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The ability to predict traits from genome-wide sequence information (i.e., genomic prediction) has improved our understanding
of the genetic basis of complex traits and transformed breeding practices. Transcriptome data may also be useful for
genomic prediction. However, it remains unclear how well transcript levels can predict traits, particularly when traits are
scored at different development stages. Using maize (Zea mays) genetic markers and transcript levels from seedlings to
predict mature plant traits, we found that transcript and genetic marker models have similar performance. When the
transcripts and genetic markers with the greatest weights (i.e., the most important) in those models were used in one joint
model, performance increased. Furthermore, genetic markers important for predictions were not close to or identified as
regulatory variants for important transcripts. These findings demonstrate that transcript levels are useful for predicting traits
and that their predictive power is not simply due to genetic variation in the transcribed genomic regions. Finally, genetic
marker models identified only 1 of 14 benchmark flowering-time genes, while transcript models identified 5. These data
highlight that, in addition to being useful for genomic prediction, transcriptome data can provide a link between traits and
variation that cannot be readily captured at the sequence level.

INTRODUCTION

The prediction of complex traits from genetic data is a grand
challenge in biology, and the outcome of such prediction has
become increasingly useful for plant and animal breeding (Heffner
et al., 2009; Jonas and de Koning, 2013). Among the different
approaches for connecting genotypes to phenotypes, genomic
prediction (or genomic selection) using all available markers was
developed to overcome the limitations of marker-assisted se-
lection,whichusesonlysignificantquantitative trait loci (QTLs), for
breeding traits that are controlled by many small-effect alleles
(Meuwissen et al., 2001; Ribaut and Ragot, 2007). Using genomic
prediction, breeders are able tomakedata-drivendecisions about
what lines to include in their programs, speeding up and reducing
the cost of developing the next generation of crops (Endelman
et al., 2014; Spindel et al., 2015). Furthermore, because genomic
predictionmodels associate genetic signatures with phenotypes,
untangling genomic prediction models has the potential to im-
prove our understanding of the genetic basis of complex traits.

However, as with related approaches such as genome-wide as-
sociation studies and QTLmapping, it remains difficult to go from
associated genetic markers to the molecular basis for a trait
(Drinkwater and Gould, 2012; Solberg Woods, 2014).
A number of factors contribute to this difficulty. The variation in

markers associated with phenotypes may not be the causal
variantsbutare linked to thegenes thatcontrol the trait inquestion.
Considering that linkage disequilibrium distance can range from1
kb in diverse maize (Zea mays) populations (Tenaillon et al., 2001)
to ;250 kb in Arabidopsis (Arabidopsis thaliana; Nordborg et al.,
2002), the linked candidate genes can range from a few to a few
hundreds. Even if the associated genetic variant controls the
underlying phenotype, most variants associated with complex
traits have small effect sizes. Furthermore, associated variants
may be located in a distal regulatory region (Albert and Kruglyak,
2015); thus, these variants may not be closely linked to the genes
they regulate. Furthermore, multiple regulatory variants that have
indiscernible effects on their own could interact epistatically to
influencegeneandultimately trait expression.However, evenwith
sufficient statistical power to detect genetic variants with small
effect sizes and interactions between them, genetic information is
connected to traits through multiple intermediate processes, in-
cluding, for example, transcription, translation, epigenetic mod-
ification, and metabolism. Each of these intermediate processes
represents an additional level of complexity that obscures the
association between genetic information and a trait.
One solution is to account for these intermediate processes by

integrating relevant omics data in addition to genetic variation.
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This approach has led to promising, but often mixed, results in
plants. Current efforts have focused primarily on predicting hybrid
performance using transcriptional information from the parental
lines. For example, transcript level-based distance measures
generated from transcripts associated with the trait were better
than genetic markers in predicting hybrid performance in maize
(Frisch et al., 2010; Fu et al., 2012). However, when all transcripts
were used (instead of a subset of preselected transcripts), model
performance decreased (Zenke-Philippi et al., 2016). The per-
formance of models based on transcript levels can be better or
worse comparedwith those based on geneticmarkers depending
on the trait. For example, transcriptome data performed better for
predicting grain yield in hybrid maize populations, but genetic
marker data performed better for predicting grain dry matter
content in the same population (Schrag et al., 2018). Similarly, in
amaizediversitypanel, genomicpredictionmodels that combined
transcript and marker data only outperformed models using
markers alone for certain traits (Guo et al., 2016). Finally, efforts to
integrate additional omics information to predict various traits in
Drosophila melanogaster (Li et al., 2019) and human diseases,
such as breast cancer (González-Reymúndez et al., 2017), and
responses to treatment interventions, including acute kidney re-
jection and response to infliximab in ulcerative colitis (Kang et al.,
2017; Zarringhalam et al., 2018), have demonstrated the potential
usefulnessof transcriptomedata in thefieldofprecisionmedicine.

Overall, these efforts provide reasonable evidence that tran-
scriptome data could be useful for trait prediction. However,
genomic prediction-based approaches trained on the entire
transcriptome data have not been used to better understand the
genetic mechanisms for a trait. In addition, it is not known the
degree to which transcriptomes obtained at a particular de-
velopmental stage can be informative for predicting phenotypes
scored at a different stage. To address these questions, we used
transcriptome data derived from maize whole seedlings (Hirsch
et al., 2014) to predict phenotypes (flowering time, height, and
grain yield) at much later developmental stages. In addition to
comparing prediction performance between genetic marker- and
transcriptome-based models, we also looked at whether tran-
scripts and geneticmarkers that were important for the prediction
models were located in the same or adjacent regions. Finally, we
determinedhowwell ourmodelswereable to identify abenchmark
set of flowering-time genes to explore the potential of using ge-
nomic prediction to better understand the mechanistic basis of
complex traits.

RESULTS AND DISCUSSION

Relationships between Transcript Levels, Kinship, and
Phenotypes among Maize Lines

Before using the transcriptome data for genomic prediction, we
first assessed properties of the transcriptome data in three areas:
(1) thequantityanddistributionof transcript informationacross the
genome, (2) the amount of variation in transcript levels, and (3) the
similarity in the transcriptome profile betweenmaize lines, with an
emphasis onhow theseproperties comparedwith thosebasedon
thegenotypedata.Afterfilteringout16,898 transcripts thatdidnot

map to the B73 reference genome or had zero or nearly zero
variance across lines (see Methods), we had 31,238 transcripts.
While the number of transcripts was <10% of the number of
genetic markers used in this study (332,178), the distribution of
transcripts along the genome was similar to the genetic marker
distribution (Supplemental Figure 1). The log2-transformed me-
dian transcript level across lines ranged from 0 to 12.4 (median5
2.2) and the variance ranged from 33 10230 to 14.5 (median5 0.
13), highlighting that a subset of transcripts had relatively high
variation in transcript levels across maize lines at the seedling
stage. To determine how similar transcript levels were between
lines, we calculated the expression correlation (eCor) between all
pairs of lines using Pearson’s correlation coefficient (PCC). The
eCor values ranged from0.84 to 0.99 (mean5 0.93). As expected,
lines with similar transcriptome profiles were also genetically
similar, as therewas a significant correlation between eCor values
and values in the kinship matrix generated from the genetic
marker data (Spearman’s rank r 5 0.27, P < 2.2 3 10216;
Figure 1A). As a result, we were able to find clusters of lines that
had both high transcript and genetic similarities (e.g., clusters
a and b; Figures 1B and 1C). However, most of the variation in
eCor was not explained by kinship, which explained why we
identified other clusters that had similar transcriptome profiles but
were not genetically similar (e.g., cluster c; Figures 1B and 1C).
Because the basis of genomic prediction is to predict a phe-

notype from genetic data, we next asked if kinship or eCor was
anticorrelated with the phenotypic distances between lines (see
Methods). While both kinship (r 5 20.03, P < 2.2 3 10216;
Figure 1D) and eCor (r520.08, P < 2.23 10216; Figure 1E) were
significantly negatively correlated with the phenotype distance,
the degree of correlation was minor. Furthermore, the groups of
lines that clustered together based on their eCor (e.g., clusters
a and b; Figures 1B and 1C) did not have lower phenotypic dis-
tance (Figure 1F). Taken together, these findings suggest that
transcriptome datamay be similarly informative as genotype data
but capture different aspects of phenotypic variation. We tested
both of these interpretations further in subsequent sections.

Predicting Complex Traits from Transcript or Genetic
Marker Data

To testhowuseful transcriptomedatawere forgenomicprediction
compared with genetic marker data, we applied four approaches
to predict three agronomically important traits in maize: flowering
time, height, and grain yield. Because no one genomic prediction
algorithm always performs best (Heslot et al., 2012; Spindel et al.,
2015), we tested two linear algorithms (ridge regression Best
Linear Unbiased Predictor [rrBLUP] andBayesian-Least Absolute
Shrinkage and Selection Operator [BL]), one nonlinear algorithm
(Random Forest [RF]), and one Ensemble approach (En; see
Methods). To establish a baseline for our genomic prediction
models, we determined the amount of the phenotypic signal that
could be predicted using population structure alone, defined as
the first five principal components from the genetic marker data.
Then we built models for each trait using genetic marker data (G),
kinship (K) derived from G, transcript levels (T), or eCor derived
from T (Figure 2). Model performance was measured using PCC
between the actual and the predicted phenotypic values.
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Figure 1. Relationships between Lines from Transcript and Genetic Marker Data.

(A)Relationship between kinship based on geneticmarker data (x axis) and eCor (in PCC) based on transcript data (y axis). Boxplots show themedian y axis
value for each xaxis bin (binsize50.15),with the5th (blue) and95th (red) percentile rangesshown.Thecorrelationbetweenkinship andeCorwascalculated
using Spearman’s rank coefficient (r).
(B)and (C)Therelationshipsbetween linesbasedoneCor (B)orkinship (C) forall pairsofmaize lines.Linesaresortedbasedonhierarchical clustering results
using theeCor values. Theblue,white, and redcolor scales indicatenegative, no, andpositive correlations, respectively. Dotted rectangles indicate clusters
of lines discussed in the text.
(D) and (E) The relationships between the Euclidean distance calculated with phenotype values (phenotype distance; y axis) and kinship (D) and eCor (E).
Colored lines follow those in (A).
(F)The relationshipsbetween linesbasedonphenotypedistance,where the linesweresortedas in (B).Red indicatessmallerdistance (moresimilar) andblue
indicates greater distances (less similar).
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Across algorithms and traits, the K data resulted inmodels with
thebestpredictiveperformance,whilemodelsbuilt using theeCor
data performed the worst (Figure 2; Supplemental Table 1). Fur-
thermore, models built using G always outperformed models
using T.Regardless, eCor- andT-basedmodelswere significantly
better than the baseline predictions (dotted blue lines, Figure 2),
indicating that transcriptome data can be informative in genomic
prediction. Considering that the transcriptome data are from
seedlings, it isparticularly surprising thatmatureplantphenotypes
can be predicted. Next, we asked if using only the most informative
(i.e., the largest absolute coefficients) transcripts or geneticmarkers
as input into our models would improve trait predictions (see
Methods). We also tested differently sized subsets of transcripts
with the greatest degrees of line-specific expression to test if they
could better predict traits. However, using rrBLUP to predict
flowering time as an example, none of these subsets performed
better than the full T data (Supplemental Table 2). We also tested
setting themost variable transcripts as fixed effects in our rrBLUP

models, but this also did not improve performance (Supplemental
Table 2). Finally, consistent with earlier findings (Shen and Chou,
2006; Jia et al., 2015), combining the predictions from multiple
algorithms, known as an En approach, resulted in the best pre-
dictivemodels (Figure 2) and is therefore used to illustrate most of
our findings in the following sections.

Predicting Complex Traits Using Both Transcript and
Genetic Marker Data

Because the genetic marker and transcriptome data represented
different types of molecular information that could be associated
with the traits of interest, we hypothesized that their combination
would be more informative and next built models that used
combined data, either K1T or G1T. However, adding the tran-
script data did not substantially improve performance over K or G
alone (Figure 2). One possible reason for this lack of improvement
could be overfitting. This is most common when there is only
a small amount of training data (i.e., few maize lines) but a very
large number of predictor variables (i.e., many genetic markers/
transcripts). To test this hypothesis, we trained rrBLUP models
(referred to as G2001T200) to predict flowering time using only the
200 genetic markers and the 200 transcripts with the largest
absolute coefficients from the G and T rrBLUP models, re-
spectively (see Methods). These genetic markers and transcripts
are referred to as “features.” To avoid overfitting during feature
selection (Berminghametal., 2015),wefirst separated thedataset
into training and testing sets. The top featureswere selectedusing
the training data only. The testing data were never used to select
the top features. Using the independent testing data to evaluate
performance, our ability to predict flowering time improved using
G2001T200 (PCC50.6860.06) comparedwith the full G1Tmodel
(PCC5 0.646 0.01) andwith the individual G and Tmodels (PCC5
0.646 0.01 and 0.616 0.01, respectively). One explanation for this
improvement could be that using only the top features of each data
type reduced noise from themodel. If this is the case, theG200 and
T200modelswouldbeexpected tooutperform theGandTmodels,
respectively. However, we see the opposite results (see previous
section; Supplemental Table 2), suggesting that this improvement
was due to a reduction in overfitting.
To assess if G or T data features tend to be more informative in

predicting traits, we further quantified the importance score of
each genetic marker and transcript feature for models using G1T
data. The importance score represents the influence that each
feature had on model performance defined according to the al-
gorithm used (see Methods). Because the G and T data features
may contain overlapping information and, thus, are not in-
dependent, the importance scores from the G1T model may be
effects by issues caused by collinearity. However, given that the
importance scores assigned to transcripts in the G1T models
were correlated with the scores from the T-only models
(Supplemental Figure 2A), the addition of the genetic marker
features into the model did not affect the relative importance of
transcript features. The only exception was a subset of Ts that
were important for the G1T but not the T-only BL models. Be-
cause RF importance measures tend to be biased toward con-
tinuous features (Strobl et al., 2007), we focused on rrBLUP and BL
importance scores. For all three traits, the top 1000 most important

Figure 2. Genomic Prediction Model Performance.

PCCsbetweenpredictedand truevalues for three traits and fouralgorithms
usingsixdifferent input featuresare shown.The text in eachbox represents
the absolute PCC, with the best performing model for each trait in white.
The box color represents the PCC normalized by trait, where the brightest
red (1) corresponds to the algorithm/input feature combination that per-
formed the best for the trait and the brightest blue (0) corresponds to the
combination that performed the worst. Violin plots at right show the PCC
distributionsamongdifferent input features for eachalgorithm. Themedian
PCCs are indicated with black bars. The model performance PCCs based
on only population structure (first 75 principal components) are indicated
with blue dashed lines. Violin plots at bottom show the PCC distributions
among different algorithms for each input feature.
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features were enriched for genetic markers relative to transcript
features (odds ratio5 0.17;0.44, all P < 13 10216; Supplemental
Figure 2B; Supplemental Table 3). However, the top 20 most
important features tended to be enriched for transcript relative to
geneticmarker features (odds ratio52.66;13.0,P50.087;<13
10216; Supplemental Table 3), with transcript features making up
the top two most important feature in all cases (Supplemental
Figure 2B). The consistency with which transcript features were
the most important for the models suggests that transcript in-
formation is useful for genomic prediction.

Comparison of the Importance of Transcripts Versus
Genetic Markers for Model Predictions

Because models built using transcript features outperformed
baseline models based solely on population structure, we know
that transcriptome data contained information useful for
explaining phenotypic variation. Furthermore, using feature se-
lection to combine both data sets into one predictive model
(G2001T200) improved our ability to predict flowering time
(Supplemental Table 2). Therefore, we hypothesized that these
two data types capture different aspects of phenotypic varia-
tion. To address this, we assessed the extent to which the
important genetic markers (from G-based models) overlapped
with or neighbored the genes where the important transcripts
(from T-based models) originated from (Figure 3A, top). We did
not use the importance values from the G1T model due to
concern regarding feature dependence. The genic region and
flanking sequences within a defined window of an important
transcript is referred to as the transcript region (see Methods).
For each trait and algorithm, we compared the importance
assigned to the transcript with that of the genetic marker
with the highest average importance in the transcript region
(T:G pair).

Multiple window sizes were explored (see Methods), and we
used 2 kb (61 kb from the center of a gene) where the feature
importance correlation between transcripts and genetic markers
wasmaximized (Supplemental Figure 3A).Using thiswindowsize,
15,049 T:Gpairswere identified. At thewhole-genome level, there
appeared to be regions where both genetic markers and tran-
scripts were identified as important (Supplemental Figure 4).
However, when we look closer, those regions mostly do not
overlap. In some cases, the important genetic markers and
transcripts were in linkage disequilibrium. Using the flowering-
time model as an example, we found that the most important
genetic marker waswithin a gene upstream of themost important
transcript (GRMZM2G171650:MADS69; Figure 3B, arrow a), but
the two are in linkage disequilibrium (Hirsch et al., 2014). In most
cases, there were no important geneticmarkers that were located
nearby to important transcripts, and if we extend the window size
to 80 kb, we see thatMADS69 is the exception rather than the rule
(Supplemental Figure 3B). For example, the secondmost important
flowering-time genetic marker was not located near important tran-
script regions (Figure 3B, arrow b). Similarly, the second most im-
portant flowering-time transcript (GRMZM5G865543) was over 0.6
Mb from an important genetic marker (Figure 3B, arrow c). Across all
traitsandalgorithms,T:Gpairswereonlymoderatelycorrelated (r50.
09–0.13; Figure 3C; Supplemental Figure 5A).

This lack of correlation is notable for themost important genetic
markers and transcripts. For example, across the three traits, only
four to sevenT:Gpairswere in the top1%most important features
from the En models, and those pairs were never the top ranked
genetic markers or transcripts from the model (Figure 3B). These
findingsargueagainst thenotion that these twodata typescapture
similar aspects of phenotypic variation, as we hypothesized
earlier. One concern was that the lack of correlationwas due to the
geneticmarker data being derived from RNA-seq experiments and
thus limited to the transcribed regions. However, when the ex-
periment was repeated using ;1 million genome-wide genetic
markers (GGW) derived fromwhole-genome sequencing (Bukowski
et al., 2018) as input features (Supplemental Figure 6A), the cor-
relation between T:GGW pairs did not increase (Supplemental
Figures 6B and 6C).
In light of this, we hypothesized that the lack of correlation was

because important transcripts tend to be regulated by important
trans-factors located far beyond the transcript region. To test this,
we assessed the degree to which important genetic markers
identified as expression QTL (eQTLs) were associated with im-
portant transcripts.We identified62 cis- and58,299 trans- eQTLs,
a total of 58,361 eQTLs, associated with 7052 transcripts and
defined T:eQTL pairs for each of these transcripts by selecting the
genetic marker within 61 kb of an eQTL for that transcript
(i.e., eQTL region) with the highest average importance. Across all
traits and algorithms, the importance of transcripts and eQTLs in
T:eQTLpairswasactually negatively correlated (r5 -0.15; -0.06;
Figure 3C; Supplemental Figure 5B).
The lack of correlation between importance scores for T:G and

T:eQTL pairs was in contrast to the relatively high correlation
observed in feature importancebetweenalgorithms (r50.31–0.98),
with rrBLUPandBL importancescoresbeing themost correlated
(r 5 0.87–0.98) and the average correlation between genetic
markers (r 5 0.75) being higher than for transcripts (r 5 0.55;
correlation between algorithms; Supplemental Figure 7). To-
gether with the findings that important genetic markers were not
colocated and eQTLs were not associated with genes that gave
rise to the important transcripts for any of the three traits, these
findings may suggest that transcriptome data are capturing layers
of information, such as epigenetic signals, that are not captured by
genome sequences.However,we cannot rule of the possibility that
the eQTL approach using RNA-seq-based genetic markers is not
sufficiently sensitive in identifying important trans-factors. Further
study with more trait and high-quality genome-wide genetic marker
data is needed to resolve these possibilities.

Assessment of Benchmark Flowering-Time Genes

Because the genetic basis for flowering time is well studied
(Muszynski et al., 2006; Danilevskaya et al., 2010; Lazakis et al.,
2011;Menget al., 2011),we identifiedaset of 14 known flowering-
time genes (Supplemental Table 4). To assess the extent to which
these benchmark genes can predict flowering time, we trained an
rrBLUP model where we set these 14 genes as fixed, rather than
random, effects, and ourmodel performance increased (PCC5 0.
646 0.01; Supplemental Table 2) compared with when they were
not fixed (PCC 5 0.61). Then we compared the ability of genetic
marker- and transcript-basedmodels to identify thesebenchmark
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Figure 3. Correlation between Genetic Marker and Transcript Importance for Flowering Time.

(A) IllustrationofhowT:G (topgraph) andT:eQTL (bottomgraph)pairsweredetermined.Geneticmarker importancepercentilesareshownabove thegenetic
markers (red triangles) and eQTL (yellow triangle). A T:Gpairwasdefinedas the transcript and themost important geneticmarkerwithin the transcript region
(top graph). A T:eQTL pair was defined as the transcript and the most important genetic marker within the eQTL region (bottom graph).
(B) Manhattan plots of the transcript (blue bar) and genetic marker (red dot) importance scores [2loge(12importance percentile)] in a 2-Mb window
surrounding top two genetic markers (top and middle plots) and transcripts (top and bottom plots) based on the T-based and G-based En models for
predicting flowering time, respectively. All geneticmarkers (i.e., not just the T:Gpair) are shown. The threshold (gray dotted lines) is set at the 99th percentile
importance.
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genes as important using the T:G and T:eQTL pairs described
earlier. Of the 14 benchmark genes, 4 had corresponding genetic
markers in our T:G pair data. When we increased the flanking
region threshold to 20 kb from the center of the transcript for
defining T:G pairs, corresponding genetic markers were found for
five additional benchmark genes. Two benchmark genes, CCT1
and PEBP4, neither of which was a member of a T:G pair, were
associated with eQTLs. To account for differences in distribution
and range of importance scores generated by different algorithms
and numbers of features, the importance scores were converted
to percentiles for comparison purposes.

Different benchmark genes were important (>95th percentile)
for models using the two different data types, with one and five
benchmark genes considered important by the genetic marker-
based and the transcript-based models, respectively (Figure 4;
Supplemental Data Set 1). For example, the genetic marker lo-
cated within the RAP2 gene, which has been shown to be as-
sociated with flowering time in multiple studies (Buckler et al.,
2009; Hirsch et al., 2014), was identified as important based on
genetic marker (99.7th to 99.9th percentile) but not transcript (59th to
79th percentile) data. By contrast, MADS69, MADS1, PEBP24, and
PEBP8were identified as important using transcript data (95th to
100th percentile) but not using genetic marker data (16th to 93th
percentile). Furthermore, with transcript data, we were able to
assess the importance of three genes (ZAG6,PEBP5, andPEBP2)
that were not located near genetic markers or associated with
eQTLs.Forexample, therewerenoeQTLsassociatedwithgenetic
markers within the 40-bp window of ZAG6, but ZAG6 was iden-
tified as important (98th to 99.9th percentile) in the transcript-
basedmodels (Figure 4). For someof these benchmark genes, the
region most closely linked to trait variation could be outside the
620-kb window. For example, as described above, the important
genetic marker for MADS69 (Chr3: 160559109) is ;32 kb up-
stream (Figure 3B, a arrows). However, when we plotted the
correlation between importance scores between T:G pairs using
the largest window size (80 kb), we found that MADS69 was the
only gene for which this was the case (Supplemental Figure 3B).
Taken together, these finding further highlight the usefulness of
transcript data for identifying the genetic basis for variation in
a trait.

Improving Our Understanding of the Genetic Basis of
Flowering Time Using Transcriptome Data

An open question was why transcript-based models were able to
identify as important five benchmark flowering-time genes that
were not identified by genetic marker-based models and if tran-
scriptome data could be used to better understand the genetic
basis of flowering time. To understand why benchmark genes
were not uniformly identified as important for flowering timewhen

using both genetic marker and transcript data, we determined the
extent to which transcript levels and the genetic marker allele
(i.e., major or minor) were related to flowering time. As expected,
we observed the most significant differences in flowering time for
the transcripts (Figure 5A; Supplemental Figure 8A) and genetic
markers (Figure 5B; Supplemental Figure 8B) that were identified
as important by our models. For example,MADS1was important
only in the transcript-based models and transcript level was
significantly correlatedwithflowering time (P50.0001;Figure5A).
By contrast, lines with the major allele for the genetic marker that
pairedwith theMADS1 transcript (Chr9: 156980141)didnotflower
at a significantly different time than lines with theminor allele (P5
0.062; Figure 5B). Another example was RAP2, which was im-
portant only in the genetic marker-based models. Lines with the
major allele in RAP2were more likely to flower late (P < 13 1024),
but RAP2 transcript levels did not significantly correlate with
changes in flowering time (P 5 0.33). Overall, benchmark genes
weremore likely tohave transcript levels associatedwithflowering
time (Figure 5C) than genetic marker alleles associated with
flowering time (Figure 5D).
Importantly, using the transcriptome data, we were also able to

understand inmoredetail the influenceof thebenchmarkgeneson
flowering time. For example, variation in transcript levels of
MADS69 accounted for 16.7% of the variation in flowering time,
more than any other transcript, where lines with lower levels of
transcription flowered later. Modulation of MADS69 expression
levels has recently been patented as an approach to controlling
flowering time (Kaeppler et al., 2014). Similarly,MADS1 transcript
levels explained 3.7% of the variation in flowering time, with lines
with lower levels of transcription flowering later. This is consistent
with what has been observed experimentally, where down-
regulation of MADS1 results in delayed flowering time (Alter et al.,
2016). For medium-confidence benchmark genes (i.e., identified
through association studies), the specific roles of the genes in
flowering time are not well understood, but by finding positive or
negative correlations between transcript levels and the underlying
phenotypes, more mechanistic details can be inferred. For ex-
ample, transcript levelsofZAG6had thesecond largest influence
on flowering time, accounting for 6%of variation, with increased
transcript levels associated with earlier flowering. Another ex-
ample is PEBP24, with transcript levels of PEBP24 accounting for
2.7% of the variation in flowering time. Unlike many of the other
benchmark genes, increased PEBP24 transcript levels were as-
sociated with later flowering time. Overall, the identification of
these medium-confidence benchmark genes as important tran-
scripts indicates the relevance of transcriptional regulation in their
flowering-time functions.
While using the benchmark genes allowed us to assess the

usefulness of transcript levels compared with genetic marker
information for identifying genes involved in flowering time, we

Figure 3. (continued).

(C)Density scatterplot of the importance scores (seeMethods) of the geneticmarker (y axis) and transcript (x axis) for T:Gpairs (top graphs) and of the eQTL
genetic marker (y axis) and transcript (x axis) for the T:eQTL pairs (bottom graphs) for three traits derived from the G-based and T-based En models,
respectively. The threshold (red dotted line) was set at the 99th percentile importance score for each trait and input feature type. The correlation between
importance scores between transcript and genetic marker/eQTL pairs was calculated using Spearman’s rank (r). SNP, single nucleotide polymorphism.
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should note that many nonbenchmark genes were also identified
byourmodelsas important. Forexample, from theEnmodel, there
were 154 important, nonbenchmark transcripts with importance
scores falling between the two most important benchmark genes
(MADS69, 100th percentile and ZAG6, 99.5th percentile; yellow,
Supplemental Data Set 2). While seven of those in between
transcripts were annotated with the Gene Ontology (GO) term
“flower development” (GO:0009908; green, Supplemental Data
Set 2), these 154 nonbenchmark transcripts were not enriched for
this GO term (q 5 1.0). In fact, neither these transcripts nor any
other set of important transcripts from models based on other
algorithms (see Methods) were enriched for any GO terms.
Therefore, from our transcript-based genomic prediction models,
we have identified 147 high-ranking transcripts, many of which
have unknown functions, that are among the most important in
predicting flowering time in maize but do not play known roles in
this process. For example, GRMZM5G865543 and GRMZM2G023520
(the second and third most important transcripts, respectively,
from the En model) do not have annotated functions in maize.
While they do have homologs in Arabidopsis and rice (Oryza
sativa), thosehomologsdonot haveknown functions inflowering
time (see Supplemental Table 5 for similar information about the
top 10 transcripts). Note that the transcriptome data are from the
seedling stage. It is possible that genes of these important
transcripts influence biological processes in earlier stages of
development that influence flowering time later. To further our

understanding of the genetic basis of flowering-time control and
the connections between juvenile and adult phenotypes, these
important transcripts are prime candidates for future genetic
studies.

CONCLUSIONS

We have generated predictive models that use genetic markers,
transcripts, and their combination to predict flowering time,
height, and yield in a diversemaize population. Whilemodels built
using transcriptome data did not outperform models that used
genotype data, transcript-based models performed well above
randomexpectation, and inmany cases, performancewas similar
to that of genotype-based models. We found that transcripts and
geneticmarkers from different genomic regionswere identified as
important for model predictions. Furthermore, by assessing the
relative importance of the features used to build the models, we
found that transcript-based models identified more known
flowering time-associated genes than genetic marker-based
models. These findings underscore the usefulness of transcript
data for improving our understanding of the genetic mechanisms
responsible for complex traits.
There are four possible mechanistic explanations for why

transcript levels could have a similar predictive power to genetic
markers. First, cis-regulatory variants that affect transcript levels
are all more likely to be similar between closely related individuals.

Figure 4. Comparison of Transcript and Genetic Marker Importance Scores for Benchmark Flowering-Time Genes.

Importance percentile of each transcript and geneticmarker pair as determined by each of the four algorithms (x axis) is shown. Genes are sorted based on
hierarchical clustering of their importance percentiles. Gray boxes designate benchmark genes that did not have genetic markers within a 40-kb window.
Confidence levels (high or medium) were assigned based on the type of evidence available for the benchmark gene (see Methods). rrB, rrBLUP.
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Therefore, the ability of transcript data to predict phenotypes is
simply a reflection of that dependency. However, we demon-
strated that themost informative transcript features for predicting
maize phenotypes are distinct from the most informative genetic
marker features found in the transcript regions. While for some
important transcripts the associated important genetic marker
could be in linkage disequilibrium but outside of the 2-kb window
used in our study (e.g., ;32 kb away in the case of MADS69),
overall, as we increased the transcript region window size, the
correlation between the importance scores assigned to T:G pairs
decreased, suggesting that this isnotgenerally thecase.Thus, the
secondexplanation is that thereare trans-regulatory variants (e.g.,
due to transposon polymorphisms or transcriptional regulators)
that play a major role. However, we found that the importance of
eQTLs (99.9% trans) and their associated transcripts were not
positively correlated, suggesting that the trans-regulatory varia-
tion we identified cannot explain why transcript variation is pre-
dictive of phenotypic variation either. However, considering the
challenges in identifying eQTLs due to the mixed tissues used
(Wills et al., 2013), inmodeling epistatic interactions (Becker et al.,
2012), and in our limited ability to find cis-eQTLs, we cannot
conclusively rule out this possibility. The third explanation is that
transcription is a molecular phenotype caused by the integration
ofmultiple geneticmarker signals, both cis and trans, thatmay not
have had strong signals individually. The fourth explanation is that
there are epigenetic variants contributing to expression variation.
It remains to be determined what the contribution of epigenetic

variation is on our ability to use transcript data to predict
phenotypes.
One surprise is that the transcript data generated using V1

seedling tissues can predict adult plant phenotypes. We reason
that complex traits, suchas flowering time, are influencedbymore
than just canonical genes that act immediately prior to the growth
and developmental sequences leading to flowering. For example,
early developmental events such as cotyledon damage (Hanley
and May, 2006), root restriction (Keever et al., 2015), and pho-
toperiod and temperature changes (Song et al., 2013) can in-
fluencefloweringtime inmatureplants.Therefore,earlydevelopment
transcript differences could eventually result in different flowering
times. There were three limitations of this study that made our ability
to predict adult plant phenotypes and identify known important
transcripts even more surprising. First, transcript-level data were
derived from whole V1 seedling tissue, which should limit the pre-
dictive power of our genomic prediction models for mature plant
traits. We expect that transcript information taken from tissues and
timepointsmore relevant to the phenotype of interest aremore likely
to be predictive. For example, coexpression networks derived from
maize root tissues are more predictive of the accumulation of 17
different elements (e.g., Al, Fe, K, and Zn) in maize seeds than co-
expression networks derived from tissues not involved in element
uptakeand transport (Schaefer etal., 2018).Second, transcript levels
were calculated by mapping reads to the B73 reference genome
without considering that structural and fragmental variations exist
betweendiversemaize lines.HavingonlyaB73 referencegenome to

A

B

C

D

Figure 5. Relationship between Transcript Level/Allele Type and Flowering Time for Benchmark Genes.

(A) Boxplots show the transcript levels [loge(fold change)] over the flowering-time bin with the 5th (blue) and 95th (red) percentile ranges shown. Flowering
timewas defined as the growing degree days/100. Linearmodels were fit, and adjustedR2 and P values are shown. Confidence levels of benchmark genes
are designated as in Figure 4.
(B)Distributions of flowering time for lineswith themajor (red) orminor (gray) alleles for the geneticmarker pairedwith each benchmark gene as indicated in
(A). Differences in flowering time by allele were tested using t tests.
(C)Number of transcripts (y axis) for which transcript levels were associatedwith flowering time in linearmodels within P value bins [2log10(P value); x axis].
Benchmark genes are labeled as in (A).
(D) Number of genetic markers (y axis) for which differences in flowering time by allele from t tests were within P value bins [2log10(P value); x axis].
Benchmark genes are labeled as in (A).
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map to likely results in bias or noise in our transcriptome data set. In
future studies, itwill be informative todetermine if correcting for such
structural and fragmental variation would improve genomic pre-
diction. Finally, a third limitation of our study is that no environmental
component is considered. An area of active research in genomic
prediction is the incorporation of genotype-by-environment
interactions into predictive models (Burgueño et al., 2012;
Cuevas et al., 2017; Granato et al., 2018). Thus, a potential
benefit of using transcript information for genomic prediction
could be that genotype-by-environment interactions would be
picked up by transcript-level signals. Because the transcriptome
and phenotype data used in our study were derived from different
individual plants at different developmental stages, this could
not be tested.

Our findings highlight an important benefit of using transcript
data tobetterunderstand thegeneticbasisofa trait.While it canbe
difficult to associate signals froma number of small-effect genetic
markers or even a single large-effect genetic marker back to
a specific gene, transcript-level information is inherently associ-
atedwithgenes.Becauseof the importanceof regulatory variation
on complex traits (Albert andKruglyak, 2015), the use of transcript
information in genomic prediction could be crucial for deciphering
the contribution of regulatory variation to the genetic basis of
traits. Therefore, while we observed that in terms of predictive
ability, genetic marker data outperformed transcript data, ex-
pression differences are more straightforward to interpret than
sequence polymorphisms. In practice, this meant that transcript-
based models identified five benchmark flowering-time genes
while genetic marker-based models only identified one, and it
highlighted our finding that more insight into the genetic basis of
complex traits can be gained when transcriptome data are
considered.

METHODS

Genotypic, Transcriptomic, and Phenotypic Data Processing

The phenotypic (Hansey et al., 2011) and genotypic and transcriptomic
(Hirsch et al., 2014) data used in this study were generated from the pan-
genome population consisting of diverse inbred maize (Zea mays) lines.
Genotype, transcriptome, flowering time, height, and yield data were all
available for 388 lines out of the 503 maize pan-genome panel and were
used for the study (Supplemental Data Set 3). Genetic marker scores
derived from RNA-seq reads were converted to a [21,0,1] format corre-
sponding to [aa,Aa,AA] with themore common allele (AA) designated as 1.
The genetic marker positions were converted from maize B73 reference
genome A Golden Path v2 (AGPv2) to AGPv4.37. The AGPv2 genetic
markers that did not map to AGPv4.37 and genetic markers with a minor
allele frequency less than 5% were removed, resulting in 332,178 genetic
markers. To determine if the use of RNA-seq-derived genetic markers
biased our results, we also tested a set of genome-wide markers (GGW).
Thesemarkersweredownloadedalreadyprocessedanduplifted toAGPv4
from Bukowski et al. (2018). Data were available for 149 maize lines in-
cluded in the study. After removing GGW with minor allele frequency less
than 5% and duplicate patterns of allele calls across the 149 lines (i.e., the
same criteria used for theGdata set),;1.08millionmarkers were available
for this analysis.

RNA-seq-derived transcriptomic data from whole-seedling tissue
(i.e., root andshoot) at theV1stage fromHirschetal. (2014)wereprocessed
to remove loci that did not map to AGPv4.37. The remaining maize B73

genes were filtered with default settings of the nearZeroVar function from
the R caret package to remove genes with zero or nearly zero variance
(>95% of the lines sharing the same transcript level) across lines. After the
filtering steps, transcript counts for 31,238 genes were retained in the final
data set. The raw transcripts per million count data were transformed with
a loge 1 1 transformation before the data were used in subsequent
analyses. Mapping rates to the B73 genome assembly were also down-
loaded from Hirsch et al. (2014). To assess if transcriptome data had
predictive power beyond random expectation, transcriptome data were
permutedbygene, so thateachgenehad thesamedistributionof transcript
values, but the values were randomly assigned to different maize lines for
building the transcriptome-shuffled models. To compare important tran-
scripts and genetic markers from genomic prediction models, transcripts
were converted from AGPv2 to AGPv4, and only genes with one-to-one
correspondence between AGPv3 and AGPv4 were included in this anal-
ysis. To assess the effect uplifting had on expression levels, we remapped
transcript data from B73 to AGPv4 using Bowtie2 (version 2.3.2) and
performed read counting using Cufflinks (version 2.2.1). The correlation
between uplifted and remapped gene expression levels for B73 was 0.94
(PCC, P < 2 3 10216).

Comparison of Transcript and Genetic Marker Data

Three different approaches were used to determine the similarity between
lines based on the three different data types. For the genotype data,
akinshipmatrixwasgeneratedusing thecentered IdentityByStatemethod
(Endelman and Jannink, 2012) implemented in TASSEL v5.20180517
(Bradbury et al., 2007). The PCC between RNA-seq mapping rates and
kinship with B73 was calculated using the cor.test function in R. For the
transcript data, we generated an eCor matrix by calculating the PCCs of
transcript values between lines using the cor.test function in R. The eCor
matrix was normalized between 0 and 1, and the diagonal was set as 1.
Finally, for phenotype data, we calculated the Euclidean distance between
lines using the distances package in the R environment. The correlation
betweenkinship, eCor, andphenotypedistancebetweenpairs of lineswas
calculated using PCC.

Genomic Prediction Models and Model Performance

Because part of the phenotypic signal observed in genomic prediction
models may be due to population structure/family relatedness within the
breeding population, we established a baseline for our genomic prediction
models by using the principal components (PCs) generated using the
marker data alone to predict phenotypic values for each trait. Because the
relationship between the population structure and traits can vary by trait
and by population, we tested the top 5, 10, 15, 20, 50, 75, and 100 PCs and
selected the top75PCs touseasourbaselinebecauseaccuracyplateaued
after this point. Four methods were used for each trait, two linear-
parametric methods, rrBLUP (Endelman, 2011) and BL (Pérez and de
los Campos, 2014), one nonlinear and nonparametric method, RF
(Breiman, 2001), and one En approach (Dietterich, 2000). The rrBLUP
models used the mixed.solve function in the rrBLUP package im-
plemented in R. The BL models were also implemented in R using the
BGLR package. RF was implemented in Python using Scikit-Learn
(Pedregosa et al., 2011). En predictions were generated by taking the
mean of the predicted trait values from rrBLUP, BL, and RF. A grid search
wasperformedon the first 10 of the 100 cross-validation replicates to find
the best combination of parameters for the RFmodel. Parameters tested
included max tree depth (3, 5, 10, and 50) and max number of features
included in each tree (10, 50, and 100%, square root, and log2).

The predictive performance of the models was compared using the
PCC. The PCC between the predicted (Ŷ) and the true trait value (Y) was
computed using the cor() function in R for rrBLUP and BL or the NumPy
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corrcoef function in Python for RF. One hundred replicates of a fivefold
cross-validation approach were applied to maximize the data available for
model training without resulting in overfitting. For each replicate, the
lineswere randomly divided into five subsets, where each subset is used
as the testing set once and the other four subsetswere combined to train
the model, resulting in a total of 500 cross-validated runs. PCC was
calculated using only the predicted values from the testing set for
each run.

For the top10most important transcripts from theEnmodel, leave-one-
feature-out analysiswasperformedusing rrBLUPwith100 replicates toget
ascore forhowmuchthemodelperformance (PCC)changeswhen thatone
transcript is removed from training (Supplemental Table 5). Information
about top BLAST matches was collected from maizeGDB (https://www.
maizegdb.org/).

Selecting Subsets of T or G for Input to Genomic Prediction Models

To determine if using smaller subsets of T or G as input to the genomic
prediction models would improve our ability to predict traits, we used
rrBLUP and flowering time as an example to select features. For transcript
data, features were selected in three ways. First, 10, 20, 100, and 1000
transcripts with the greatest variance across themaize lines were selected
and used as input to the rrBLUP models. Second, the 14 benchmark
flowering-time genes (see Benchmark Flowering-TimeGenes below) were
used. Finally, 14 and 200 transcripts with the greatest absolute coefficient
(i.e., weight) assigned by rrBLUP during training were selected. For this
analysis, the models were rerun without cross-validation so that feature
selection and model training were performed on the training data and the
testing datawere only used tomeasuremodel performance, thus ensuring
against overfitting. This was done for each of the 100 replicates.

Genetic Marker/Transcript Importance Analysis

To identify features important for building the genomic prediction models,
feature importance information was extracted from each model estab-
lished with one of four methods: rrBLUP, BL, RF, and En. For rrBLUP, the
importancemetricwas themarker effect calculated bymixed.solve in theR
rrBLUP package. For BL, the importance metric was the estimated pos-
terior mean calculated using the R BGLR package. The absolute values of
marker effect and estimated posterior mean were used, since the features
are categorical with no particular meaning for the sign of importance
metrics. For RF, the importance metric was the Gini importance, collected
using the _importance_score function built into the Scikit-Learn im-
plementation of RF. The Gini importance is the total decrease in node
impurity (i.e., thehomogeneity of classes inanode) after aparticular feature
is used to split a node. Node impurity decreases as instances from one of
the classes are removed from the node, leaving a greater proportion of
instances from the other class. Importance metrics from rrBLUP, BL, and
RFwere averaged over the 100 cross-validation replicates. En importance
scores were calculated by normalizing the average importance scores
fromeachmodel andeachmethodbetween0and1, then taking themean
of normalized importance scores across the three algorithms. Enrich-
ment for transcript comparedwith geneticmarker featureswithin the top
1000 or top 20 features was done using Fisher’s exact test, where the
number of transcript features in and not in the top X features were
compared with the number of genetic marker features in and not in the
top X features.

To determine the degree to which the importance of a transcript cor-
relates with the importance of nearby genetic markers, the genetic marker
Gwith the greatest mean importance score within a fixed window from the
center of a genomic region Rwhere a transcript Tmapped to was selected
among geneticmarkers in region R, referred to as a T:G pair (Figure 3A). To
identify the effect of window size, a series of window sizes ranging from 1

to 80 kb were tested. For each window size, the Spearman’s correlation
was calculated between the importance scores of T:G pairs. The window
size with the highest correlation (2 kb) was chosen (Supplemental
Figure 3A). For this analysis, transcripts without location information or
without one-to-one mapping between AGPv3 and AGPv4 were removed,
leaving 24,412 transcripts. With a window size of 2 kb, additional tran-
scripts were dropped because there was not a genetic marker within that
window, resulting in 15,049 transcripts to be included in the downstream
analysis. This analysiswas repeated for the genome-wide geneticmarkers
(GGW) from Bukowski et al. (2018).

To determine the degree to which the importance of a transcript cor-
related with the importance of trans-regulatory variants, significant eQTLs
(multiple testingcorrectedP<0.05)were identified foreach transcriptusing
the linear regression (modelLINEAR) approach from MatrixeQTL im-
plemented in R. Benjamini-Hochberg false discovery rate correction was
used to adjust P for multiple testing, and eQTLs were considered significant if
adjustedP<0.05.Thedistance forconsideringeQTLasciswas1Mb(Zanetal.,
2016); however, because <0.1% of eQTLs identified were cis, all eQTLs were
analyzed together. The importance of an eQTL or the neighboring genetic
marker located within a 2-kb window of the eQTL with the greatest average
importance score was comparedwith the importance of the transcript with the
eQTL in question (T:eQTL pair).

Enrichment of GO terms associated with important transcripts com-
pared with the reference genome was tested using agriGO v2 (Tian
et al., 2017). The enrichment P values are corrected formultiple testing
by agriGO v2using falsediscovery rate. The top10, 25, and100 transcripts
fromeach algorithm, excluding the benchmark flowering-time genes,were
testedagainst the reference genome. The top 153 transcripts excluding
benchmark genes (i.e., the top transcripts between the best two benchmark
genes) from the En algorithm and the union of the top 10, 25, and 100
transcripts from all four algorithms were tested.

Benchmark Flowering-Time Genes

We compiled a list of genes known to be involved in flowering time based
on evidence from knockdown experiments (Muszynski et al., 2006;
Danilevskaya et al., 2010; Lazakis et al., 2011; Meng et al., 2011; Alter
et al., 2016) and/or association studies (Salvi et al., 2007; Hirsch et al.,
2014). Genes were assigned confidence levels based on the type of
evidence available, with experimental evidence considered high con-
fidence and association study evidence and significant similarity with
known flowering-time genes from other species considered medium
confidence (Supplemental Table 4). Because some of these genes did
not have geneticmarkers locatedwithin the 2-kbwindowof the center of
the transcript, progressively larger windows were used to identify the
most important nearby genetic marker up to 40 kb. To compare im-
portance scores across algorithms and between models using G or T
data as input, percentiles were used. To determine if transcripts or
genetic markers assigned to flowering-time benchmark genes were
associated with flowering time in this study, linear models and t tests,
respectively, implemented in R were used.

Accession Numbers

All data and code needed to reproduce the results from this study are
available on GitHub (https://github.com/ShiuLab/Manuscript_Code/tree/
master/2019_expression_GP/data): DLF1 (GRMZM2G067921), ID1
(GRMZM2G011357),MADS1(GRMZM2G171365),PEBP8(GRMZM2G179264),
RAP2(GRMZM2G700665),CCT1(GRMZM2G381691),CCT2(GRMZM2G004483),
MADS69 (GRMZM2G171650), PEBP2 (GRMZM2G156079), PEBP24
(GRMZM2G440005), PEBP4 (GRMZM2G075081), PEBP5 (AC217051.3_
FG006), ZAG6 (GRMZM2G026223), and unknown (GRMZM2G106903).
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