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Transcriptomics Identify a Unique Intermittent
Hypoxia-mediated Profile in Obstructive
Sleep Apnea

To the Editor:

Obstructive sleep apnea (OSA) is associated with systemic hypertension
and cardiovascular comorbidities (1), but the underlying
pathophysiology is not well understood. In our SOX (Supplemental
Oxygen in OSA) randomized controlled trial, recently published in this
journal, supplemental oxygen virtually abolished the morning rise in
blood pressure normally seen during continuous positive airway
pressure (CPAP) withdrawal (2). This suggests that intermittent hypoxia
(IH) is the dominant cause of morning blood pressure elevations during
CPAP withdrawal, rather than recurrent arousals. However, after CPAP
withdrawal, we did not observe differences in secondary outcome
measures of systemic inflammation (C-reactive protein) and
sympathetic activation (urinary normetadrenaline). The role of IH-
mediated oxidative stress and inflammation in the development of
OSA-mediated cardiovascular disease is controversial (3, 4).

In the present study, we used a hypothesis-free approach to
identify potential unique transcriptomic profiles from whole-blood
leukocytes that were activated by IH, such as that occurring when
CPAP is withdrawn, and to explore the effects of supplemental
oxygen (which largely attenuated this IH) on these profiles.

We used samples from the SOX trial. Briefly, patients with known
moderate to severe OSA, previously established on CPAP, were
withdrawn from CPAP onto supplemental oxygen or supplemental air
(sham) for 14 nights in a randomized crossover design. Supplemental
oxygen markedly attenuated IH; the median (first and third
quartiles) oxygen desaturation index was 32.5/h (25.6 and 47.0)
during sham and 6.4/h (4.0 and 14.7) during supplemental oxygen.

Morning blood samples were collected before and after 14 nights in
both groups. Whole-blood leukocytes were extracted and stored for
subsequent RNA extraction, using LeukoLOCK kits. After leukocyte
RNA extraction, 39 RNA sequencing was performed (Lexogen) on the
Hiseq 4000 platform (Illumina) with an average of 5 million reads per
sample. Reads were aligned using Htseq v0.6.1 with DESEQ2 v1.10.1 for
normalization of data and differential expression (http://www.
bioconductor.org/packages/release/bioc/html/DESeq2.html). Gene set
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enrichment analysis was performed using the Hallmark Molecular
Signatures Database (MsigDB) within the JavaGSEA version 2 platform
(http://software.broadinstitute.org/gsea/index.jsp). These are 50 of the
most well-defined biological processes or states.

After false discovery rate correction (Benjamin-Hochberg), 25
genes were significantly upregulated after CPAP withdrawal onto
sham, compared with baseline (Figure 1). These included several
genes (TRAFD1, PPP4C, ZFAND3, HPSA8, ITGAX, and
HSPA1A) involved in NFkB (nuclear factor kappa B) signaling,
which is an IH-driven inflammatory pathway (5, 6). In contrast,
there were no significantly differentially expressed genes after
CPAP withdrawal onto supplemental oxygen.

Next, we looked at whether any Hallmark MsigDB gene pathways
were enriched in our data sets. As shown in Figure 2, 15 pathways were
upregulated after CPAP withdrawal onto sham. Of these, seven
pathways were only upregulated with CPAP withdrawal onto sham
and not supplemental oxygen. These included the inflammatory
response, IFNa response, IFNg response, and TGFb signaling. IFNa
and IFNg pathways are upstream modulators of NFkB. Eight
pathways were significantly upregulated after CPAP withdrawal in
both groups, including pathways relating to oxidative stress (reactive
oxygen species and oxidative phosphorylation) and inflammatory
pathways (TNFA signaling, IL6/JAK/STAT3 signaling). There were
five pathways that were only upregulated with CPAP withdrawal onto
supplemental oxygen and not sham. These included MTORC1
signaling and DNA repair pathways.

We report for the first time that after CPAP withdrawal the return
of OSA results in upregulation of several genes in circulating leukocytes,
and importantly, that no single gene was upregulated after CPAP
withdrawal in the presence of supplemental oxygen (that attenuates IH),

suggesting that the IH is the driving factor. Further pathway analysis
demonstrated enrichment of several proinflammatory pathways, such as
inflammatory response, IFNa, and IFNg with sham, that was not
seen in the supplemental oxygen group. The upregulation of these
genes and gene pathways with sham, but not with supplemental
oxygen, suggests that IH may lead to cardiovascular disease through the
activation of inflammatory processes, possibly through NFkB signaling,
as previously suggested (3). There were also inflammatory NFkB-
mediated pathways that were enriched in both groups (TNFA
signaling and IL6/JAK/STAT3 signaling), and although it was not a
direct comparison, the normalized enrichment scores were lower
in the supplemental oxygen group, again suggesting IH-driven,
NFkB-mediated inflammation in OSA.

In contrast, pathways relating to oxidative stress were similarly
enriched with CPAP withdrawal in both groups. There are several
possible explanations for this result. First, it could be that oxidative stress
is caused by non–hypoxia-mediated mechanisms, such as sleep
deprivation (7) or sleep fragmentation, which occurred to an equal
extent in both groups. Second, although supplemental oxygen attenuated
the IH, it did not fully abolish it. Therefore, it could be that smaller
oscillations in oxygen saturations still lead to cyclical deoxygenation and
reoxygenation sufficient to trigger oxidative stress (8). Third, there
could be different mechanisms inducing oxidative stress, with
intermittent hyperoxia in the supplemental oxygen group and
intermittent hypoxia in the sham group both causing oxidative stress.

Some pathways were only significantly upregulated after CPAP
withdrawal onto supplemental oxygen, including the DNA repair
pathway. This pathway has been implicated in hyperoxic damage (9),
and supplemental oxygen may have potentially deleterious effects, as
has been shown in the context of acute myocardial infarction (10).
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Figure 1. Bar chart showing the 25 genes that were significantly upregulated after continuous positive airway pressure (CPAP) withdrawal onto
supplemental air (sham) compared with baseline. Blue bars represent the log fold change for CPAP withdrawal onto air; yellow bars represent the log fold
change for the same genes with CPAP withdrawal onto supplemental oxygen. The log fold changes and adjusted P values are shown on the right of this
figure. LogFC= log fold change to the base 2; P adj =P value after adjustment for false discoveries.
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In summary, our results have identified that there are
discernible alterations in the transcriptome of circulating leukocytes
after CPAP withdrawal. Some caveats must be applied to our
conclusions; principally, transcriptomic changes were identified in
leukocytes, and it would be unwise to extrapolate these findings to
other tissues. Nevertheless, the changes observed in gene expression
support a proinflammatory role of IH in OSA and suggest that
supplemental oxygen may attenuate inflammation in OSA. The role
of the transcriptional changes we observed in the large blood
pressure effect seen in the main SOX study is uncertain (2). In any
case, the IH-mediated inflammation demonstrated in this study
could contribute to the development of atherosclerosis and related
cardiovascular morbidities known to be associated with
uncontrolled OSA. Further confirmatory work is needed to fully
understand the physiological effects, long-term efficacy, safety, and

tolerability of supplemental oxygen to establish whether it is a viable
treatment option when CPAP is not tolerated. n
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Figure 2. Bar charts showing (A) significantly enriched (upregulated) pathways of genes with continuous positive airway pressure withdrawal onto
supplemental air and (B) significantly enriched (upregulated) pathways of genes with continuous positive airway pressure withdrawal onto supplemental
oxygen. Red bars signify significantly enriched pathways common to both groups. Because of the small number of samples, a stringent false discovery
rate corrected q value ,0.05 was considered significant. NES=normalized enrichment score; UV=ultraviolet.
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Circulating Plasma Biomarkers of Progressive
Interstitial Lung Disease

To the Editor:

Interstitial lung disease (ILD) encompasses a large number of diffuse
parenchymal lung diseases that commonly result in pulmonary

fibrosis (PF). The most common forms of ILD include idiopathic
PF (IPF), connective tissue disease–associated ILD (CTD-ILD),
chronic hypersensitivity pneumonitis (CHP), and unclassifiable
ILD (U-ILD). Various circulating plasma biomarkers, including
CXCL13 (1), CA-125 (2), MMP7 (3), SP-D (2), YKL-40 (4), and
VCAM-1 (3), have been linked to differential survival in patients
with IPF, but their utility in other ILD subtypes is unclear. In this
investigation, we hypothesized that increased concentrations of the
aforementioned plasma biomarkers would predict reduced survival
in patients with CTD-ILD, CHP, or U-ILD.

Methods
Consecutive patients with longitudinal clinic follow-up and a
multidisciplinary diagnosis of CTD-ILD, CHP, or U-ILD who
consented to a research blood draw at the University of California,
Davis (UC-Davis) (institutional review board #875917) and University
of Chicago (institutional review board #14163) were included. Blood
was collected from May 2016 to December 2018 at UC-Davis and
from March 2010 to August 2016 at the University of Chicago.
CTD-ILD subtypes included rheumatoid arthritis, systemic sclerosis,
myositis, Sjogren’s syndrome, systemic lupus erythematosus, and
mixed connective tissue disease. Vital status was assessed by medical
record review and telephone communication.

Stored frozen plasma in ethylenediaminetetraacetic acid
aliquots were thawed and processed at UC-Davis in institutional
batches. CA-125, CXCL13, MMP7, SP-D, YKL-40, and VCAM-1
concentrations were determined using a Luminex magnetic bead-
based custom multiplex assay (R&D Systems) according to the
manufacturer’s protocol. Biomarker values above and below
threshold detection limits were imputed using the highest and
lowest detectable levels, respectively, with ,1% of data imputed.
Biomarkers were measured in duplicate in a subset of patients, and
a high correlation was observed (R2> 0.98).

The primary endpoint was 2-year progression-free survival,
defined as death, lung transplant, or >10% relative decline in FVC.
A preliminary survival analysis was conducted using a web-based
tool (http://molpath.charite.de/cutoff/index.jsp) that identifies
optimal biomarker thresholds using iterative univariable Cox
proportional hazards regression. Dichotomized biomarkers
associated with survival at P, 0.008, which adjusted for multiple
testing, were advanced for final analysis using a multivariable Cox
model adjusted for center, sex/age/physiology-ILD index (5), race,
smoking history, and immunosuppressive exposure time. Statistical
analyses were performed using Stata (Release 15; StataCorp. 2015)
with statistical significance otherwise set at P, 0.05.

Results
Among the ILD subtypes, 148 patients had CTD-ILD, 98 had
CHP, and 159 had U-ILD. Cohort characteristics, outcomes, and
preliminary biomarker analysis are shown in Table 1. Age, sex, race,
and immunosuppression exposure varied substantially by ILD
subtype, whereas lung function was similar among the cohorts.
Among the CTD subtypes, rheumatoid arthritis (32%) and
myositis (28%) predominated.

Within the CTD-ILD cohort, increased concentrations of all
biomarkers except SP-D were associated with reduced survival, and
CXCL13, CA-125, and VCAM-1 were advanced for final analysis
after adjustment for multiple testing. In multivariable modeling,
CXCL13 (hazard ratio [HR], 4.44; 95% confidence interval [CI],
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