of ethical restrictions in using the lat-
ter in an area of high arboviral transmission. However, 
we speculate that one factor that could cause the MET 
to underestimate Aedes vectors biting rates is the area 
of the body protected. Whereas African Anopheles vec-
tors generally prefer feeding on the lower legs and feet 
[77–79]; it is not clear if Aedes prefer to bite on specific 
parts of the body [80, 81]. As a next step in validating this 
approach, we recommend the MET to be directly com-
pared to the HLC under controlled conditions with unin-
fected Aedes vectors (e.g. semi-field experiments), ideally 
using a defined Ae. aegypti strain and appropriate exper-
imental design to act as a reference standard for future 
comparison.

Both the MET and BGS trap sampled a similar com-
position of mosquito species in the study period. How-
ever, estimates of the mean daily and hourly abundance 
of Ae. aegypti and Cx. quinquefasciatus were slightly but 
not statistically higher in MET than in BGS collections. 
The relatively short period of this (12 sampling days) may 

have limited power to detect for minor to moderate dif-
ferences between trapping methods. We thus conclude 
the MET is at least as good as the BGS gold standard for 
sampling host-seeking Aedes vectors in this setting, but 
also recommend further longer-term comparisons over 
a wider range of seasons, sites and participants to evalu-
ate whether the MET outperforms the BGS. If we assume 
that MET is equivalent to HLC, these results are also 
consistent to those shown by Kröckel et al. [50], who also 
observed that HLC captured more mosquitoes, although 
not statistically different from the BGS.

Mosquito collections conducted here were also used to 
test for associations between Aedes host-seeking activity 
and microclimatic conditions. The impact of temperature 
and humidity on the life history, physiology, behaviour 
and ecology of Ae. aegypti has been extensively investi-
gated under laboratory conditions [82–85]. However, 
relatively little is known about how microclimate impacts 
the diel host-seeking behaviour of wild Aedes. In general, 
the host-seeking activity Ae. aegypti and Cx. quinque-
fasciatus was higher on days when mean temperatures 

Fig. 7  Predicted relationship between the hourly abundance of Ae. aegypti females and mean temperature (°C) under different relative humidity 
(RH) conditions. The black line represents the predicted abundance of Ae. aegypti in that hour, with the shaded area representing the 95% 
confidence intervals (CI)
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were lower (across the range of 25–30 °C). Additionally, 
the hourly biting rates of Aedes were negatively associ-
ated with temperature but only under conditions of low 
humidity. As mean hourly temperatures were strongly 
negatively correlated with relative humidity (Additional 
file  2: Figure S1), these results indicate that Ae. aegypti 
biting activity is highest during relatively cool and humid 
hours of the day. These microclimatic associations may 
account for the observed biting activity of Ae. aegypti and 
Cx. quinquefasciatus. A comprehensive review [69] of Ae. 
aegypti biting behaviour indicates that bimodal and tri-
modal activity patterns are often reported, with evidence 
of specific adaptations to other ecological features (e.g. 
artificial light availability) [69]. Such variability seems to 
be common and related to optimal humidity and temper-
ature conditions available during such hours [86, 87].

A key feature of any method for estimating EIR is its 
ability to estimate human-biting rates and infection rates 
in mosquitoes. While the results here presented indicate 
that the MET could be used to estimate the human-biting 
rates, the infection rates could not be measured as none 
of the Aedes mosquitoes collected with either trapping 
method were positive for arboviruses. Reported rates of 
arboviruses in Aedes vectors are generally very low (0.1–
10%) even in high transmission areas (e.g. [88–95]). Thus, 
failure to detect arboviruses within the relatively small 
sample size of vectors tested here (e.g. 207 individuals 
tested in 122 pools) is not unexpected.

Although promising, the MET has a number of limita-
tions relative to the BGS for sampling host-seeking Aedes. 
First, although both trapping methods require a power 
supply, the current version of the MET requires two 12 V 
batteries compared to the one required by the BGS), 
requires human participants and the trap itself is heavier, 
which is more labour-intensive than using BGS. Also, as 
the METs used here are still research prototypes produced 
on a bespoke basis without a licensed manufacturer, their 
production cost is currently more expensive than BGS 
traps (approximately £650 vs £170 per trap, respectively). 
In addition, some technical problems were experienced 
including a tendency to short circuit under conditions 
of high air humidity. These limitations are expected to 
be improved if manufactured at scale as manufacturing 
costs would fall and technical improvements should make 
the MET suitable for humid environments. The primary 
advantage of the MET is, therefore, its potential ability 
to directly estimate the EIR for arboviral infections. This 
advantage could be leveraged to calibrate other existing 
trapping methods that are less labour intensive and more 
feasible to be deployed at large scale. Additionally, the 
MET could be used in combination with other trapping 
methods to identify hotspots of transmission before large 
scale deployment with other traps is carried out.

Conclusions
Here, we evaluated the MET as a tool for estimating 
human biting rates of the arboviral vector Ae. aegypti 
in a high transmission setting in coastal Ecuador. The 
MET performed at least as well as the current BG-Sen-
tinel trap gold standard for estimating the mean abun-
dance per hour of host-seeking Aedes and provided a 
realistic representation of hourly activity patterns. We 
conclude that MET is a promising tool for Ae. aegypti 
and other mosquito species surveillance, which could 
uniquely enable a relatively direct estimate of the arbo-
viral entomological inoculation rate experienced by 
communities.
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