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Abstract

In aquatic toxicology, perhaps no pharmaceutical has been investigated more intensely than 

17alpha-ethinylestradiol (EE2), the active ingredient of the birth control pill. At the turn of the 

century, the fields of comparative endocrinology and endocrine disruption research witnessed the 

emergence of omics technologies, which were rapidly adapted to characterize potential hazards 

associated with exposures to environmental estrogens, such as EE2. Since then, significant 

advances have been made by the scientific community, and as a result, much has been learned 

about estrogen receptor signaling in fish from environmental xenoestrogens. Vitellogenin, the egg 

yolk precursor protein, was identified as a major estrogen-responsive gene, establishing itself as 

the premier biomarker for estrogenic exposures. Omics studies have identified a plethora of 

estrogen responsive genes, contributing to a wealth of knowledge on estrogen-mediated regulatory 

networks in teleosts. There have been ~40 studies that report on transcriptome responses to EE2 in 

a variety of fish species (e.g., zebrafish, fathead minnows, rainbow trout, pipefish, mummichog, 

stickleback, cod, and others). Data on the liver and testis transcriptome dominate in the literature 

and have been the subject of many EE2 studies, yet there remain knowledge gaps for other tissues, 

such as the spleen, kidney, and pituitary. Inter-laboratory genomics studies have revealed 

transcriptional networks altered by EE2 treatment in the liver; networks related to amino acid 

activation and protein folding are increased by EE2 while those related to xenobiotic metabolism, 

immune system, circulation, and triglyceride storage are suppressed. EE2-responsive networks in 
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other tissues are not as comprehensively defined which is a knowledge gap as regulated networks 

are expected to be tissue-specific. On the horizon, omics studies for estrogen-mediated effects in 

fish include: (1) Establishing conceptual frameworks for incorporating estrogen-responsive 

networks into environmental monitoring programs; (2) Leveraging in vitro and computational 

toxicology approaches to identify chemicals associated with estrogen receptor-mediated effects in 

fish (e.g., male vitellogenin production); (3) Discovering new tissue-specific estrogen receptor 

signaling pathways in fish; and (4) Developing quantitative adverse outcome pathway predictive 

models for estrogen signaling. As we look ahead, research into EE2 over the past several decades 

can serve as a template for the array of hormones and endocrine active substances yet to be fully 

characterized or discovered.

Keywords

Endocrine disruption; pharmaceutical; teleost; computational toxicology; hormone action

1. Introduction

The past twenty years of endocrine disruption research has revealed that several veterinary 

and human pharmaceuticals are present in aquatic environments at concentrations sufficient 

enough to elicit adverse effects in a range of species, from the smallest microorganisms up 

to the largest of aquatic mammals. These waterborne pharmaceuticals can be detrimental to 

relationships within aquatic food webs [15] and can impact populations for generations [4, 

113]. Arguably, no pharmaceutical has received as much scientific nor public attention as 

17alpha-ethinylestradiol (EE2), which is used in the pharmaceutical industry as a surrogate 

for 17beta-estradiol (E2) in birth control pills. In the early 1990s, researchers became 

increasingly aware of how ubiquitous this pharmaceutical was in water systems, and over the 

past twenty years, significant efforts have been made in characterizing aquatic EE2 

exposure, as well as improving its removal from wastewater treatment facilities in order to 

protect aquatic wildlife in receiving waters.

There is compelling evidence that EE2 exposure can lead to tissue damage [121], 

reproductive dysfunction [55], disrupted tissue steroidogenesis [69, 104], altered spawning 

[23], behavioral changes [94], and population level consequences, as noted by Kidd et al. 

(2007) in their seminal work in the Experimental Lakes Area [63]. Many of these 

aforementioned effects were noted at environmentally relevant concentrations of EE2 (less 

than 5 ng/L). While apical responses in fish to EE2 are well documented, omics studies 

continue to reveal new molecular and cellular insights into underlying mechanisms. Both 

research avenues highlight the legacy of EE2 and its negative effects in aquatic organisms, 

prompting a movement to address other pharmaceuticals present in the aquatic environment. 

Acknowledging this is important, we continue to produce new pharmaceuticals that not only 

impact reproduction, but also those that control blood pressure, impede cancer cell growth 

(i.e. antineoplastics), regulate lipids, and manage depression, to name but a few. In this mini 

review, we highlight research conducted on the omics of EE2-mediated toxicity in fish to 

identify knowledge gaps and future directions, and to define directions that research from 

which other pharmaceuticals can benefit.
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2. A problem discovered: A brief history of EE2 in ecotoxicology

In the late 1980s, researchers recognized that estrogenic chemicals were present in various 

watersheds. Studies associated adverse effects of waterborne estrogenic chemicals with 

changes in gonad size and reproductive development in fish near pulp mills in Sweden [97] 

and Canada [82]. Initial studies investigating effluents demonstrated impacts at several 

points along the pituitary-gonad axis in fish such as the white sucker (Catostomus 
commersoni) [112], and estrogen receptor activation assays in cell lines revealed estrogenic 

responses to pulp and paper mill effluent [122]. Additional studies determined that some of 

these biological responses could be replicated with exposure to β-sitosterol, a plant sterol 

with estrogen-like activity [70], although the responses were not always identical to those 

from estrogens as sterols with estrogen-like activities also interfere with other hormonal 

systems in fishes, depending on the concentration and reproductive maturation of the 

individual [83]. Studies first started to look at linkages to vitellogenin (described below) and 

pulp and paper mill effluent in Finland in the late 1990s [103].

Parallel to the studies in Canada on pulp mills, studies in the United Kingdom were finding 

intersex in fish associated with sewage effluent discharges. A low incidence of intersex had 

been noticed back to the mid-1980s [111]. While early studies suspected estrogens 

(reviewed in [90]), initial attention focused largely on the role of detergents and alkylphenols 

[59], although it quickly expanded to examine other chemicals. By 1996–98, attention was 

shifting to estrogens in the effluent [110] and studies found widespread evidence of intersex 

in fish near sewage outfalls [40, 58]. Concerns are now global, agreed upon by many that 

xenoestrogens, specifically the pharmaceutical EE2, can exert widespread reproductive 

effects in aquatic wildlife [77].

The question morphed from incidence to biomarker development for estrogenic exposure 

and potential endocrine activity. Importantly, teleost fish produce vitellogenin in the liver, 

which travels through the blood to the ovary. Vitellogenin is largely under the control of 

estrogens and is eventually incorporated into growing oocytes via receptor-mediated actions 

[31, 100]. Vitellogenin and other lipids in the yolk sac provide a rich source of nutrients for 

embryos, and the early development of fish depends upon an adequate source of lipids for 

energy. Sumpter and Jobling [105] pointed out that this endogenous reproductive process in 

female fish could be used as a biomarker for estrogenic exposures in environments. This was 

a breakthrough in ecotoxicology - males also carry the genes to naturally produce 

vitellogenin, albeit at relatively low levels compared to females. However, when males are 

exposed to weak estrogens or estrogens at low concentrations, vitellogenin can be rapidly 

and actively transcribed at elevated levels. Thus, vitellogenin induction, both at the 

messenger and protein level, became a reliable and robust biomarker for estrogenic 

exposures; even today it remains the gold standard as a molecular indicator of exposure in 

aquatic organisms [3, 10, 25, 34, 109, 123]. Building upon this, researchers realized that 

additional estrogen-responsive genes needed to be identified to understand the molecular 

basis of estrogenic actions [54]. Over the past decade, a repertoire of estrogen-responsive 

genes has been revealed in teleost fish, and these responses have advanced our 

understanding of endogenous processes regulated by estrogens, as well as the potential 

health impacts of exogenous endocrine active substances.
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3. Transcriptomics and adverse outcome pathways

Toxicology research over the years has shifted from measuring lethality using high doses of 

contaminants to investigating sub-lethal doses that potentially impact development, 

reproduction, health, and susceptibility to disease. This focus on mechanistic models of 

toxicology expanded at the same time that “omics” technologies were being developed in 

human medicine to provide a more comprehensive analysis of molecular impairments that 

lead to disease. The holistic approach that these methods provide spurred the idea of being 

able to link a molecular initiating event to downstream changes at the cellular, tissue, 

organismal, and population level for aquatic organisms. This new linkage paradigm, referred 

to as “Adverse Outcome Pathways (AOP)” [5], has reshaped how ecotoxicologists think 

about pharmaceuticals in the environment. In fact, it can be thought of as a new way of 

approaching effects-based toxicology.

Omics technologies today include broad methods that evaluate whole genomes (DNA), 

transcriptomes (mRNAs and non-coding RNAs), proteomes (proteins) and metabolomes 

(metabolites) that are altered upon interaction with a chemical substance. Omics 

technologies deliver specific and relevant information at the molecular level about how a 

compound interacts with its target, and many of the earlier case studies in environmental 

science involved endocrine active substances that were known to interact with nuclear 

receptors and induce gene transcription. The estrogen receptor itself is induced in the liver, 

along with a large number of other genes that are regulated by estrogens or estrogen mimics. 

The initial binding of an estrogen to the estrogen receptor sets a particular pathway in 

motion. Thus, it has been a broadly applied tool to identify estrogen responsive genes in 

multiple species and tissues.

Transcriptomics methods rely on genome-wide measurements of changes in the levels of 

mRNAs in tissues of exposed animals. For example, microarrays are made commercially, 

with the probes printed directly to the glass slides with knowledge of the coordinates for 

each. RNA that is extracted from controls and chemical treated organisms is obtained, 

copied into cDNA and labeled with a fluorescent probe and then hybridized to the arrays. 

The amount of fluorescent probe per spot on the array is used to quantify the amount of the 

message present in the tissue of origin. The ability to print thousands of cDNA or 

oligonucleotides onto a glass slide paved the way to generate a wealth of molecular data, 

increasing understanding of E2-responsive genes and networks in a variety of fish tissues. 

Only recently and within the past few years, researchers have moved toward the use of RNA 

sequencing (RNAseq) to study endocrine-mediated responses. RNAseq is a non-targeted 

method for determining changes in the transcriptome. In this method, total RNA is prepared, 

and mRNAs with poly A tails are sequestered from the total RNA by binding to poly dT 

oligonucleotides attached to magnetic beads. The mRNAs are then converted to cDNAs, 

fragmented and prepared for sequencing by Next Generation Sequencers. For this process, 

the Illumina sequencer is most often selected today due to sample cost and experimental 

throughput, although other platforms (e.g. PacBio) are becoming more popular. The analysis 

of the data includes matching the reads to a reference genome and then counting how many 

copies of each transcript is present in the output. Put together, both microarray and RNAseq 
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technologies have advanced our understanding of EE2 action in fish, and we outline some of 

these efforts below.

4. Omics, 17alpha-ethinylestradiol, and fish

At the turn of the century, researchers began to apply gene array technology to study 

xenoestrogens. These earlier efforts involved the printing of cDNA molecules onto nylon 

membranes; radiolabeled pieces of cDNA would find their complementary targets on the 

nylon membrane, yielding a signal that was proportional to the expression levels of the 

cDNAs present in the sample. Typically, these membranes, or macroarrays, contained less 

than 50 genes and included transcripts expected to be responsive to xenoestrogens. These 

early macroarrays were applied to screen estrogens and EE2 in sheepshead minnow 

(Cyprinodon variegatus variegatus) [68] and plaice (Pleuronectes platessa) [16] and opened 

the door for more elaborate printing technologies onto glass slides (i.e. microarrays). In 

teleost fish, microarrays were also quickly leveraged to study the effects of EE2 in the 

mid-2000s. Microarrays containing 15,000 to 64,000 probes were used to assess 

environmental estrogens, quantifying molecular responses in context of phenotypic anchors. 

Taking a step back, we conducted a search using Pubmed in June of 2019 using the terms 

“fish + ethinyl estradiol + transcriptomics or microarray” and identified 39 published 

transcriptomic studies in fish; some of these first studies were published in 2006 and as of 

2019, there were new reports published on the actions of EE2 at the transcriptome level 

(Table 1). These new studies leverage RNA-seq approaches, a more robust technology with 

higher sensitivity and accuracy compared to microarrays. Due to increased depth, RNAseq is 

expected to reveal new pathways and E2-responsive interactomes involving EE2 and other 

xenoestrogens.

The species that have been studied for their response to EE2 exposure include both 

freshwater and marine, for example goldfish (Carassius auratus), zebrafish (Danio rerio), 

flounder (Platichthys flesus), Atlantic cod (Gadus morhua), stickleback (Gasterosteus 
aculeatus), mummichog (Fundulus heteroclitus), rainbow trout (Oncorhynchus mykiss), and 

largemouth bass (Micropterus salmoides), among others (Figure 1A; Table 1). However, 

more than 85% of the transcriptomics studies with EE2 have been conducted in freshwater 

species (e.g., zebrafish (Danio rerio), guppy (Poecilia reticulata), rare minnow (Gobiocypris 
rarus), and largemouth bass (Micropterus salmoides) compared to saltwater species such as 

Pacific sardine (Sardinops sagax), Atlantic cod (Gadus morhua), gulf pipefish (Syngnathus 
scovelli), sheepshead minnow (Cyprinodon variegatus), and mummichog (Fundulus 
heteroclitus). Moving forward, additional data to address how saltwater species are affected 

by pharmaceutical estrogens like EE2 are required to fill gaps in our understanding of 

estrogen-mediated gene networks. Physiological differences in ion regulation and hormone 

signaling are reported between freshwater and saltwater fish and this may translate into 

sensitivity differences in gene expression to pharmaceutical estrogens [2, 50]. What is 

impressive is that an array of species has been investigated at the transcriptomics level, and 

this presents a rich comparative perspective of EE2-induced gene expression. Moreover, 

there have been a range of tissues investigated at the molecular level following exposure to 

EE2, the most predominant tissues being the liver and the testes (Figure 1B). Moving 

forward, additional data on spleen, kidney [9], pituitary [46] and early embryogenesis would 
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be needed to strengthen understanding of the molecular pathways altered by EE2 in addition 

to revealing novel mechanisms for estrogens. A last point to make is that, while the majority 

of studies are in male fish, there are some data available on female fish, which offer a unique 

perspective on sex-specific responses. EE2 has been studied in female zebrafish, Atlantic 

cod, largemouth bass and mummichog (listed in Table 1), which provides useful information 

on sex differentiation, as well as sex-specific biomarkers for estrogenic exposures.

5. Transcriptomics reveals mechanisms of 17alpha-ethinylestradiol action 

in fish

EE2 induces both intersex and sex change in fish [28, 121], but the mechanisms by which 

EE2 induces these conditions, both in the laboratory and in the field, have been a significant 

question by scientists globally [8]. In one study, Feswick et al. [37] used a short-term (96 

hour) exposure of male fathead minnows to environmentally-relevant levels (15 ng/L) of 

EE2, to identify early transcriptional changes potentially related to the initiation of intersex. 

Exposed males did not exhibit any significant change in testes morphology nor 

gonadosomatic index during the short exposure, but they did show a reduction in both 

testosterone and 11keto-testosterone. Transcriptomic profiling in the testes revealed that 

gene networks associated with male reproduction (e.g. sperm motility, insemination, male 

sex determination) were rapidly suppressed with EE2 exposure while gene networks related 

to female reproduction (e.g. ovary function, ovary follicle development, and granulosa cell 

development) were rapidly increased following exposure to EE2. Moreover, networks 

involved in steroid biosynthesis and steroid metabolism were suppressed. Gene networks 

centered around key transcription factors such as foxl2, which signals ovarian follicle 

development and granulosa cell development, as well as dmrt1 and sox9, two key proteins in 

male sex determination, were rapidly regulated by EE2. Studies such as these are important 

because they begin to identify molecular initiating events prior to the appearance of intersex.

Feswick and colleagues [36, 38] also conducted a broad scale study using EE2 to compare 

interlaboratory reliability and reproducibility for gene expression data. Laboratories were 

tasked to identify estrogen-responsive genes and networks in fathead minnow liver following 

exposure to EE2. The objective was to identify E2-responsive genes in the liver that could 

yield new insights into the regulation of hepatic physiology and to identify reliable 

biomarkers for EE2 exposure (i.e., those identified in all laboratories). Microarrays revealed 

EE2 exposure increased processes such as protein folding and amino acid activation in the 

liver, whereas gene networks associated with blood clotting and coagulation, as well as the 

alternative and classical complement activation pathways, triglycerides storage, and 

xenobiotic clearance and metabolism were decreased by EE2. Laboratories were consistent 

in identifying a number of estrogen-responsive genes in the liver, including apolipoprotein 

E, apolipoprotein A1, insulin growth factor 1, x-box binding protein 1, and estrogen receptor 

alpha. Notably, there was high variability, both biological and technical, for vitellogenin, 

which can impede interpretation of the data [38]. High variability in vitellogenin has been 

observed by others [11]. Jastrow and colleagues [56] recently presented some guidelines for 

addressing variability in the vitellogenin biomarker with estrogenic exposures.
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From an environmental perspective, the realization that specific genes show consistent and 

reproducible responses to EE2 leads to the question of whether E2-responsive gene networks 

are more appropriate for biomonitoring programs, compared to individual biomarkers such 

as vitellogenin. Based on these data from the interlaboratory study, and those collected from 

the Comparative Toxicogenomics Database, an estrogen-responsive network was developed 

(including estrogen receptor alpha, transferrin, myeloid cell leukemia 1, insulin like growth 

factor 1, and methionine adenosyltransferase 2A, among other genes) [38]. Thus, 

considering multiple lines of evidence, we continue to hone our knowledge of estrogen-

responsive gene networks, and these networks have been proposed in environmental 

monitoring programs to improve decision-making and to increase our ability to detect 

estrogens in the environment [73]. However, in order to better characterize risk from 

endocrine active substances, including xenoestrogens, an increasing reliance on integrative 

and computational approaches may be needed within the context of the adverse outcome 

pathway framework.

Knowledge as to the role of xenoestrogens in the process of both intersex and sex reversal is 

not limited to the gonads, and researchers now appreciate the role that estrogens play in 

shaping the central nervous system of fishes. In the guppy, RNASeq was used to document 

the effect of 8 ng/L and 38 ng/L EE2 on the brain transcriptome of both males and females 

[95]. Not surprisingly, the male brains exposed to EE2 exhibited gene expression changes 

which were more similar to female brains, suggesting a feminizing effect. While the 

researchers did not conduct pathway analysis nor gene set enrichment, the study nevertheless 

revealed that a significant number of genes affected in the brain were related to glutamate 

and nuclear receptor signaling, chromatin organization, and LINE transposable elements, 

which showed treatment and sex specific responses.

Exposure of males to EE2 during development has revealed that even transient, low-level 

(environmentally relevant) exposure during critical developmental periods can have 

irreversible reproductive consequences into adulthood. For example, using RNAseq, a host 

of genes associated with spermatogenesis, steroid synthesis, and testis development and 

function were differentially expressed in zebrafish exposed to 1.2 and 1.5 ng/L EE2 from 

fertilization to 80 days of age followed by depuration for 82 days [87]. Other biological 

processes affected by EE2 in the study included lipid and carbohydrate metabolic process, 

protein and nucleic acid metabolic processes, gene regulation, response to hormone, 

response to stress, and circadian rhythm. These processes are therefore hypothesized to be 

related to lower fertility in male adult zebrafish that persist over time, in the absence of EE2. 

Many of the these biological processes are consistent with those reported in other studies 

investigating effects of EE2 [37]. The study by Porseryd et al. [87] suggests that non-coding 

sequence perturbations by EE2 is a potential mechanism of disruption in fish, and this would 

not have been revealed without transcriptome data. The role of non-long coding RNA in 

estrogen-mediated responses is anticipated to be a new avenue of research in fish 

endocrinology.
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6. Non-genomic signaling by estrogens

There is a body of evidence showing that vertebrates, including fish, have membrane 

receptors for estradiol and other sex steroids, in addition to soluble nuclear receptors [106]. 

These receptors bind their ligands with very high affinity (Kd’s in the 1–5 nM range) and 

have very specific functions in reproduction. Data on the characterization of specific 

membrane receptors for estradiol, progestins, and testosterone have been presented 

previously [19, 61, 62, 86].

Initial studies by the Thomas laboratory characterized the progestin membrane receptor 

alpha (mPRa) and showed that it regulated oocyte maturation and in fact was the maturation 

inducing steroid (MIS) 20β–S receptor [124]. In addition to effects in the ovary, MIS also is 

responsible for inducing sperm hypermotility in males, and thus the mPRa receptor has also 

been found in the membranes of sperm. Specific membrane receptors for testosterone were 

also identified [13].

Membrane estradiol receptors have also been characterized in fish. The receptor identified 

by the Thomas group was GPER, also known as GPR30 [85]. This receptor is found on the 

surface of fish oocytes and when it is bound by estradiol shows inhibitory action on oocyte 

maturation. It is possible that a truncated version of ERa may also be expressed tethered to 

membranes.

A general characteristic of the membrane receptors is that they are composed of 7 

transmembrane segments and are part of a G-protein superfamily. They signal through 

activation of intracellular second messenger pathways and the signaling occurs very quickly. 

Through in situ hybridization, membrane steroid receptors have been found in several 

tissues, including the brain [71].

In a recent experiment, fathead minnow were exposed to 5 ng/L EE2 or 100 ng/L 

levonorgestrel (the progestin portion of the birth control pill) for 30 min to evaluate 

signaling cascades using a phosphoproteomics approach [102]. Changes in phosphorylation 

patterns of brain proteins were distinct for the two chemicals, with some overlap. Both 

estradiol and the progestin altered phosphorylation patterns in proteins generally involved in 

neurogenesis and synaptic activity, but the specific group of proteins affected by each was 

different. In some cases, the directionality of phosphorylation on the same protein was in 

opposite directions by the two chemicals. Each chemical also showed some unique 

phosphorylation pattern cascades. EE2 was involved mostly in neuronal processes and 

neuroprotection, while levonorgestrel altered phosphorylation patterns for proteins involved 

in axon cargo transport and calcium signaling.

It is intriguing to understand how soluble nuclear receptors and their membrane counterparts 

work together to signal tissues in fish brains and reproductive tissues. Clearly, more research 

is required to get the complete picture of how they support each other to maintain 

homeostasis and control reproduction.
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7. Computational endocrinology: New view of estrogens

Various data sources are available to examine estrogen-mediated effects, and it is important 

to leverage data incorporating reliable endpoints with direct mechanistic and/or 

(sub)population relevance. In fish, these endpoints are primarily derived from reproductive 

parameters in chronic studies. For example, there are parameters with high mechanistic 

specificity for estrogen activity, such as male vitellogenin production. On the contrary, there 

are parameters affected by several modes of action. For example, fecundity is an apical 

endpoint regulated by estrogen, but systemic toxicity can also affect reproductive output 

(ECHA/EFSA, 2018). Thus, it is important to consider the mechanistic specificity of these 

parameters, as they have different levels of utility to identify potential estrogens.

Fortunately, many guideline studies include informative parameters, and there are various 

resources to access these data, as well as non-guideline studies. For example, the fish short 

term reproduction assay (OECD TG 229), 21-day fish assay (OECD TG 230), fish sexual 

development test (OECD TG 234), and medaka extended one-generation reproduction test 

(OECD TG 240) are harmonized guideline studies with parameters indicative of estrogen 

activity. In addition, the fish life cycle toxicity test (OPPTS 850.1500) is a common assay 

that can be modified to include mechanistic parameters, such as vitellogenin. There are 

several major data sources to access this information, including the eChemPortal database 

from REACH, the ECOTOX database from USEPA, the METI database from the Japanese 

Ministry of the Environment, the Pesticide Ecotoxicity Database from USEPA, and peer-

reviewed literature, to name a few. A recent effort has consolidated these data sources, as 

well as others, into a curated database called EnviroTox (https://envirotoxdatabase.org/) that 

contains >91,000 aquatic toxicity records for >1,500 species and >4,000 CAS numbers [21]. 

Ultimately, these resources are valuable to identify ecotoxicology studies for risk assessment 

and other applications. Not only are these data useful to identify toxicity thresholds for 

individual substances, they may also be used to compare effects between species and 

chemicals. For example, probabilistic approaches such as species sensitivity distributions 

have been used to identify sensitive taxa and predicted-no-effect concentrations (i.e., HC5 

values) for estrogens [18], and chemical toxicity distributions have been used to compare the 

sensitivities of common in vitro and in vivo estrogen agonist assays [30]. Thus, data mining 

offers a useful approach to address certain information needs related to estrogenic effects in 

fish.

The molecular targets of estrogens are similar between fish and other vertebrates, and the 

growth of new assessment methodologies (NAMs), including omics, has offered several 

data-driven approaches to better understand how molecular diversity affects responses to 

estrogens. Contrary to most vertebrates, which have 2 nuclear estrogen receptors, there are 3 

nuclear estrogen receptors in teleost fish: esr1, esr2a, and esr2b, the latter of which arose 

from esr2 in a whole genome duplication event that occurred approximately 350 million 

years ago [44, 47]. Indeed, these nuclear receptors have unique effects, primarily via 

genomic mechanisms, and these activities complement those by membrane estrogen 

receptors, which act via intracellular signaling cascades [84]. While these targets have been 

susceptible to molecular evolution, there remains a high level of molecular and functional 

conservation for estrogen receptors among vertebrates, including fish. One way to examine 
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this conservation, and by extension taxonomic susceptibility to estrogens, is to leverage 

omics data to compare molecular target sequence similarity.

This concept has been materialized in the SeqAPASS (Sequence Alignment to Predict 

Across Species Susceptibility) tool by USEPA, which quantitatively compares protein 

sequence/structural similarity across species to identify taxonomic sensitivity for a given 

target. The tool uses 3 levels of analysis to determine susceptibility: 1) primary amino acid 

sequence similarity, 2) functional domain sequence similarity, 3) amino acid residue 

similarity. Put together, this information is evaluated to set a susceptibility “cut-off” that is 

compared across taxa [67]. In the case of estrogens, this approach has been used to identify 

susceptible taxa based on the human estrogen receptor. Indeed, it was found that fish (class 

Actinopterygii) met the “cut-off”, and this susceptibility was confirmed with reproductive 

toxicity data associated with estrogen receptor activity [66]. While this current approach 

examines susceptibility at a broad taxonomic level, in the long term, omics data will become 

further useful to refine the relative sensitivity of species to estrogens through more advanced 

comparative bioinformatics approaches.

For ecotoxicologists, evidence of estrogen receptor conservation supports the use of read 

across approaches that complement or expand our understanding of estrogen-mediated 

effects in fish. For example, many high-throughput screening assays in the ToxCast/Tox21 

programs [29, 107] have been used to screen chemicals for endocrine activity, including 

estrogen receptor agonism/antagonism [51, 93]. While these in vitro assays are based on 

mammalian models, they have screened thousands of compounds and offer useful data to 

characterize estrogen activity. Furthermore, this information has been used to develop 

computational models that integrate multiple assay responses to predict in vivo estrogen-

mediated responses, such as those from the mammalian uterotrophic assay [17]. Likewise, 

since these assays screen large chemical libraries with high structural diversity, this 

information is also useful to construct robust quantitative structure-activity relationship 

(QSAR) models that predict estrogen receptor binding and activity [72]. In the near future, 

these assays are expected to include transcriptomics [78], which will offer high-dimensional 

response profiling for many chemicals, including potential estrogens. These datasets will be 

useful to identify chemicals affecting estrogen signaling pathways and genes, among others.

Certainly, these NAMs offer valuable information, and it remains important to validate these 

approaches to assess estrogen-mediated effects in fish. It is evident that there is strong 

structural conservation of ERα among species, which allows similar compounds to bind to 

fish and human ERα [7], although at different affinities [76]. Still, mammalian in vitro 
models have been useful to predict non-mammalian responses. For example, there is a 

significant relationship between the relative potency of compounds in ToxCast/Tox21 

estrogen agonist assays, the ToxCast ER bioactivity model, and in vivo vitellogenin 

induction in male fish [33]. Likewise, in Tier 1 Screening of the Endocrine Disruptor 

Screening Program, there are similar outcomes between in vivo mammalian and fish assays 

[6]. Thus, there is growing evidence that comparisons across approaches, especially those 

utilizing NAMs (e.g., omics/HTS), will become increasing useful to predict estrogenic 

responses in non-target species, such as fish (Figure 2).
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Considering the growing complexity of ecotoxicological data – especially omics data – 

adverse outcome pathways (AOPs) offer a useful framework to organize and integrate 

numerous lines of evidence. An AOP consists of a series of key events (KE) linking a 

molecular initiating event (MIE) to an adverse outcome (AO) through a series of causal key 

event relationships (KERs) [114]. In this framework, omics data primarily describe cellular 

KEs, but they are also useful to inform on MIEs. For example, proteomics data are useful to 

identify molecular target sequences that are conserved across species (e.g., SeqAPASS), and 

this information can define the taxonomic domain of applicability for an AOP [14]. 

Accordingly, QSAR models may be useful to identify structural features, and thus related 

chemicals, that trigger a MIE in a particular AOP [35, 108]. Downstream, omics data offer a 

useful perspective to identify cellular departures from homeostasis. Given sufficient 

magnitude, these responses may trigger subsequent KEs and potentially lead to an AO. In 

addition, gene expression profiles may also be associated with a particular mode of action. 

For example, gene set classifiers have been developed in zebrafish for endocrine disrupting 

chemicals, including estrogen agonists (e.g., EE2) [116]. Likewise, estrogen-responsive 

interactomes have been developed to complement vitellogenin as a diagnostic biomarker for 

estrogenicity in fish [38]. Thus, omics data are useful for several applications in the AOP 

framework, and this information will be important to improve AOPs for estrogen-mediated 

effects in fish.

A major goal of the AOP framework is to identify causal pathways between mechanistic and 

apical responses. In many cases, these pathways are not linear and may involve larger 

networks that include several MIEs and/or AOs [64]. Thus, it will be important to define 

critical paths in these networks to identify those associated with estrogen versus alternative 

or confounding paths [115]. In addition, a major goal is to better define our quantitative 

understanding of these biological relationships. To this end, quantitative AOPs (qAOPs) 

have been developed for reproductive outcomes in fish [22], and additional efforts will be 

required to consider compensatory and recovery processes. While recovery processes have 

been a research topic for estrogens and fish [12, 43], it remains a challenge to integrate this 

information into AOPs. Regardless, the AOP framework has been useful to organize effects 

data, and these efforts will ultimately lead to a better understanding of estrogen-mediated 

effects in fish to support ecological risk assessment.

8. Conclusions

The past several years has yielded a rich source of comparative data for EE2 in various 

teleost fishes. Studies investigating the pharmaceutical EE2 have yielded important clues 

into estrogen action. Major steps needed moving forward include: (1) Establishing 

conceptual frameworks for incorporating estrogenic-responsive networks into environmental 

monitoring programs; (2) Data mining (ECOTOX, EnviroTox) to identify effect thresholds 

for estrogens in fish; (3) Characterizing novel estrogen receptor signaling pathways in fish, 

including both nuclear and membrane receptor activity; (4) Leveraging comparative 

bioinformatics to identify susceptible taxa; (5) Integrating comparative lines of evidence 

(e.g., mammalian data, in vitro assays) to identify chemicals likely to affect estrogen-

mediated endpoints in fish; (6) Incorporating various lines of evidence (described above) to 

construct qAOPs for estrogen-related effects in fish that include compensatory/recovery 
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processes. As we look ahead, research into EE2 and other environmental estrogens can serve 

as a template for other potential endocrine active substances.
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Highlights

17alpha-ethinylestradiol (EE2) is one of the most widely studied pharmaceuticals in fish.

Transcriptome studies have revealed mechanisms of action in numerous fish species and 

tissues.

While data are prevalent for liver, brain, and gonad, less is known about EE2 action in 

kidney and pituitary.

Transcriptomics will contribute to quantitative adverse outcome pathways for estrogen 

signaling.
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Figure 1: 
Percent of studies reporting on transcriptomics responses to 17alpha-ethinyestradiol (EE2) 

in (A) fish and (B) tissues. Rainbow trout and zebrafish have been the dominant species 

studied, while the liver and the testis are often the most studied tissues when investigating 

molecular responses to EE2.
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Figure 2: 
A framework for assessing environmental estrogens in the context of adverse outcome 

pathways. Omics can be leveraged to support read across from other taxa, including 

mammalian data (e.g., high-throughput in vitro assays).
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