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ABSTRACT

Spinocerebellar ataxias (SCA) are a genetically heterogeneous family of cerebellar neurodegen-
erative diseases characterized by abnormal firing of Purkinje neurons and degeneration. We
recently demonstrated the slowed firing rates seen in several SCAs share a common etiology of
hyper-activation of the Src family of non-receptor tyrosine kinases (SFKs). However, the lack of
clinically available neuroactive SFK inhibitors lead us to investigate alternative mechanisms to
modulate SFK activity. Previous studies demonstrate that SFK activity can be enhanced by the
removal of inhibitory phospho-marks by receptor-protein-tyrosine phosphatases (RPTPs). In this
Extra View we show that MTSS1 inhibits SFK activity through the binding and inhibition of
a subset of the RPTP family members, and lowering RPTP activity in cerebellar slices with peptide
inhibitors increases the suppressed Purkinje neuron basal firing rates seen in two different SCA
models. Together these results identify RPTPs as novel effectors of Purkinje neuron basal firing,
extending the MTSS1/SFK regulatory circuit we previously described and expanding the thera-
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peutic targets for SCA patients.

Introduction

Cells organize kinase and phosphatase complexes
within distinct micro-domains on their mem-
branes to locally control responses to extrinsic
signals. One organizer of these micro-domains is
the I-BAR family of proteins who both sense, and
induce, negative membrane curvature before
assembling relevant regulatory complexes to con-
trol the kinase/phosphatase output. Mtssl,
a founding member of the I-BAR family, acts as
a docking site for receptor protein tyrosine phos-
phatases (RPTP) to locally control the activity of
Src family non-receptor tyrosine kinases (SFKs)
[1-4]. This local kinase regulation gives rise to
a variety of cell biological phenotypes including
local changes in the actin cytoskeleton [5], as well
as receptor internalization and recycling [6]. In
highly polarize cells, such as neurons, Mtssl
restraint of SFKs stabilizes dendritic spines [7,8].

The cerebellum is an evolutionarily conserved
brain region with well-defined circuits that control
movement and motor learning. A prominent fea-
ture of the cerebellum is that several distinct

neuronal inputs are integrated by Purkinje neu-
rons, who are the sole output. Spinocerebellar
ataxias are a genetically heterogeneous family of
cerebellar wasting disorders characterized by
motor control problems, abnormal eye move-
ments, and impairments in motor learning [9].
Causative SCA loci are numbered in order of dis-
covery and affect many compartments in the cell,
ranging from ion channels at the cell membrane
[10] to transcription factors [11] to proteolytic
machinery [12] or ER calcium flux [13,14].
Defects in any of these diverse pathways lead to
a common endophenotype: Purkinje neuron dys-
function and degeneration. While the logic of the
diverse array of loci appeared opaque, we recently
demonstrated that multiple SCA models, originat-
ing from possible defects in transcription (SCA1),
translation (SCA2) and cytoskeleton (SCAS5,
Mtssl), converge on preventing hyperactivity of
the Src family of non-receptor tyrosine kinases [7].

Mammals have 9 members of the Src family of
non-receptor tyrosine kinases who have partially
overlapping patterns of expression and activity,
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which may help mask identification of their indi-
vidual functions (reviewed in [15]). SFKs play
essential roles in cell polarity and cytoskeletal
organization as well fundamental cell processes
including protein translation [16,17]. In the ner-
vous system SFKs underlie the induction of long
term potentiation(LTP) [18], a synaptic correlate
of learning, and are hyper-activated in a variety of
neurodegenerative disorders associated with
reduced synapse density including SCAl and
Alzheimer disease [19,20]. This suggests the loca-
lization and control of tyrosine kinase activity,
within neurons, can help drive neurodegenerative
disorders and represents a intriguing new thera-
peutic target. While we have shown that small
molecular SFK inhibitors can ameliorate the clin-
ical severity of the ataxia phenotype, clinically
available drugs lack favorable CNS biodistribution
[21], and cause myeloproliferative defects prevent-
ing further clinical development to treat SCA.

By contrast, RPTPs that control SFK activation
remain attractive therapeutic targets. The RPTP
super family is divided into 8 subtypes [22],
where type Ila members LAR, PTPRS and
PTPRD are strongly implicated in nervous system
function, including synaptic density [23], LTP
[24], spatial memory [25] and neurofibrillary tan-
gle formation for a variety of dementias [26]. Type
IIa RPTPs are characterized by dual catalytic
domains where the membrane proximal DI
domain removes phosphates from substrates
while the membrane-distal D2 domain has little
activity alone, rather it controls dimerization and
D1 catalytic function [27,28]. Exogenous expres-
sion of the PTPRS wedge domain that links the D1
and D2 catalytic sites is sufficient to reduce PTPRS
function [29], establishing a new class of specific
RPTP inhibitor.

Here we provide proof of concept that RPTP
inhibitors correct cerebellar Purkinje neuron firing
rates, leading to the possibility of neuron survival,
and amelioration of the SCA phenotype.

Materials and methods
Cell culture

MB55 mouse medulloblastoma cells [30] were main-
tained in floating spheres in DMEM:F12 + B27

supplement. For ISP treatment cells were dissociated
with accutase and plated on 1% matrigel. For ISP
treatment cells were incubated in increasing concen-
trations overnight. COS-7 cells were maintained in
DMEM+10% FBS and transfected with Fugene 6.

Co-IPs

GST-fusions encoding the intracellular D2 phos-
phatase domains of human CD45 (NM_002838 bp
2887-3831), LAR (AB177857 bp 5228-6014),
PTPRS (NM_002850.3 bp 5290-6012), PTPRD
(AB211400 bp 5667-6450), PTPRG (L09247 bp
3614-4300), PTPRN (BC070053 bp 2081-2926),
were cloned into pGEX expression vectors and
purified from bacteria using glutathion-sepharose
beads then incubated with COS-7 cell lysate
expressing Myc tagged human MTSS1. Protein
complexes bound to beads were washed 3 times
in PBS+0.5% NP40 before denaturing western
blot, and probing with mouse anti-Myc (Sigma
5546) before stripping and reprobing with mouse
anti-GST (Sigma G1160).

TAT-ISP peptide

TAT-ISP was synthesized by Genscript. Sequence:
GRKKRRQRRRCDMAEHELADHIERLKANDN-
LKFSQEYE-amidation

Purkinje cell recordings from cerebellar slices

All experimental procedures were approved by Stanford
University IACUC. Purkinje cell recordings from cere-
bellar slices was performed as in our previous publication
[7] with the following changes for TAT-ISP: Mice were
injected with 50ug TAT-ISP the night before harvest,
then cerebellar slices were bathed in ACSF supplemented
with 2uM TAT-ISP during cutting and recording.
MIM®'®  mice were characterized in [7], and
ATXN2Q127 mice were characterized in [31].

Western blots

Cells or tissues were lysed in RIPA buffer supple-
mented with Roche complete-mini protease and
Pierce phosphatase inhibitors. Samples were normal-
ized with BCA assay (Pierce) and 30pg total protein
was run on Novex 4-12% gels. Active SFK-Y416



(CST 6943), B-Actin (Sigma A1978) primary anti-
bodies were detected by IR-dye conjugated second-
aries and imaged with a LiCor scanner.

Results
MTSS1 binds specific RPTP family members

Because current SFK inhibitors lack favorable
CNS biodistribution [21] we explored the possi-
bility that RPTP inhibitors would demonstrate
efficacy in our MIM™'® and ATXN2?'* SCA
models. The reciprocal interaction between
MTSS1 and Type Ila-family member RPTPD
controls membrane localization [3] as well as
the ability to remove inhibitory phospho-marks
from SFKs [1]. To determine whether MTSS1
specifically binds individual RPTPs expressed in
the cerebellum, we performed co-precipitation
experiments. We purified GST-fusion constructs
of the intracellular domain of 5 of the 8 RPTP
subtypes [22]: CD45 (type 1/6), PTPRF (Ila),
PTPRS (IIa), PTPRD (IIa), PTPRA (type 4),
PTPRG (type 5), PTPRN (type 8), then incubated
with recombinant MTSS1 from COS-7 cell-lysate.
We observed specific interactions between
MTSS1 and type Ila family members PTPRS
and PTPRD with weak interaction with PTPRF
(LAR) (Figure 1(a)). Interestingly, these type II
RPTP family members are also highly expressed
in the cerebellum [32-35] and associated with
synapse formation in other brain regions [23,24].

To determine whether RPTP inhibition reduced
activation of SFKs, we took advantage of the recently
described RPTPS wedge inhibitor for type Ila fused to
the cell permeant TAT peptide for greater tissue dis-
tribution (TAT-ISP) [29]. We treated mouse medullo-
blastoma cells [30], that express type Ila RPTPs
(PTPRD,PTPRF,PTPRS), with TAT-ISP inhibitory
peptide and assayed SFK activation through the abun-
dance of the active phospho-mark SFK-Y416. We
found increasing levels of ISP reduced SFK-Y416 sug-
gesting RPTP inhibition is sufficient to reduce SFK
activity (Figure 1(b)).

We recently demonstrated that Purkinje neu-
ron basal firing rates are highly dependent on
SFK activity, and that reducing SFK activity is
sufficient to boost the suppressed firing rates
and improve behavior seen in many
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spinocerebellar ataxias [7]. To determine whether
RPTP inhibition impacts basal firing rates we
treated cerebellar slices from both MIM™"> and
ATXN22"* mice with TAT-ISP. We found 2uM
TAT-ISP treatment boosted firing rates in both
models to a level comparable to the small mole-
cule SFK inhibitor dasatinib (Figure 2), docu-
menting the efficacy of the TAT-ISP approach.
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Figure 1. MTSS1 binds specific RPTP family members. (a) We
purified GST-fusions of the intracellular domain of CD45 (type 1),
LAR (2a), PTPRS (2a), PTPRD (2a), PTPRN (type 8), PTPRA (type 4),
PTPRG (type 5), which represent 5 of the 8 RPTP subtypes, then
incubated with COS-7 cell lysate expressing Myc- MTSS1. Samples
were washed, subject to denaturing western blot, and probed
with anti-Myc (MIM), or anti-GST. (b) We treated mouse medullo-
blastoma cells [30], that express both PTPRS and PTPRD, with
increasing concentrations of TAT-ISP for 24 hours then SFK activa-
tion through the abundance of the active phospho-mark SFK-Y416
by western blot. Intensity values are compared to -Actin loading
control. *p < 0.05, **p = 0.0057 1-way ANOVA with Tukey post-
hoc. Error bars s.e.m.
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Figure 2. RPTP inhibition rescues firing defects from multiple ataxias. (a) Mean Purkinje neuron basal firing rates for cerebellar slices
incubated with DMSO (black), 200nM dasatinib (green), or 2uM TAT-ISP (blue). TAT-ISP treatment boosted firing rates in both MIM™'*
and ATXN22'?” models to a level not statistically different from treating with the small molecule SFK inhibitor dasatinib. *p < 0.0001,
ns p = 0.38 1-way ANOVA with Tukey post-hoc. Error bars s.e.m. (b) Summary table of firing data shown in A. C. Model where MTSS1
interacts with RPTPs and SFKs to restrain activity. When MTSS1 is lost (center) RPTPs remove inhibitory phospho marks from SFKs
allowing activation. TAT-ISP blocks RPTP activity preventing the activation of SFKs. (c) Summary comparing how MTSS1 functions with

SFKs and RPTPs.
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Discussion

We previously demonstrated SFK hyper-activation
suppresses Purkinje neuron basal firing rates and
leads to SCA by 1 month of age. Here we demon-
strate that inhibition of RPTP family members
known to interact with MTSS1 and control SFK
activity also rescues SCA-dependent suppression of
firing rates. These data suggest that aberrant regula-
tion of RPTPs underlie one of the earliest SCA phe-
notypes: altered Purkinje neuron firing rates. RPTPs
have large extracellular domains sufficient for dimer-
ization and activation either through contact with
other cells [36] or with the extracellular matrix
(ECM) [37,38]. The ability of RPTPs to respond to
extracellular signals suggest some aspects of SCA
disease progression may be driven in a non-cell
autonomous manner, possibly by altered interaction
with the ECM. Supporting the idea that ECM con-
tributes to neurologic disease, conditionally remov-
ing HSPGs a major component of the extracellular
matrix leads to neurologic deficits ranging from
cerebellar agenesis [39] to socio-communicative def-
icits [40], while ablating CSPGs, an alternative ECM
polysaccharide family, improves re-innervation after
spinal injury [41].

While the majority of studies using PTPRS
and PTPRD mutant mice have focused on the
hippocampus, the observed phenotypes contrast
the cerebellar phenotypes seen in many SCA
models. For example, PTPRS and PTPRD
mutant mice have been shown to have
increased hippocampal dendritic spine density
[23], and enhanced synaptic transmission asso-
ciated with learning defects [24], contrasting
the reduced Purkinje neuron spine density
[7,31,42] and attenuated synaptic strength [43]
seen in some SCA models. Since SFKs and
RPTPs likely work through a variety of
mechanisms to regulate synapse stability, addi-
tional studies are required to elucidate which
events result in the reduced synapse stability
seen in SCA. In the hippocampus, SFK activity
enhances LTP [18,44] by controlling glutamate
receptor presentation and activity [45], and
helps control the formation and stability den-
dritic spines [46] possibly through regulating
the activity of the actin bundling protein
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Cortactin [47]. While SFKs and protein tyro-
sine phosphatases have been shown to modu-
late mGluR1 activity at the Purkinje neuron/
parallel fiber synapse to control LTD [48].
Additionally, SFKs are a key link between
RPTPs and TrkB to potentiate BDNF signaling
and increase synaptic function [49]. These
findings suggest that one function for RPTPs
in the nervous system is local control of SFK
activity to stabilize the synapse, likely in
response to multiple signaling pathways.

Our data expands the MTSS1/SFK regulatory
circuit and identifies RPTPs as novel effectors of
Purkinje neuron firing. Given the pleiotropic
effects of SFK inhibition, RPTPs may prove
a more idea candidate for SCA treatment.
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