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ABSTRACT
DNA methylation (DNAm) and microRNAs (miRNAs) have been implicated in a wide-range of
human diseases. While often studied in isolation, DNAm and miRNAs are not independent. We
analyzed associations of expression of 283 miRNAs with DNAm at >400K CpG sites in whole blood
obtained from 3565 individuals and identified 227 CpGs at which differential methylation was
associated with the expression of 40 nearby miRNAs (cis-miR-eQTMs) at FDR<0.01, including 91
independent CpG sites at r2 < 0.2. cis-miR-eQTMs were enriched for CpGs in promoter and
polycomb-repressed state regions, and 60% were inversely associated with miRNA expression.
Bidirectional Mendelian randomization (MR) analysis further identified 58 cis-miR-eQTMCpG-
miRNA pairs where DNAm changes appeared to drive miRNA expression changes and opposite
directional effects were unlikely. Integration of genetic variants in joint analyses revealed an
average partial between cis-miR-eQTM CpGs and miRNAs of 2% after conditioning on site-specific
genetic variation, suggesting that DNAm is an important epigenetic regulator of miRNA expres-
sion. Finally, two-step MR analysis was performed to identify putatively causal CpGs driving miRNA
expression in relation to human complex traits. We found that an imprinted region on 14q32 that
was previously identified in relation to age at menarche is enriched with cis-miR-eQTMs. Nine
CpGs and three miRNAs at this locus tested causal for age at menarche, reflecting novel epige-
netic-driven molecular pathways underlying this complex trait. Our study sheds light on the joint
genetic and epigenetic regulation of miRNA expression and provides insights into the relations of
miRNAs to their targets and to complex phenotypes.

ARTICLE HISTORY
Received 18 March 2019
Revised 24 June 2019
Accepted 28 June 2019

KEYWORDS
DNA methylation; microRNA;
miR-eQTM; eQTM; complex
traits; age at menarche

Introduction

DNA methylation (DNAm) and microRNAs
(miRNAs) influence protein-coding gene expres-
sion independent of and as a consequence of
changes in DNA sequence. Recent population-
based studies have demonstrated that variation in
DNAm and miRNA expression are associated with
interindividual phenotypic variation. For example,
locus-specific differences in DNAm are associated
with a wide range of cardiometabolic phenotypes
such as body mass index[1], lipid traits [2,3], gly-
cemic traits [4], and inflammatory biomarkers [5].
Aging and environmental exposures, such as

cigarette smoking and alcohol consumption, also
have large effects on genome-wide DNAm [6–9].
In addition to DNAm, specific miRNA expression
patterns have been associated with various cardio-
vascular disorders and cancer [10–16]. Both
DNAm and miRNA expression are often studied
in isolation, but they are not independent [17,18]
and few studies have integrated DNAm and
miRNA in relation to human diseases.

DNAm, the covalent binding of a methyl group
to the 5ʹ carbon of cytosine, occurs primarily at
cytosine-phosphate-guanine (CpG) dinucleotide
sequences in the genome and influences the pre-
transcriptional regulation of protein-coding genes
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by affecting the binding of chromatin proteins and
transcription factors (TFs) to DNA sequences
[19,20]. For example, the methylation of CpG
island promoters prevents binding of TFs, inhibits
transcription initiation, and results in gene silen-
cing. Methylation of the gene body region, how-
ever, can stimulate gene transcription elongation,
and may also affect messenger RNA (mRNA) spli-
cing [21]. miRNAs, which comprise a large family
of single-stranded non-protein-coding RNAs of
approximately 22 nucleotides, also influence pro-
tein-coding gene expression by causing degrada-
tion of complementary mRNAs or inhibiting
translation [22,23]. There are over 2000 mature
miRNAs [24] that control, in part, the expression
of about two-thirds of human genes [25]. In addi-
tion, genetic variation strongly influences DNAm
[26–32] and miRNA expression levels [33].

While the relationship between DNAm and
protein-coding gene expression has been studied
extensively [34,35], a comprehensive genome-wide
interrogation of the relationship between DNAm
and miRNAs is lacking. Integration of DNA
sequence variation, DNAm, and miRNA expres-
sion may also provide vital insights into the biolo-
gical processes. To this end, we performed an
epigenome-wide association study of DNAm at
over 400,000 CpGs with expression of 283
miRNAs in 3565 Framingham Heart Study (FHS)
participants. A comprehensive map of CpGs
linked to miRNAs (miRNA expression quantita-
tive trait methylation loci; miR-eQTMs) as well as
bi-directional Mendelian randomization (MR)
analyses were used to unravel the influence of
DNAm on miRNA expression. We additionally
integrated genetic variants, miR-eQTMs, and pro-
tein-coding gene targets of miRNAs with human
complex traits. Comprehensive two-step MR ana-
lyses were performed to explore the epigenetically-
driven molecular cross-talk between DNAm,
miRNAs, and human complex phenotypes (study
design outlined in Figure 1).

Results

Clinical characteristics summary

A total of 3565 FHS participants had whole blood
miRNA expression measurements (for 283 miRNAs

expressed in >20% of participants) and DNAmmea-
surements at 415,318 CpGs were used to identify
miR-eQTMs, including 2124 FHS Offspring samples
(mean age 66, 55% female) and 1441 FHS 3rd gen-
eration samples (mean age 45, 52% female). The
demographic and clinical characteristics of the
study participants are shown in Supplementary
Table 1.

mRNA expression was measured in 5626 FHS
participants, of which 5357 participants who also
had miRNA expression were used for subsequent
miRNA-mRNA coexpression analysis. A total of
3345 participants had miRNA, mRNA, and
DNAm measurements.

Evaluation of the reproducibility of detected
cis- and trans-miR-eQTMs

To evaluate the reproducibility of detected cis- and
trans-miR-eQTMs in our data, we used an internal
validation strategy by splitting the overall sample set
into two independent subgroups; a discovery set
(N = 1761) and a replication set (N = 1804). The
clinical characteristics of the discovery and replication
sets did not show substantive differences
(Supplementary Table 2).We identified cis- and trans-
miR-eQTMs in each set in the same fashion as in the
overall sample (see the following subsection). The
association t-statistic values for cis- and trans-miR-
eQTMs were consistent between the discovery and
replication sets (Supplementary Figure 1). At succes-
sively stringent discovery FDR thresholds of <0.1,
0.05, and 0.01, the replication ratio of cis-miR-
eQTMs at replication FDR<0.1 are 55% (88/160),
72% (83/116), and 83% (65/78), respectively. In con-
trast, the replication ratio of trans-miR-eQTMs at
replication FDR values of <0.1 are much lower at
0.3% (51/15,363), 0.8% (7/911) and 2% (6/304),
respectively. Due to the low replication rate of trans-
miR-eQTMs, the remainder of this paper focuses on
cis-miR-eQTMs identified in the overall study sample
at FDR<0.01.

Identification of cis-miR-eQTMs

We identified 227 CpGs (cis-miR-eQTMs) that were
associated with expression levels of 40 miRNAs (299
cis miRNA-CpG pairs) at FDR<0.01 (corresponding
P < 1.43E-5; Figure 2 and Supplementary Table 3) in
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the overall study sample (N = 3565). A total of 117
(out of 227) of the CpG sites were retained after
removing correlated CpGs at r2 > 0.5 and 91 remained
after removing those at r2 > 0.2. The top 20 cis-miR-
eQTMs (selecting one peak CpG for each cis CpG-
miR pair or clusteredmiRNAs at a single cis locus) are
shown in Table 1. The most highly significant cis-miR
-eQTM, cg06000878, was positively associated with
both miR-100-5p (28Kb upstream) and miR-125b-5p
(80Kb upstream) expression, with r2 between the CpG
and miRNAs 31% and 14% respectively.

Characterizing cis-miR-eQTMs

To better understand cis-miR-eQTMs, we further
investigated positive vs. negative correlations

between CpGs and miRNAs, and if that direction
of effects depends in part on their genomic locations
in chromosomes. We found that 40% (121/299) of
the cis CpG-miRNA pairs are positively correlated
and 60% (178/299 pairs) are negatively correlated.
The majority of cis-miR-eQTMs (76%, 227/299
pairs) reside upstream (toward the 5ʹ end) of the
corresponding miRNAs. 14 cis-miR-eQTM CpGs
are located within the promoter of the correspond-
ing miRNAs (promoter regions were defined as 3Kb
upstream and 500bp downstream of miRNA tran-
scription start sites [TSS] [36,37]). Two cis-miR-
eQTM CpGs are located within the precursor
miRNA (pre-miRNAs), namely cg03295417 for
miR-193b-3p, and cg16865908 for miR-125b-5p.
Both are positively correlated. Enrichment analysis

Figure 1. Analysis Flowchart.
Pair-wise associations between over 400K CpGs and 285 miRNAs were performed to identify cis- and trans-miR-eQTMs. Internal
replication suggested cis- but not trans-miR-eQTMs are replicable. Therefore, the following analysis focused on cis-miR-eQTMs. For
each cis-miR-eQTM CpG-miRNA pair, bi-directional MR analysis was used to identify CpG→miRNA pairs (i.e. the changes of DNAm
driving the changes of miRNAs but not vice versa). Then, we linked cis-meQTLs with human complex traits, bi-directional MR analysis
was used to identify CpG→Trait. Two-step MR analysis was used to further identify miRNA→Trait to establish CpG→miRNA→Trait.
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(Table 2) revealed that cis-miR-eQTM CpGs are
enriched at promoter and polycomb-repressed state
regions (marked by chromatin markers H3K27me3
at Bonferroni-corrected P < 0.05/11), suggesting

important regulatory roles of these CpGs on
miRNA expression levels.

For the top result (see Table 1), cg06000878 resides
in the gene body of non-coding RNA LOC399959,

Figure 2. Manhattan plot of cis-miR-eQTMs.
The grey and dark grey colors denote cis-miR-eQTMs with P < 0.05, and the other colorful dots indicate cis-miR-eQTMs with P < 1.43E-5
(FDR<0.01). The dashed line indicates FDR = 0.01. 15 cis-miR-eQTMs for miR-125b-5p and miR-100-5p in Chromosome 11 and 3 cis-miR-
eQTMs for miR-133a in Chromosome 20 were at P < 1E-20 and are not shown in this figure. miR-133a shows in both Chr18 and Chr20.

Table 1. Top 20 peak cis-miR-eQTMs identified in the 3656 FHS participants.
CpG miRNA Chromosome Beta * SD T value P value FDR Distance CpG to miRNA

cg06000878 miR-100-5p 11 −46.38 1.38 −33.72 1.91E-206 4.79E-201 28Kb Up
miR-125b-5p −19.63 0.82 −24.06 1.58E-118 1.98E-113 80Kb Up

cg11682508 miR-133a 20 −23.42 1.24 −18.90 6.94E-76 2.05E-71 12Kb Up
cg18089426 miR-370 14 4.81 0.53 9.03 2.90E-19 1.89E-15 201Kb Up

miR-127-3p 3.82 0.45 8.45 4.39E-17 2.39E-13 173Kb Up
miR-668 4.54 0.57 7.96 2.32E-15 1.15E-11 345Kb Up
miR-543 3.26 0.48 6.83 1.03E-11 3.50E-08 322Kb Up
miR-654-5p 3.65 0.55 6.58 5.57E-11 1.77E-07 330Kb Up
miR-411-3p 2.86 0.43 6.58 5.80E-11 1.82E-07 313Kb Up
miR-409-3p 2.71 0.42 6.54 7.15E-11 2.11E-07 355Kb Up
miR-382-5p 3.47 0.58 5.97 2.64E-09 6.03E-06 344Kb Up
miR-376a-3p 3.51 0.59 5.90 3.98E-09 8.95E-06 331Kb Up

cg17263206 miR-1303 5 5.96 0.70 8.57 1.78E-17 9.92E-14 6KB Down
cg22785556 miR-339-3p 7 1.66 0.22 7.62 3.28E-14 1.44E-10 18Kb Up
cg24642844 miR-339-5p 7 3.24 0.44 7.37 2.20E-13 8.89E-10 18Kb Up
cg13551269 miR-1270 19 4.35 0.67 6.51 8.58E-11 2.40E-07 601Kb Up
cg08509270 miR-134 14 11.57 2.15 5.39 7.74E-08 1.30E-04 7Kb Up
cg18125510 miR-329 14 −7.77 1.46 −5.33 1.07E-07 1.72E-04 651Kb Up
cg10546626 miR-296-5p 20 −8.51 1.60 −5.32 1.13E-07 1.77E-04 317Kb Up
cg11574469 miR-30a-3p 6 13.27 2.54 5.22 2.28E-07 3.47E-04 17Kb Up
cg23299641 miR-652-3p X 2.27 0.44 5.14 2.97E-07 4.38E-04 430Kb Up
cg16807457 miR-363-3p X 2.54 0.50 5.12 3.31E-07 4.84E-04 68Kb Up

miR-92a-3p 0.91 0.20 4.43 9.50E-06 7.63E-03 68Kb Up
cg07060551 miR-99b-5p 19 −8.61 1.72 −4.99 6.26E-07 8.44E-04 997Kb Up
cg18735402 miR-642a-5p 19 −4.93 1.01 −4.88 1.11E-06 1.42E-03 3KB Down
cg11084334 miR-885-5p 3 7.06 1.45 4.87 1.16E-06 1.45E-03 842KB Down
cg07480829 miR-766-3p X 1.42 0.30 4.82 1.48E-06 1.80E-03 91Kb Up
cg25925210 miR-26b-5p 2 −3.76 0.79 −4.79 1.75E-06 2.03E-03 309KB Down
cg25998745 miR-151a-5p 8 3.55 0.75 4.75 2.10E-06 2.40E-03 285Kb Up
cg09285672 miR-500a-3p X 1.20 0.25 4.75 2.18E-06 2.45E-03 792Kb Up

* Higher Ct values indicate lower miRNA expression levels. Therefore, positive beta values indicate negative associations between miRNA expression
and DNAm.
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and associated with both miR-100-5p and miR-125b-
5p. There were 35 additional cis-miR-eQTM CpGs
(27 CpG sites at r2 < 0.2) for either miR-100-5p, miR-
125b-5p, or both. Expression levels of miR-100-5p
and miR-125b-5p were moderately correlated
(r2 = 0.32). Scatter plots and correlation heatmaps of
cis-miR-eQTMs for both miRNAs are presented in
Figure 3(a-d). Another example is on chromosome 14
where multiple CpGs were associated with expression
of multiple miRNAs (Figure 3(e-h)). The top CpG
(cg18089426) was associated with 9 miRNAs (miR-
127-3p, miR-370, miR-668, miR-543, miR-654-5p,
miR-411-3p, miR-409-3p, miR-382-5p, and miR-
376a-3p) in this region including 49 cis-miR-eQTM
CpG-miRNA pairs. This region previously identified
as a genomic imprinted region, includes the
imprinted genes DLK1 and RTL1 [38,39]. The
observed associations between CpGs and miRNAs at
this locus did not change after adjusting for the
expression levels of DLK1 and RTL1.

cis-miR-eQTMs for intragenic miRNAs
conditioning on their host mRNAs

Intragenic miRNAs, where miRNAs are located
within a protein-coding gene, can be transcribed
either along with their host mRNAs or independent
of them. We further evaluated whether the associa-
tion between DNAm and intragenic miRNA

expression was independent of the association
between DNAm and expression of the host mRNA
expression. The 40 miRNAs with cis-miR-eQTMs
were located both within (intragenic) and outside
(intergenic) coding gene bodies; 23 were intergenic
miRNAs (97 cis-miR-eQTMs, 149 CpG-miRNA
pairs) and 17 were intragenic miRNAs (136 cis-miR-
eQTMs, 150 CpG-miRNA pairs). For the 17 intra-
genic miRNAs, we conditioned the association ana-
lyses between CpG methylation and miRNA
expression on host mRNA expression levels. We
found that each of the 150 intragenic cis miRNA-
CpG pairs for intragenic miRNAs remained signifi-
cantly associated after conditioning on host mRNA
expression at Bonferroni corrected P < 3.3E-4 (0.05/
150). Only two cis-miR-eQTMs were also associated
with expression of the host mRNA at Bonferroni
corrected P <3.3E-4, including cg02355304 for
miR-589-5p and FBXL18, cg01349480 for miR-504
and FGF13. The associations between cg02355304
and miR-589-5p, and between cg01349480 and
miR-504 remained significant when conditioning
on their host mRNAs (Supplementary Table 4).
These results suggest that the relationship between
DNAm and miRNA expression levels can be inde-
pendent of their host mRNA expression levels.

Dissecting genetic and epigenetic effects on
miRNAs

To evaluate the joint genetic and epigenetic
effects on miRNAs with cis-miR-eQTMs and cis-
miR-eQTLs, we tested the proportion of variation
in expression of each miRNA that was attributed
to: 1) a single cis-miR-eQTM; 2) a single cis-miR-
eQTL; 3) multiple cis-miR-eQTMs for the
miRNA; 4) multiple cis-miR-eQTLs for the
miRNA; and 5) a combination of cis-miR-eQTLs
and cis-miR-eQTMs for the miRNA (see
Methods). Our results show that the partial R2

between individual cis-miR-eQTM CpG and
a miRNA is 0.02 ± 0.03 (mean ± SD), and
between individual cis-miR-eQTL SNP and
a miRNA is 0.01 ± 0.02. For the 27 miRNAs
having both cis-miR-eQTMs and cis-miR-eQTLs,
the partial R2 between multiple cis-miR-eQTM
CpGs and a miRNA is 0.05 ± 0.08, whereas
between multiple cis-miR-eQTL SNPs and
a miRNA is 0.13 ± 0.09. The partial R2 of cis-

Table 2. Genomic features of cis-miR-eQTMs.

Genomic Features
cis-miR-
eQTMs

Total
CpGs

Fold
Change P value

CpG Island 82 150,254 1.06 0.49
Low-CpG region 6 4954 2.34 0.03
High-CpG region 15 27,104 1.08 0.76
Enhancer 45 102,559 0.85 0.23
Enhancer (Encode
gm12878)

12 23,988 1.99 0.01

Promoter 71 98,090 1.41 9.7E-4
Promoter (Encode
gm12878)

44 71,180 2.46 1.49E-11

Heterochrom/lo (Encode
gm12878)

30 79,312 1.51 0.01

Insulator (Encode
gm12878)

4 4008 NA NA

Repetitive/CNV (Encode
gm12878)

1 674 NA NA

Repressed (Encode
gm12878)

22 24,355 3.60 3.89E-11

* The significant terms were defined as Fold change > 1 and Bonferroni
corrected P < 0.05/11.

* CpG annotation were from Illumina annotation platform and Encode
ChromHMM Track of gm12878 cell line.
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a                                                                                             b                             

c                                                           d

e                                                                                               f                  

g                                            h 

Figure 3. Examples of top cis-miR-eQTMs for miRNAs.
(a) Regional association plot of cis-miR-eQTMs and miRNAs (miR-100-5p, miR-125b-5p); (b) Scatter plot of DNAm values of the top CpG,
cg06000878 with miR-100-5p; (c) Scatter plot of cg06000878 with miR-125b-5p; (d) Heatmap of Spearman correlation matrix of cis-miR-
eQTMs for miR-100-5p and/or miR-125b-5p; (e) Regional association plot of cis-miR-eQTMs andmiRNAs (miR-127-3p, miR-370, miR-668, miR-
543, miR-654-5p, miR-411-3p, miR-409-3p, miR-382-5p, and miR-376a-3p); (f) Scatter plot of DNAm values of the top CpG, cg18089426 with
miR-370; (g) Scatter plot of DNAm values of the top CpG, cg18089426 with miR-127-3p; (h) Heatmap of Spearman correlation matrix of cis-
miR-eQTMs for miR-127-3p, miR-370, miR-668, miR-543, miR-654-5p, miR-411-3p, miR-409-3p, miR-382-5p, and miR-376a-3p. Highlighted
red rectangle in (d) shows putatively causal CpGs for HDL cholesterol. Highlighted red rectangle in (e) shows putatively causal CpGs for age at
menarche. The x-axis and y-axis in (b), (c), (g) and (h) are DNAm and miRNA expression residuals after adjusting for covariates (see Methods).
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miR-eQTM CpGs for each miRNA was
0.02 ± 0.03 when conditioning on the cis-miR-
eQTL SNPs (Supplementary Table 5). The top
example is for miR-100-5p; the partial R2 of the
33 cis-miR-eQTM CpGs and miR-100-5p is 0.14
when conditioning on the 339 cis-miR-eQTL
SNPs.

cis-miR-eQTM effects on miRNA targets

To investigate the effects of cis-miR-eQTMs on the
expression of miRNA protein-coding gene targets
(i.e., mRNA expression), we performed miRNA-
mRNA co-expression analyses and used in silico
prediction models to identify miRNA targets (see
Methods). For the 40 miRNAs having cis-miR-
eQTMs, we identified 1739 mRNAs that were co-
expressed and were predicted to be miRNA tar-
gets, representing 2621 miRNA-mRNA pairs
(Supplementary Table 6). We found that cis-miR-
eQTM CpGs tended to be associated with the
expression of miRNAs targeting mRNAs (by bino-
mial test, P < 2.2E-16), suggesting that cis-miR-
eQTMs may affect miRNA targets through
miRNAs. Due to the complex interactions between
miRNAs and their targets (e.g., pleiotropic effects
of miRNAs on multiple targets, multiple miRNAs
targeting the same mRNAs, and other genes/pro-
teins driving expression changes of mRNAs), we
were unable to estimate the exact proportion of
CpG effect on miRNA targets mediated by
miRNAs.

Bidirectional mendelian randomization testing to
identify putatively causal CpGs for miRNAs

Due to the nature of the association analyses
between CpGs and miRNAs, we were unable to
determine whether DNAm drives miRNA
expression changes or vice versa. Therefore, we
performed bidirectional MR testing to further
distinguish whether CpGs are causal for miRNA
or vice versa (Figure 1). In our previous studies,
we identified genetic variants associated with
miRNA expression (miR-eQTLs [33]) and with
methylation of CpGs (meQTLs [40]). Among the
299 CpG-miRNA pairs, there were 116 pairs for
which the CpGs and miRNAs have both cis-
meQTLs (n ≥ 3 variants at LD r2 < 0.1) and cis-

miR-eQTLs (n ≥ 3 variants at LD r2 < 0.1) and
were eligible for robust MR testing. The other
pairs were not suitable for MR analysis.
Bidirectional MR results are presented in
Supplementary Table 7. We identified 89 pairs
where the CpG was putatively causal for miRNA
expression (CpG→miRNA, at PMR< 0.05/116),
and 34 pairs where the miRNA expression was
putatively casual for CpG (miRNA→CpG, at PMR

< 0.05/116). Thirty-one pairs overlapped, i.e.,
both CpG→miRNA and miRNA→CpG MR tests
were significant. We excluded these 31 bi-
directionally causal pairs and focused on the 58
pairs for which the CpG tested causal for the
miRNA but the miRNA did not test causal for
the CpG; this represented 36 CpGs and 17
miRNAs. There were only three pairs for which
the miRNA tested causal for the CpG but not
vice versa, i.e., miR-1270→cg03570035/
cg07227744/cg03317517. Bidirectional MR results
showed that the majority of CpG-miRNA pairs
are CpG causal for miRNA rather than miRNA
causal for CpG. This result, coupled with the
results reported above that cis-miR-eQTM CpGs
are enriched for promoter-associated and poly-
comb-repressed state regions, suggests that
changes in DNAm of cis-miR-eQTM CpGs may
affect miRNA expression rather than vice versa.

cis-miR-eQTMs helping to identify novel
pathways underlying human complex traits

To further demonstrate the utility of our cis-miR-
eQTMs resource, we linked cis-meQTLs and cis-miR-
eQTLswithGWASCatalog SNPs for human complex
diseases and traits. We further performed MR to
identify putatively causal CpGs for human complex
traits where the causal pathways may or may not act
through miRNAs, i.e., CpG→ trait, or
CpG→miRNA→trait. The analysis flowchart is
shown in Figure 1. Among the 58 CpG→miRNA
pairs, 52 pairs having both cis-meQTLs and cis-miR-
eQTLs perfectly matched GWAS SNPs for eight com-
plex traits in the GWAS Catalog, including acute graft
versus host disease in bone marrow transplantation,
atrial fibrillation, age at menarche, C-reactive protein
levels, facial morphology, HDL cholesterol, magne-
sium levels, and total cholesterol (TC). This overlap of
SNP associations suggests that CpGs and miRNAs
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may be involved in the gene regulatory pathways for
the traits or that changes in CpGs andmiRNAs reflect
trait variability. Full GWAS summary results for five
traits that are publicly available were suitable for
robust MR testing. Bidirectional MR tests were per-
formed on CpG-trait pairs to identify putatively cau-
sal CpGs for traits (i.e., CpG→trait, at PMR< 0.05) for
which reverse causality was unlikely (i.e., trait→CpG
at PMR> 0.05, Figure 1). In doing so, we identified
cg25998745 as putatively causal for atrial fibrillation,
cg26684673 for HDL cholesterol, 16 CpGs (3 CpG
sites at r2 < 0.2, e.g., cg24642844) for total cholesterol,
and 9 CpGs (3 CpG sites at r2 < 0.2, including
cg18089426) for age at menarche (Supplementary
Table 6). Two-step MR testing was performed to
identify miRNAs in the causal pathways that were
driven by CpG methylation, e.g., cg26684673→miR-
125b-5p→HDL cholesterol (Supplementary Table 6).
A notable example is the 9 CpGs and 3 miRNAs that
tested causal for age at menarche (also see in Figure 3
(d-f)). By utilizing two GWAS resources for age at
menarche from independent sample sets including
182,416 individuals from 57 studies [41] and 272,937
individuals from UK Biobank (www.nealelab.is/uk-
biobank/) we cross-validated the MR results (Table
3). Many cis-miR-eQTMs were found in this genomic
imprinted region that were associated with age at
menarche. This finding is consistent with the hypoth-
esis that epigenetic regulation involving both DNAm
and miRNAs is critical in genomic imprinting and
results in wide variability of age at menarche. Further
experiments and investigation are necessary to prove
this hypothesis. The directions of associations in cau-
sal testing suggest that hypermethylation of

cg18089426 promotes decreased expression of miR-
411-3p, miR-382-5p, and miR-127-3p and contri-
butes to older age at menarche.

Discussion

In this investigation, we report results of the first
systematic epigenome-wide association study of
miRNA expression and identified 299 correlated
cis CpG-miRNA pairs. Bidirectional MR analysis
identified 58 pairs for which the DNAm appears to
drive changes in miRNA expression. Joint analyses
of genetic variants, DNAm, and miRNA expres-
sion demonstrated a partial R2 between DNAm
and miRNA expression of 2% after conditioning
on genetic variants. Our study constitutes an
important step toward a more comprehensive
understanding of the regulation of miRNA expres-
sion by genetic and epigenetic mechanisms. In
addition, we identified examples of DNAm and
miRNA expression that are putatively causally in
relation to human complex traits. For instance, we
found that hypermethylation of cg18089426 and
expression of miR-411-3p, miR-382-5p, and miR-
127-3p contribute to variation in age at menarche.
Moreover, this CpG and these miRNAs are located
at a region of the genome that has previously been
reported to contribute to imprinting [38,39].

DNAm influences pre-transcriptional regulation
of protein-coding genes. Several studies have
revealed differential methylation of thousands of
CpGs in association with protein-coding mRNAs,
i.e., cis-mRNA-eQTMs [34,35]. To our knowledge,
our study is the first to provide genome-wide

Table 3. Mendelian Randomization examining causal CpGs and miRNAs for age at menarche.
MR: CpG–>Trait

(Perry JR, et al. Nature 2014)
MR: CpG–>Trait

(Nealelab, UKBiobank)
Reverse MR: Trait–>CpG

(Perry JR, et al. Nature 2014)
MR: miRNA–>Trait

(Perry JR, et al. Nature 2014)

CpG meQTLs Beta Pval meQTLs Beta Pval GWAS SNPs Beta Pval miRNA miR-eQTLs Beta Pval

cg05730092 10 −0.94 5.34E-06 15 −0.23 6.82E-04 86 −0.03 0.09 miR-382-5p 13 −0.02 1.15E-03
miR-127-3p 15 −0.02 0.05

cg13521842 7 −0.86 5.22E-04 15 −0.19 6.11E-03 86 −0.02 0.15 miR-127-3p 15 −0.02 0.05
cg13583544 7 −2.77 1.58E-04 11 −0.76 7.25E-04 86 −0.01 0.08
cg13673514 6 −0.87 9.22E-04 10 −0.19 0.03 86 −0.02 0.17 miR-127-3p 15 −0.02 0.05
cg26279372 8 −0.94 1.16E-04 16 −0.21 2.94E-03 86 −0.03 0.10 miR-127-3p 15 −0.02 0.05
cg18089426 8 0.25 0.02 18 0.07 0.02 86 0.01 0.61 miR-411-3p 7 −0.05 6.09E-07

miR-382-5p 13 −0.02 0.00
miR-127-3p 15 −0.02 0.05

cg07957069 9 −0.58 6.41E-04 16 −0.13 0.02 86 −0.01 0.27 miR-127-3p 15 −0.02 0.05
cg18684879 8 1.06 6.70E-03 14 0.20 0.06 86 2.32E-03 0.44
cg18125510 6 −1.80 1.25E-04 10 −0.23 0.07 86 −0.01 0.16

* cg05730092, cg13521842, cg13583544, cg13673514, and cg26279372 were at r2> 0.2; cg18089426, cg07957069 and cg18684879 were at r2 > 0.2.
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mapping of DNAm and miRNA expression. We
found that cis-miR-eQTMs are enriched in pro-
moter and polycomb-repressed regions. Higher
methylation at 60% of cis-miR-eQTMs is asso-
ciated with lower miRNA expression. These results
suggest that methylation of CpGs residing adjacent
to miRNAs may silence the transcription of those
miRNAs, similar to observed relations of differen-
tial methylation of CpGs to expression of nearby
protein-coding genes [42]. We identified 2 cis-miR
-eQTMs located within pre-miRNAs or mature
miRNAs that are positively associated with
miRNA expression. This suggests that methylation
in miRNA body regions may foster the transcrip-
tion of miRNAs, similar to what has been reported
for protein-coding genes [43].

We found genetic variants that are associated with
both cis-DNAm (cis-meQTLs) and cis-miRNA
expression (cis-miR-eQTLs). We hypothesize that
given the close physical proximity of interrelated
SNPs, CpGs, and miRNAs, the observed associations
may be driven by changes in TF binding or by direct
influences on the three-dimensional conformational
structure of chromatin, perhaps by impairing CTCF
binding sites. We further demonstrated that inter-
individual variation in miRNA expression is influ-
enced by cis genetic and epigenetic contributions.
After conditioning on shared SNPs (miR-eQTLs and
meQTLs), our results show that the associations of
CpGs and miRNAs remain significant and often dis-
play substantial effect sizes. The strongest association
of cis-miR-eQTMs (CpG with nearby miRNA) were
for miR-100-5p and miR-125b-5p. These two
miRNAs are located close to each other on chromo-
some 11 and are moderately correlated with each
other (r2 = 0.3). The partial R2 of the 33 cis-miR-
eQTM CpGs for miR-100-5p expression was 14%,
and the partial R2 of the 28 cis-miR-eQTMs for
miR-125b-5p expression is 6%, both after condition-
ing on cis-miR-eQTL SNPs. We identified 25 shared
cis-miR-eQTMs for both miRNAs, with 14 of these
CpGs lying within known enhancers (Supplementary
Table 3). Additional epigenetic regulatory effects may
exist from elements that we did not assay. The full list
of cis-miR-eQTMs includes miRNAs that warrant
further functional exploration.

Among the 40 miRNAs harboring cis-miR-
eQTMs, there are 17 intragenic miRNAs.
Intragenic miRNAs lying within protein-coding

genes can be transcribed together with their host
mRNAs or independently. The conditional ana-
lyses revealed that 98% of DNAm-miRNA expres-
sion pairs remain significantly associated after
adjusting for expression of the host mRNA, thus
suggesting that the identified epigenetic relations
of DNA methylation to miRNA expression is inde-
pendent of the host mRNA expression. We identi-
fied methylation at two CpGs to be associated with
both intragenic miRNA and host mRNA expres-
sion; specifically, cg02355304 for miR-589-5p and
FBXL18, and cg01349480 for miR-504 and FGF13.
These results support the hypothesis that miRNAs
can be transcribed together with their host
mRNAs or independently.

To further demonstrate the utility of our cis-
miR-eQTMs resource, we crosslinked cis-miR-
eQTMs with GWAS Catalog traits by linking cis-
meQTLs and cis-miR-eQTLs with GWAS Catalog
SNPs [44]. We were able to link 90% (52/58) of
causal CpG→miRNA pairs to complex traits via
perfect overlap with cis-meQTLs and cis-miR-
eQTLs. These findings suggest that DNAm and
miRNAs may be important contributors to
human diseases and traits. For the five traits for
which full GWAS results were publicly available,
we performed MR analyses to further assess causal
relations between CpGs and complex traits.
A similar study by Richardson et al. used cis-
meQTLs as instrumental variables to identify cau-
sal CpGs for cardiovascular disease traits by MR
[45]. However, they focused on a different set of
CpGs than the cis-miR-eQTMs in this study. By
linking cis-miR-eQTMs miRNAs with putatively
causal CpGs, we provide a more complete picture
of CpG-related causal pathways involving
miRNAs. Our most biologically compelling exam-
ple is that of 49 cis CpG-miRNA pairs for 19 CpGs
and 9 miRNAs residing in an imprinted region on
14q32. Prior studies identified paternally inherited
SNPs in association with human complex traits
[46], e.g., rs941576 in this region in relation to
type I diabetes [47]. Imprinted genes were defined
as genes that exhibit activity differences in the
offspring depending on which parent passes on
that gene. Imprinted genes were also identified in
relation with human complex traits. For example,
DLK1 was reported to be associated with age at
menarche [41] and with many cancers [48–50].
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About ten imprinted genes in the orthologous
mouse region (12qF1), including DLK1, were
reported [38]. miRNAs aligning to this region in
mice were reported to exhibit a pattern of mater-
nal inheritance [51]. Genomic imprinting was
thought to be involved in epigenetic regulation,
however, the precise molecular mechanisms
underlying genomic imprinting are largely
unknown [51]. We identified many cis-miR-
eQTMs in the 14q32 imprinted region. Our find-
ings lead to a new hypothesis that the CpG-
miRNAs pairs in this region may be involved in
the observed imprinting. Many of these interlinked
CpGs and miRNAs at this locus are associated
with age at menarche and MR testing suggests
causal relations. Age at menarche varies consider-
ably between individuals and this variation reflects
both genetic and environmental influences. Perry
et al. reported on the association of SNPs and
expression levels of DLK1 in 14q32 with age at
menarche [41]. Their research provides an exam-
ple of imprinted genes that may influence later life
health outcomes. Subsequent research further
established links between age at menarche with
other diseases such as cancer [52]. Our findings
in concert with previous studies reveal a wider and
more complex network involving both DNAm and
miRNA, and suggest that DNAm and miRNAs are
key epigenetic determinants of age at menarche
and may contribute to related disease risk. We
acknowledge that a limitation of this study is that
array-based data is incapable of measuring DNAm
levels in an allele-specific manner, therefore, we
were unable to confirm if specific CpGs show
allele-specific DNAm inherited from the father
and/or mother. Further experiments are warranted
to test this hypothesis.

We acknowledge several other limitations of our
study. First, to our knowledge, no other study has
published extensive association analyses of miRNA
expression and DNAm, and therefore we were unable
to perform independent external replication of our
results. The internal validation strategy suggested
that cis-miR-eQTMs are replicable but trans-miR-
eQTMs are not replicable. trans-miR-eQTMs may
require much larger sample sizes as well as robust
independent external replication. Second, we assessed
DNAmandmiRNAexpression inwhole blood,which
consists of multiple cell types. We were unable to

identify cell type-specific miR-eQTMs using our
data. We were also unable to describe the tissue-
specific relations between DNA methylation and
miRNA expression that may vastly differ from what
we observed in whole blood. Third, even though the
Illumina DNAm platform we used covers about
450,000 CpG sites, it does not assay every CpG site
in the genome. In addition, we did not measure every
possible miRNA, and therefore may have missed
important regulatory miR-eQTMs. The diversity and
complexity of the multifaceted relationship between
miRNA and methylation warrants additional studies.

Experimental procedures

Study participants
The FHS Offspring cohort was recruited in 1971 and
consisted of 5124 children (and their spouses) of the
FHS Generation 1 cohort [53]. Between 2002 to 2005,
4095 children of the Offspring cohort participants
were recruited, comprising the Third Generation
cohort [54]. Eligible participants from the Offspring
cohort who attended their eighth examination cycle
(Exam 8, 2005–2008) and Third generation who
attended their second examination cycle (Exam 2,
2008–2011) were included in this study. For internal
validation, the entire FHS study samplewas split 1:1 by
pedigrees into independent discovery and replication
sets.

miRNA expression assays (N = 5221) were con-
ducted on whole blood samples from 2295 FHS
Offspring (Exam 8) and 2926 Third Generation
(Exam 2) participants. DNAm assays (N = 3943)
were conducted on whole blood samples from 2427
Offspring cohort participants (Exam 8) and 1516
Third Generation (Exam 2) participants. miRNA
expression and DNAm data were both available for
3565 participants. This study was approved under the
Boston University Medical Center protocol H-27,984.
All participants provided written consent for genetic
research.

DNAm profiling and data normalization
Buffy coats were prepared from whole blood samples.
Genomic DNA was extracted using the Gentra
Puregene DNA extraction kit (Qiagen, Venlo,
Netherlands), and bisulfite conversion was performed
using the EZDNAmkit (Zymo Research, Irvine, CA).
Samples underwent DNA amplification,
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fragmentation, array hybridization, and single-base
pair extension. DNA methylation levels were mea-
sured using the Illumina Infinium Human
Methylation450 BeadChip (450K). DNAm arrays of
FHS Offspring cohort participants were run in two
laboratory batches at the Johns Hopkins Center for
Inherited Disease Research (lab batch #1) and
University of Minnesota Biomedical Genomics
Center (lab batch #2). DNAm arrays were run on
1516 FHS Third Generation cohort participants (lab
batch #3) by Illumina, Inc (City, State).

DNAm results were normalized by laboratory
batch using the DASEN methodology implemented
in the wateRmelon package [55] in R (version 3.0.2).
For sample quality control, samples with a missing
rate >1% at P < 0.01, poor single nucleotide poly-
morphism (SNP) matching with the 65 SNP control
probe locations, and outliers from multi-
dimensional scaling techniques were excluded. For
quality control at the probe level, we excluded probes
that had a missing rate >20% at P < 0.01, were
previously identified to map to multiple locations
[56], or had an underlying SNP (minor allele fre-
quency >5% in European ancestry (EUR) 1000 gen-
omes project data) at the CpG site or within 10 bp of
the single base extension. A total of 415,318 CpG
probes were retained for further analyses.

We used surrogate variable analyses (SVA) to
eliminate unwanted variation in the DNAm data
[57]. SVs were generated in each lab batch separately,
totaling 71 (Lab 1), 170 (Lab 2), and 173 (Lab 3) SVs
from the DNAmdata in the three laboratory batches,
respectively. DNAm beta values were regressed on
batch-specific SVs, and the DNAm residual was
taken forward. All three lab batches were merged
together for analysis. In our previous studies using
the same data, the SVAmethod was demonstrated to
adequately account for latent batch effects, variations
in blood cell proportions, and technical covariates
[1,6]. Therefore, to avoid over adjustment, we did
not further adjust for technical covariates (i.e. plates,
rows and columns) or cell types in DNAm data.

miRNA expression profiling and data
normalization
miRNAs were measured from venous blood samples
obtained from participants after overnight fasting.
Whole blood samples (2.5ml) were collected in
PAXgene Blood RNA™ tubes (Qiagen, Valencia,

CA) and frozen at – 80°C. Total RNA was isolated
from the frozen PAXgene Blood RNA tubes
(Asuragen, Inc. Austin, TX) and a 2100 Bioanalyzer
Instrument (Agilent, Santa Clara, CA) was used to
assess RNA quality (i.e., RNA integrity number
[RIN], ranging from 1 to 10). A RIN threshold of 4
was considered to reflect adequate quality. This
threshold was determined based on comparison
between the samples with RIN≥9 and RIN≥4 by
principal component tests as described by previously
Joehanes et al [58]. Isolated RNA samples were con-
verted to complementary DNA (cDNA) using
TaqMan miRNA Reverse Transcription Kit and
MegaPlex Human RT Primer Pool Av2.1 and Pool
Bv3.0. (Life Technologies, Foster City, CA) in a 384
well Thermal Cycler. The cDNA samples were
PreAmplified using TaqMan PreAmp Master Mix
and PreAmp Primers, Human Pool A v2.1 and
Pool B v3.0 (Life Technologies, Foster City, CA).

qRT-PCR reactions were performed with the
BioMark System using (Fluidigm, South San
Francisco, CA) TaqMan miRNA Assays (Life
Technologies, Foster City, CA). As described in
the published literature, measurement of RNA by
qRT-PCR is reliable and highly specific and sensi-
tive [59–61]. All qRT-PCR reactions were per-
formed in the BioMark Real-Time PCR system
using the following protocol: 10 min at 95°C,
15 sec at 95°C and 1 min at 60°C for 30 cycles.
Single copy can be detected with BioMark system
at 26–27 Cycle Thresholds. Among the 70 replicate
samples, more than 95% of the data points had
coefficients of variation that were less than 10%
(mean ~4%).

The initial miRNA list encompassed all TaqMan
miRNA assays available at the start of the study,
including 754 miRNAs that were profiled in 455
FHS individuals. 346 miRNAs expressed in > 20%
samples were further profiled in 2445 FHS
Offspring and 3245 Third Generation cohort par-
ticipants. Quantification of miRNA expression was
based on cycle threshold (Ct), where lower Ct
values signified higher miRNA expression levels.
Ct values≥27 indicated that the respective miRNAs
were not expressed in the sample. Outlier miRNAs
with Ct values ≥5 standard deviations from the
mean Ct value were categorized as missing. We
excluded miRNAs expressed in <100 samples.
A total of 283 miRNAs remained for analysis.
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As previously described, raw miRNA Ct values
were adjusted for four technical variables: isolation
batch (50 batches), RNA concentration, RNA
quality (defined as RNA integrity number [RIN]),
and RNA 260/280 ratio (ratio of absorbance at
260nm and 280nm from spectrophotometry)
[33]. This normalization model explained 20% to
60% of the variability in raw miRNA measure-
ments for 80% of miRNAs.

mRNA expression profiling and data normalization
Whole blood samples (2.5ml) were collected in
PAXgene™ tubes by Asuragen, Inc. (PreAnalytiX,
Hombrechtikon, Switzerland). Total RNA was iso-
lated in a single batch on a KingFisher® 96 robot
according to the company’s standard operating pro-
cedures for automated isolation of RNA from 96
samples. Then, 50ng RNA samples were amplified
using the WT-Ovation Pico RNA Amplification
System (NuGEN, San Carlos, CA) in an automated
manner using the genechip array station (GCAS) as
recommended by the manufacturer. mRNA expres-
sion profiling was obtained from the Affymetrix
Human Exon 1.0 ST GeneChip platform, and the
raw gene expression data was first preprocessed by
quartile normalization. The robust multi-array aver-
age (RMA) values of every gene (17,318 measured
genes) were adjusted for a set of technical covariates,
i.e. chip batch, by fitting linear mixed regression
(LME) models as described previously [58].

mRNA expression data (N = 5626) were avail-
able for FHS Offspring (Exam 8, N = 2446) and
Third Generation (Exam 2, N = 3180) participants.
mRNA and miRNA expression were both available
for 5357 participants.

Identification of differential DNAm in association
with miRNA expression (miR-eQTMs)
DNAm and miRNA were separately regressed on
technical and batch covariates or SVs, as described
above, and residuals taken forward for analyses (see
miRNA expression and data normalization, and
DNAm profiling and data normalization). Linear
mixed models (R package ‘lmekin’, https://cran.r-pro
ject.org/web/packages/kinship/, [62]) were used to
conduct pairwise DNAm – miRNA expression asso-
ciation analyses for residuals of all profiled CpGs
(N = 415,318) and 283 miRNAs expressed in at least
100 samples. All analyseswere adjusted for age and sex

as fixed effects, and family structure as a random
effect. In previous studies, we found that adjusting
for blood cell proportions did not materially change
the results formiRNAs in relation to genotypes [33] or
across multiple phenotypes [14]. We investigated cell
types effects using 932 individuals with quantification
of cell type proportions. The Pearson correlation coef-
ficients of the beta values of cis-miRNA-CpG associa-
tions with versus without adjustment for blood cell
types was r > 0.99. We also compared beta values of
cis- miRNA-CpGs associations with versus without
adjustment for cell type compositions imputed from
DNAm data via the Houseman methods in all 3565
samples. The Pearson correlation coefficients of beta
values was r > 0.99. Therefore, we did not adjust for
cell types in the miRNA data normalization model.
CpG-miRNA pairs in which the CpG resided within
1Mb of the mature miRNA were categorized as cis-
miR-eQTMs, and those residingmore than 1Mb away
were considered trans-miR-eQTMs.

Genome coordinate annotation for miRNAs and
DNAm were conducted using miRbase v20 (mir-
base.org) and Illumina annotation file v1.2, respec-
tively. miRbase v20 and Illumina annotation file
v1.2 were based on the human February 2009
(GRCh37/hg19) assembly. Based on the coordinates
of 283 mature miRNAs and ~400K CpGs, we esti-
mated that there were 250,622 potential cis CpG-
miRNA pairs, and 1.1 × 108 (i.e., 400,000 *283–-
250,622) potential trans CpG-miRNA pairs. We
used the Benjamini-Hochberg method [63] to cal-
culate the false-discovery rate (FDR) for cis- and
trans-miR-eQTMs, taking into account correlated
cis and trans pairs. We selected an FDR threshold
of 0.01, corresponding to P < 1.43E-5 for cis- and P
< 1.87E-6 for trans-miR-eQTMs.

Cis-miR-eQTLs and cis-meQTLs
cis-miR-eQTLs (SNP located within 1Mb on
either side of the corresponding mature miRNA)
were generated using the same miRNA data in
the FHS cohorts as described previously. There
were 5269 cis-miR-eQTLs for 76 mature miRNAs
[33] in total.

cis-meQTLs (SNP located within 1Mb on either
side of the CpGs) were generated using the same
DNAm data in the FHS cohorts [40]. Genotyping
was conducted using the Affymetrix 500K mapping
and Affymetrix 50K gene-focused MIP arrays
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according to previously described quality control pro-
cedures [64]. Genotypes were imputed using the 1000
Genomes Project panel via MACH [65] with
MAF≥0.01 and imputation quality ratio≥0.1. Linear
mixed models were applied to calculate the associa-
tions of SNPs (predictors) and DNAm residuals (out-
comes, see DNAm profiling and data
normalization). Analyses were adjusted for age and
sex as fixed effects, and a familial correlation matrix
(FAM) as the random effect using the lmekin() func-
tion of Kinship Package (https://cran.r-project.org/
web/packages/kinship/) [62]. Bonferroni-corrected P
< 2E-11 was used to define significant cis-meQTLs.

miRNA – mRNA co-expression analysis
miRNA-mRNA co-expression analyses were per-
formed on 5626 FHS participants with available
miRNA and mRNA data. A linear mixed-effects
model implemented in the lmekin() R function
was used to conduct pair-wise association analyses
between miRNAs and mRNAs. Analyses were
adjusted for age, sex, technical covariates for
miRNA and mRNA data, and SVs for mRNA
data. The P value threshold for choosing miRNA-
mRNA co-expressed pairs was determined using
a Benjamini-Hochberg corrected FDR<0.05 [63].

Predicted miRNA targets
For each significant miRNA-mRNA co-expressed
pair, we used two miRNA target prediction meth-
ods TargetScan 7.0 and miRanda to predict if the
co-expressed mRNAs were also miRNA targets.
TargetScan predicts miRNA targets of miRNAs
by searching for the presence of 8mer, 7mer, and
6mer sites that match the seed region of each
miRNA [66]. miRanda three-step predicts
miRNA targets with a threshold of score > 140
[67]. The sequences from 3ʹUTR, 5ʹUTR, and cod-
ing regions of each mRNA were downloaded from
the University of California Santa Cruz (UCSC)
Table Browser (https://genome.ucsc.edu/), and
miRNA seed regions were downloaded from
miRbase v21 (http://www.mirbase.org/).

Mendelian randomization
Bi-directional Mendelian randomization (MR) was
used to test if changes in CpG methylation drive
changes in miRNA expression (CpG→miRNA) or if
changes in miRNA expression drive changes in CpG

methylation (miRNA→CpG). MR tests were per-
formed in 116 CpG-miRNA pairs where both the
CpG and miRNA have at least three independent
instrument variables (IVs). cis-meQTLs (at LD
r2 < 0.1) were used as IVs to test if CpG→miRNA,
and cis-miR-eQTLs (at LD r2 < 0.1) were used as IVs
to test if miRNA→CpG. Inverse variance-weighted
(IVW) MR methods were used for all MR tests [68].
The significant threshold was a Bonferroni-corrected
PMR <0.05/116.

Two-sample IVW-MR methods were used to
identify if CpG methylation and miRNA expres-
sion were putatively causal for human complex
traits, including atrial fibrillation, age at menarche,
HDL cholesterol, magnesium levels, and total cho-
lesterol. SNP-trait associations were taken from
published meta-analysis GWAS results of age at
menarche [41], total cholesterol and HDL choles-
terol [69], and from UK Biobank GWAS results of
age at menarche, magnesium levels and atrial
fibrillation downloaded from (http://www.neale
lab.is/uk-biobank/). To identify CpG→Trait, inde-
pendent cis-meQTLs at LD r2 < 0.1 were used as
IVs. To identify miRNA→Trait, independent cis-
miR-eQTLs at LD r2 < 0.1 were used as IVs. We
also perform MR to test if trait→CpG by utilizing
trait-associated SNPs at P < 5E-8 in GWAS as IVs
(independent SNPs were selected by LD r2 < 0.1).
A random effects model of IVW-MR method was
used to minimize the heterogeneity effects of IVs
[70]. MR analyses were conducted using the
mrBase R package [70].

Functional annotations of cis-miR-eQTMs
We annotated cis-miR-eQTM CpGs using Illumina
platform annotations and GM12878 Encode chro-
matin state segmentation by hidden Markov mod-
els (ChromHMM) [71]. The Illumina platform
annotation provided the predicted functions for
each CpG site (CpG Islands, low CpG dense, high
CpG dense), enhancer and promoter regions. The
GM12878 ChromHMM Track provided chromatin
states identified by computationally integrating
ChIP-seq data (H3K4me1, H3K4me2, H3K4me3,
H3K27ac, H3K9ac, HK27me3, H4K20me1, and
H3K36me3) from GM12878, a lymphoblastoid cell
line, including promotor, enhancer, polycomb-
repressed, heterochromatin, and repetitive/copy
number variation. Hypergeometric tests were used
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to test if cis-miR-eQTMCpGs sites were enriched at
functional genomic sites that were annotated as
functional. The significance threshold was
Bonferroni-corrected P < 0.05/11.

Data access

The microRNA expression, mRNA expression and
DNAm data used in this investigation are available
online in dbGaP (http://www.ncbi.nlm.nih.gov/
gap; accession number phs000007).
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