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Abstract

In recent decades, theoretical and methodological advances have operated synergistically to 

advance understanding of puberty well beyond simplistic “Storm and Stress” views to increasingly 

comprehensive models that engage with the temporal, psychosocial, and biological dimensions of 

this maturational milepost. This paper discusses these theoretical and methodological advances 

and their implications for research and intervention to promote human development in the context 

of changing maturational schedules and massive ongoing social transformations.
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Introduction: Why Puberty Matters

Young people aged 10 –19 today number over 1.2 billion, or 17 % of humanity (United 

Nations, Department of Economic and Social Affairs, & Population Division, 2015), and 

have grown up with healthier childhoods and mass education but obdurate inequalities (Ortiz 

& Cummins, 2011). Their emerging capabilities and health are cornerstones for future 

economic and social flourishing, particularly in an era of demographic aging (Sheehan et al., 

2017). Global policy has begun to absorb the lesson that, following successes in child 

survival and health, hard-won developmental gains in the first decade must be secured with 

support for critical maturational milestones in the second decade (Sawyer et al., 2012). 

Goals and attitudes of parents, communities, and agencies are evolving under the weight of 

massive ongoing social transformations and the challenge to allocate limited resources 

(Patton et al., 2016).

Here developmental science can play a particularly timely role by offering comprehensive 

models and new information that illuminate the temporal, psychosocial, and biological 

dimensions of this maturational phase. In recent decades, theoretical and methodological 
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advances have operated synergistically to advance understanding of puberty well beyond 

simplistic “storm and stress” views (Casey et al., 2010). Indeed, the concept of puberty itself 

is undergoing revision (Herbison, 2016; Le Tissier et al., 2017). Emerging models and novel 

insights have moved from treating puberty as a largely physical process driven by a switch-

initiated hierarchical neuroendocrine- and gonadal-steroid driven cascade (Sisk & Foster, 

2004), to regarding it as a multidimensional interacting suite of maturational processes in 

body and brain as well as socioemotional capacities (Blakemore & Mills, 2014; Byrge, 

Sporns, & Smith, 2014; Dahl, 2016). The stakes are high: maturational trajectories of the 

body-brain-psychosocial nexus in puberty/adolescence leverage long-term outcomes for 

function and health (Zeanah, Gunnar, McCall, Kreppner, & Fox, 2011). These dynamics also 

conduce to a “social embedding” of rearing environment and reproduction of disparities 

whereby differential exposure to developmental advantages or risks and their biobehavioral 

impact both influence likelihood of realizing full potential during this stage, and capacity to 

capitalize on developmental gains (Holz et al., 2015; Noble et al., 2015; Theall, Drury, & 

Shirtcliff, 2012).

In the following review, we survey recent conceptual and methodological advances in the 

study of puberty and their implications for research and intervention to promote human 

development in the context of tectonic shifts in maturational schedules and massive ongoing 

social transformations

Theoretical and Conceptual Advances

Current views of puberty reflect three interlocking streams of inquiry at the level of 

physiology, individual, and population. These literatures concern the mechanisms regulating 

onset and pace of puberty, context sensitivity in developmental processes, and secular trends 

and population differences, respectively. As such, the work reflects the multi-dimensional 

nature of puberty as a biological, psychobehavioral, and social phenomenon.

Physiology: Onset and Pace of Puberty

Control of timing and onset of puberty remains an enduring biological mystery. The 

hypothalamo-pituitary-gonadal (HPG) system is suppressed a few months after birth to open 

an extended window of immaturity in childhood, and must be derepressed for puberty to 

occur (Livadas & Chrousos, 2016). Reactivation of the HPG system requires both re-

initiation of hypothalamic secretion of gonadotropin releasing hormone (GnRH) and of the 

pulse generator regulating its pattern of release (Plant, 2015). Both genetic and 

environmental factors play substantial roles in pubertal onset (Ge, Natsuaki, Neiderhiser, & 

Reiss, 2007), but the precise pathways by which these influences work are topics of intense 

inquiry. Recent research has begun to unravel the mystery, starting with discovery of 

kisspeptin and going on to understand the GnRH neuronal network as a suite of interrelated 

functional modules (Kwon, Kim, & Kim, 2016). Kisspeptin initially was recognized as 

essential for hypothalamic GnRH release and, hence, a key link in GnRH pulse generation 

and regulation of gonadal function (Livadas & Chrousos, 2016). Opposing or permissive 

signaling of two other peptides, neurokinin B and dynorphin, provide close modulation of 

kisspeptin (Livadas & Chrousos, 2016). Similarly, an upstream suite of opposing epigenetic 
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mechanisms repress or activate promoter genes and thereby finely regulates initiation and 

progress of puberty itself (Lomniczi et al., 2013; McCarthy, 2013). Together, these 

mechanisms suggest how activation of the pulse generator is achieved through coordinated 

activity of gene sets organized into functional networks (Lomniczi, Wright, & Ojeda, 2015). 

The mystery of the mechanisms behind puberty onset is closer to being solved, thanks 

largely to preclinical research.

The Individual: Development and Context

As understanding of physiological mechanisms that operate within individuals to control the 

timing and pace of puberty has advanced, so also has knowledge of pathways linking context 

with individual development. Evidence associating quality of postnatal environment with 

physical development in general, and puberty in particular, is firmly established at the 

population level and briefly reviewed in a later section. By contrast, the effects of gestational 

as well as ancestral conditions only recently have been recognized (Barker, 2012; Gluckman 

& Hanson, 2006b). Insights into processes operating across time—preconceptional, 

gestational, and postnatal-have important implications for understanding variation at puberty 

and thereafter. Systematic research in rodents by Michael Meaney and colleagues probed the 

role of early rearing environment on cognitive, behavioral, and maturational patterns, 

documenting effects of early maternal behavior on environmental reactivity, stress 

vulnerability, timing of puberty, and adult behavior of offspring (Francis, Diorio, Liu, & 

Meaney, 1999; Meaney et al., 2013). They have gone on to elucidate pathways behind these 

effects, including epigenetic mechanisms that modify gene expression (Meaney, Szyf, & 

Seckl, 2007; Weaver et al., 2004). Similar physiologic signatures of early adversity have 

been identified in humans (McGowan et al., 2009; Zhang, Labonte, Wen, Turecki, & 

Meaney, 2013). These revolutionizing lines of investigation not only have indicated how 

conditions of children’s lives “get under the skin” through biological embedding (Hertzman, 

2012), but also have stimulated related research identifying relationships of early rearing 

conditions with long term health (McDade et al., 2017; G. E. Miller et al., 2009) as well as 

revealing factors that buffer such relationships (Chen, Miller, Kobor, & Cole, 2011). For 

instance, the association of early harsh conditions with earlier menarche is attenuated by 

secure attachment in infancy (Sung et al., 2016). Ongoing inquiry also points beyond stress 

response systems to neuroimmune interactions that mediate pathways from early adversity 

to inflammation and health (Hostinar, Nusslock, & Miller, 2017). A longitudinal study of 

adolescent Canadian girls, for example, found an association of proinflammatory phenotype 

with early life adversity but not with current social stress (Ehrlich, Ross, Chen, & Miller, 

2016).

The contexts informing individual development also may be distal: transgenerational sex-

specific effects of parental as well as grandparental circumstances on descendants’ 

maturation, health, and survivorship increasingly have been documented (Pembrey et al., 

2006). Maternal hardship in early life increases likelihood of poor outcomes of pregnancy 

including low birth weight (Miller et al., 2017), which is known to be associated with 

offspring age at menarche and long-term health outcomes (Adair, 2001). In addition, 

evidence has been accumulating for age-specific (pre- vs. late puberty) effects of paternal 

nutrition on offspring health across one or two generations (Isganaitis, Suehiro, & Cardona, 
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2017; Rando, 2012). Preconceptional effects of parental stress on offspring stress reactivity, 

behavior and mental health furthermore have been reported (Dias, Maddox, Klengel, & 

Ressler, 2015; Provencal & Binder, 2015). An expanding array of extra-genomic maternal 

and paternal mechanisms mediating transgenerational inheritance have been identified, 

including epigenetic markers, micro- and mRNA, and gamete constituents (Isganaitis et al., 

2017; Klengel, Dias, & Ressler, 2016).

The aforementioned independent lines of research that identify important roles for 

epigenesis in both normative development (onset of puberty) and developmental variation 

(timing of puberty, vulnerability to stressors) converge with an avalanche of theoretical and 

empirical findings that are reshaping foundational models of heritability and thus, of 

development (Edelman & Tononi, 1997), evolution (Jablonka & Raz, 2009), and the 

relationship of the two (Bateson & Gluckman, 2011; D. Noble, 2013; West-Eberhard, 2003). 

Successful mapping of genomes spurred appreciation that genetic information is limited; 

therefore, mechanisms capturing information from internal and external environments to 

guide development and function are integral features of biological design (Grigorenko & 

Dozier, 2013). Mounting evidence for neo-Lamarckian intergenerational transmission of 

acquired characteristics appears to support this view (Davey Smith, 2012), famously 

illustrated by the demonstration that intergenerational transmission of psychobehavioral 

phenotypes is mediated by maternal caregiving style via epigenetic mechanisms (Cameron 

et al., 2008). Mounting recognition of the significant roles of context led to proposal of the 

exposome (Wild, 2012). Encompassing as it does the entirety of human environmental 

exposures, the concept has been critiqued as too broad for utility, though some have focused 

on biological impact or chemical and other pollutants (Miller & Jones, 2014; Ogino et al., 

2013).

Rather than attempt to engage “the environment” entirely and returning the focus to puberty, 

we can build on the evidence for context sensitivity to identify the maturational moments 

where context affects the course of development when it is particularly open to, expectant of, 

or reliant on incoming information. Such sensitive periods open windows of opportunity as 

well as vulnerability that are important sites for variation and disparities in outcomes, and 

for constructive intervention as well (Dorn et al., 2019). Thanks to a new generation of 

research, puberty is coming into focus as such a moment during which unique maturational 

milestones in brain, body, and behavior are attained (Crone & Dahl, 2012). Although much 

of the pathbreaking work on sensitive periods, intergenerational transmission, and 

developmental origins of disease has focused on early life, particularly the “first thousand 

days” from gestation through infancy, many lines of evidence draw attention to puberty as a 

sensitive period of similar albeit distinctive importance (Scherf, Behrmann, & Dahl, 2012; 

Worthman, Tomlinson, & Rotheram-Borus, 2016). Indeed, adoption of a multi-system view 

of puberty plus recognition of the power of context in development blurs the distinction 

between puberty as a biological process and adolescence as a social construction, and 

foregrounds their biosocial, biocultural foundations. For the present, however, here we 

consider puberty to be the suite of biological and cognitive-behavioral changes that occur in 

the move from childhood to maturity, and follow global agency convention in considering 

adolescence as comprising the second decade (WHO, 2001).
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Population: Secular Trends and Life History

As research both has delineated context-environment relationships throughout development 

and across generations and has elucidated mechanisms behind them, other lines of inquiry 

have established an adaptive evolutionary framework that identifies design constraints and 

trade-offs behind these relationships. Life history theory emerged in zoology from 

systematic comparative analyses that identified determinants of key life course elements 

such as birth size, time to weaning, pace of development, time to reproductive maturation, 

adult body size, and life expectancy (Charnov, 1993; Stearns & Koella, 1986). Life history 

can be understood in terms of allocation of the finite resource, time, as driven by availability 

of other finite resources (energy, information) and mortality risk, to optimize life course 

fitness. A species’ life history strategy constitutes how these resources are allocated in 

relation to the niche it occupies, which determines available resources and mortality risks. 

Life history strategy varies widely and is distinctive to each species, as illustrated by the 

contrast among fruit flies, mice, and elephants. Defining as it does the onset of reproductive 

career, the timing of reproductive maturation is a crucial element of life history strategy 

(Worthman, 1999b). In cross-taxonomic comparative analysis, high, stable resource 

availability and low mortality have been associated with a slow life history, with late 

maturation and reproduction.

Humans have a “slow” life history strategy, with extended childhood, late puberty, low 

mortality, and long life expectancy. Life history strategies furthermore show elasticity to 

acute conditions, known as norm of reaction, which is the range of phenotypes that can be 

expressed from the same genotype (Stearns & Koella, 1986). Such developmental 

adaptability permits the organism to accommodate the inevitable vicissitudes of living 

conditions, surviving to reproduce even when conditions are poor and flourishing when 

conditions are good. Human biological studies in the latter Twentieth Century documented a 

remarkably large reaction norm for menarche, spanning from median age over 18 in remote 

horticultural populations to under 12.5 in affluent postindustrial populations (Eveleth & 

Tanner, 1990; McIntyre & Kacerosky, 2011). Consistent with life history theory, accelerated 

growth and earlier puberty have accompanied dramatic improvements in global population 

nutrition and health, and the timing and pace of change in maturational schedules 

predictably varied in tandem with population differences in economic and health trajectories 

(Parent et al., 2003; Worthman, 2010). Variation in growth and maturation within 

populations also correlates consistently with differences in health and nutrition related to 

urban-rural or socioeconomic status (SES) gradients (Eveleth & Tanner, 1990). Recall the 

role of kisspeptin in regulating onset of puberty: it turns out that kisspeptin also plays a 

prominent role in regulation of food intake and energy expenditure (McCarthy, 2013), thus 

forming a direct physiologic link behind the association between reproduction and 

energetics (balance of nutrition and activity).

This takes us to the question of biodesign and how life history strategies actually are 

implemented. Neuroendocrine systems largely fill this role by providing the architecture for 

not only regulating allocation of resources and pace of development, but also mediating the 

relationship between context and individual (Finch & Rose, 1995; Worthman, 1999a). These 

systems both implement continuous acute prioritization of resource allocation, and 
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orchestrate the long-term scheduling of growth, reproduction, and aging (Worthman, 2002). 

For example, pervasive effects of early and gestational maternal trauma are mediated largely 

through the HPA axis (Gunnar & Quevedo, 2007; Worthman & Kuzara, 2005), and 

population differences in maturational timing are indexed by shifts in HPG activity (Zemel, 

Worthman, & Jenkins, 1993). Consequently, endocrine measures have illuminated 

determinants of ongoing function, adaptation, and differential well-being, while life history 

draws attention to adaptive goals and trade-offs subserved by hormones.

The degree to which altered timing of reproductive maturation is paralleled by shifts in brain 

maturation remained unknown until recent imaging studies have enabled the study of both 

structural and functional brain maturation (Goddings et al., 2018), although studies at the 

level of populations and comparison across them are not yet available. Current evidence 

shows that the brain indeed undergoes a major period of development during puberty and 

through the second decade, and the impact of pubertal hormones on this process ensures a 

degree of coordination between brain and body. Nevertheless, regions involved in emotion 

processing and decision making mature asynchronously and continue to mature after 

obvious physical changes are completed. The trends in accelerated physical maturation led 

to concern about two forms of potential mismatch. One form is mismatch between 

appearance of physical maturity when psychobehavioral maturation is ongoing (Steinberg & 

Scott, 2003); the other entails mismatch between earlier physical and socioemotional 

maturity and the trend to delay social maturation (assumption of adult roles and statuses) 

(Gluckman & Hanson, 2006a). Such issues of synchrony among multiple maturing systems 

have been suggested to underlie the emergence of psychiatric and behavioral risks during 

adolescence (Paus, Keshavan, & Giedd, 2008).

Recent work has sought to integrate both psychobehavioral with biological dimensions of 

life history strategy, particularly with respect to reproductive strategies of which puberty is a 

vital element (Ellis, 2013). Neurobiological variation in sensitivity to stressors has been 

proposed to moderate life history strategies (Boyce & Ellis, 2005; Ellis & Boyce, 2011). 

Context sensitivity is posited to have a constitutional basis, with more sensitive individuals 

differentially benefiting or suffering from supportive or adverse environments (Pluess, 

Belsky, Way, & Taylor, 2010). Early adversity (parental harshness) furthermore has been 

associated with earlier menarche in western postindustrial populations (Belsky et al., 2007). 

This phenomenon contradicts life history expectations linking adversity to maturational 

delay, suggesting that under relatively low mortality and good nutrition, social adversity 

triggers an alternate accelerated life history strategy favoring early reproduction (Chisholm, 

1993). Notably, such effects are moderated by secure parent attachment (Chen et al., 2011; 

Sung et al., 2016).

Summary: Interlocking Levels of Theory

While progress has been made at each level of inquiry, from physiology to individual to 

population, prospects for the greatest theoretical advances in the study of puberty lie in 

bridging across them. Unraveling proximal mechanisms regulating puberty also opened 

windows onto the bases of context sensitivity at the level of the individual. Moreover, 

tracking mechanisms behind individual-level context sensitivity has prompted discoveries at 
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the molecular level that are spurring revisions of evolutionary theory. Reciprocally, 

applications of life history, a population-level theory, have stimulated productive lines of 

inquiry into contextual factors that most powerfully mobilize developmental responses. 

Hence, advances in theory and evidence have recast puberty as a suite of maturational 

processes involving not only body and brain, but also psychosocial competences that emerge 

through interactions between the adolescent and the material and social context (Byrge et al., 

2014; Paus, 2013). They also situate the timing and course of puberty as a key element in 

life history strategy. Degree of synchrony among these ongoing processes, and the impact of 

shifting schedules of physical as well as social maturation, are important sites for inquiry to 

address the mental and physical health needs of adolescents. Additionally, investigators are 

rising to the challenge of expanding the scope of inquiry beyond the hitherto narrow focus 

on affluent postindustrial populations (Henrich, Heine, & Norenzayan, 2010). These issues 

are sharpened by evidence of rising material inequalities within and across nations (Piketty, 

2014), and by concurrent evidence for the effects of adversity, including that income is most 

strongly associated with cortical area and specific neurocognitive capacities among the most 

disadvantaged children (Noble et al., 2015).

In the following section, we review methodological innovations that support these research 

needs by enabling researchers to tap physical processes of puberty less invasively, in 

naturalistic settings, and providing analytical tools required to manage the multi-system, 

multi-level, developmental nature of puberty. Similar advances are being made in remote 

sensing and portable technology that allow tracking of experience and behavior (Epstein et 

al., 2014; Odgers, Caspi, Bates, Sampson, & Moffitt, 2012; Shiffman, Stone, & Hufford, 

2008). Used in tandem with biomarkers and appropriate statistical analysis, these techniques 

open powerful possibilities for understanding puberty and adolescence (Adam, 2006; Adam, 

Snell, & Pendry, 2007), but exceed the remit of the current review (but see Susman, 

Marceau, Dockray, & Ram, 2019). Taken together, such innovations reflect the value of 

interdisciplinary collaboration.

Methodological Advances

Biomarkers of Pubertal Onset and Progression

Biomarkers are defined as sensitive and robust signifiers of biological development and 

function, and these signifiers are possible at the molecular, cellular, organ and system level 

of physiology (Worthman & Costello, 2009). To be useful in research on puberty, 

biomarkers must be relevant and valid indicators of pubertal onset or progression, as adrenal 

androgens are, for example. Biomarkers may also be used as indicators of the action, 

function, and re-organization of physiologic systems that either correspond with puberty, 

such as changes in the hypothalamic pituitary adrenal (HPA) system (Gunnar, Wewerka, 

Frenn, Long, & Griggs, 2009; Rege & Rainey, 2012), or are directly involved in its 

progression, such as changes in the HPG (Plant, 2015). Ideally, biomarkers are easily and 

repeatedly measurable, and the feasibility of the sampling and processing of biomarkers 

(participant acceptability and burden, sample stability, cost) is of direct relevance to how 

they have been incorporated in research on puberty, especially in population based studies 

(Granger et al., 2007; McDade, Williams, & Snodgrass, 2007). In addition to indicating 
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biological processes of puberty, biomarkers have been used for decades to examine 

psychobiological vulnerability or resilience in relation to puberty, for example, depression, 

risk-taking, or aggression (Angold, Costello, Erkanli, & Worthman, 1999; Marceau, Ruttle, 

Shirtcliff, Essex, & Susman, 2015; Rowe, Maughan, Worthman, Costello, & Angold, 2004; 

Susman, Granger, Murowchick, Ponirakis, & Worrall, 1996).

Development of minimally invasive measures for biomarkers of puberty directly contributed 

to a resurgence of effort in mapping psychobiological processes and correlates of puberty. 

There are now thousands of studies that have incorporated at least one biomarker as a 

predictor, correlate or consequence of pubertal development (Mendle et al., 2019). Although 

existing methodologies to track pubertal status in population studies have been heavily 

deployed in psychobehavioral research, they remain underused in other population studies in 

social and health sciences that employ indirect morphological markers of puberty such as 

breast or gonadal development in girls and boys, respectively. Such indirect measures are 

much more convenient and less expensive, but the many factors that increase the margin of 

error (self report bias, observer error, contextual confounders) reduce their information value 

for investigating the timing, course, and causes of variation and change within and between 

populations (Barry & Schlegel, 1986; Parent et al., 2003). Population studies that use direct 

measures of neuroendocrine activity (and perhaps other biomarkers) are needed to resolve 

existing uncertainties about the differences in pattern and predictors of secular trends in boys 

versus girls, about whether secular trends are continuing or have plateaued, and about 

ecological factors associated with intra-population differences. In addition to their scientific 

merit, these questions have high salience for public health and policy, as well as for parents, 

educators, and clinicians concerned about what is “normal” and expectable for healthy 

puberty and adolescence.

Articulating a more expansive model of puberty that incorporates multiple systems, 

psychobehavioral capacities, and temporospecial contexts should capitalise on the wealth of 

extant data, led by advances in biostatistical modelling described (Susman et al., 2019). But 

the identification of novel biomarkers indicates opportunities to develop more 

comprehensive understanding of puberty. Herein we describe advances in the measurement 

of established biomarkers, and indicate several physiologic systems and their biomarkers 

that deserve attention, as they are coupled to the changes in the reproductive neuroendocrine 

axis at puberty.

Advances in Measurement of Biomarkers

Recent innovations in biochemical methods have directed attention to biological specimens 

other than saliva, blood, and urine. The choice of biological sample is necessarily 

determined by the conceptual model informing the research but there are opportunities to 

advance understandings of puberty by drawing upon sampling strategies and tissues 

established in animal research, including the use of nail and hair clippings. These can 

provide aggregate indicators of physiological function, including hormone secretion, over a 

longer time period, and have particular potential in population based research due to the ease 

of sampling and transport. A small number of studies indicate the potential of using hair and 

fingernail samples to gather data on biomarkers relevant to puberty; converging evidence 
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indicates that steroid hormones can be measured in hair and nail clippings from children 

(Hubmann, 2016; Stalder et al., 2016). Levels of hair cortisol provide an integrative measure 

of secretion over a month and corresponds with aggregate measures of salivary cortisol taken 

during the same month (Short et al., 2016). Measurement of steroids in nails, including 

testosterone, has been possible for almost two decades (Choi, Yoo, & Chung, 2001) but the 

challenges of processing of nail and hair samples delayed their ready adoption in research. 

More recently, testosterone and dehydroepiandrosterone have been quantified in nail 

clippings using enzyme linked immunoassay protocols, after standard extraction procedures 

(Brown & Perrett, 2011; Tegethoff et al., 2011), representing a distinct advance on previous 

chromatographic methods. Nevertheless, greater assay sensitivity is needed for hair and nail 

samples. Furthermore, validation studies must demonstrate concordance with established 

samples of biomarkers, and use of such integrative measures must be weighed with respect 

to the research question and the requisite level of data granularity (Dorn, this issue).

Inclusion of biomarkers in research, especially population based studies, may be challenging 

for reasons including cost and participant burden (Adam & Kumari, 2009). Child and 

adolescent participants may find the collection of biological samples burdensome, especially 

in everyday contexts, and providing nail or hair clippings may be more acceptable if a 

marker of longer-term exposure is required. Finally, in an advance that could revolutionise 

research using biomarkers, lateral flow testing devices recently have been shown to provide 

rapid measures of steroid hormones (Shirtcliff et al.,2015) with application in research 

contexts. The nearly real-time measurement of biomarkers associated with pubertal 

development, using body fluids, or as aggregate measures of longer-term secretion using a 

single sample of tissue, offer exciting possibilities to understand the time progression of 

puberty and its biological and behavioural correlates.

Expanding the Roster of Candidate Biomarkers of Pubertal Process

Early research identified a number of biomarkers of puberty and many of these have been 

described in detail, notably adrenal androgens and gonadal steroids (J. L. Cameron, 2004; 

Panter-Brick & Worthman, 2008; Rockett, Lynch, & Buck, 2004; Worthman & Costello, 

2009). Only recently has attention turned to other biomarkers as puberty onset and 

progression are understood to involve interlocking functional systems (Kwon et al., 2016). 

Secular trends to earlier pubertal onset and improved adolescent health indicators, combined 

with observations about the potential biological underpinnings of adolescent development 

and behavior, make biomarkers associated with the metabolic, microbiomic, neural, and 

immune systems potential candidates for targeted exploration in relation to puberty; below, 

we highlight relevant candidates that tap these domains.

Markers of metabolism related to puberty.—The metabolic control of puberty results 

from a complex interplay of signals from several biological systems (Messina et al., 2016). 

The interplay between pubertal and metabolic processes is exemplified in the functions of 

leptin, a hormone produced primarily by adipose tissue and hence an indicator of energy 

stores (Kwon et al., 2016). Leptin is a permissive factor for the initiation of puberty, and 

regulates metabolism at the hypothalamic level, increasing before the pre-pubertal rise in 

GnRH. The rise in leptin is sexually dimorphic; levels are lower in boys and this is related to 
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testosterone levels (Ahmed et al., 1999). Leptin levels modulate kisspeptin secretion and 

thereby mediate metabolic control of puberty (Manfredi-Lozano et al., 2016), by stimulating 

hypothalamic GnRH secretion and thereby regulating pituitary gonadotropin output 

(Dungan, Clifton, & Steiner, 2006). Thus, leptin may serve as an upstream biomarker for the 

onset of puberty. Together with evidence that kisspeptin acts as a key gating factor in 

puberty (Clarke, Dhillo, & Jayasena, 2015; Cortes, Carrera, Rioseco, Pablo del Rio, & Vigil, 

2015) and in regulation of HPG activity (Chan et al., 2011; de Roux et al., 2003), these 

findings suggest that both kisspeptin and leptin could prove useful in tracking pubertal onset, 

including delayed or precocious puberty, although the work in humans is preliminary and 

has been conducted among people with conditions such as hypothalamic amenorrhea or 

hypogonadotropic hypogonadism (Lippincott et al., 2016). Insofar as leptin and the 

expression of kisspeptins are influenced by stress, nutrition, obesity and other metabolic 

disruptions, they may be useful probes to examine multisystemic effects of health and 

wellbeing on pubertal development.

A cast of trillions: puberty and the microbiome.—The human microbiome, the 

relatively enormous genome of a human’s microbiota, holds great potential to inform 

understandings of pubertal development and adolescent health and behavior. Trillions of 

microbes inhabit the human body, and new sequencing technologies have demonstrated that 

these microbes not only influence many aspects of physical health, but also are related to 

psychological wellbeing and behavior (Allen, Dinan, Clarke, & Cryan, 2017; Fung, Olson, 

& Hsiao, 2017). Puberty prompts changes in the microbiome, perhaps in response to altered 

patterns of activity of the neuroendocrine system, including changes in levels of sex steroids 

(Markle & Fish, 2014; Oh, Conlan, Polley, Segre, & Kong, 2012; Yurkovetskiy et al., 2013).

The gut microbiota, a regulator of the gut-brain axis, has received the most attention as a 

biomarker of risk and resilience at puberty. Bidirectional communications run between the 

gut and the brain, and this axis integrates signals from the endocrine, metabolic and immune 

systems, potentially affecting both multiple metabolic pathways and behavior at puberty and 

adolescence (Allen et al., 2017; Cryan & O’Mahony, 2011). It is likely that the microbiome 

interacts with the HPG axis to modulate gonadal hormones, and alter the brain and 

behaviour of adolescents. Intriguingly, research in animal models has demonstrated that a 

change in the gut microbiota following transplant of fecal material from an opposite sex 

animal, can result in increased production of androgens (Markle, Frank, Adeli, von Bergen, 

& Danska, 2014), and other studies have shown that some microbiota can convert 

glucocorticoids to androgens (Markle et al., 2014). Consequently, the microbiota may have 

the capacity to regulate sex steroids.

The gut microbiota may influence puberty by another pathway, via effects on metabolism 

and energetics (Le Chatelier et al., 2013). Increased weight and obesity have been associated 

with earlier puberty in both girls and boys (Ahmed, Ong, & Dunger, 2009; De Leonibus et 

al., 2014), and individual differences in body weight have been linked to differences in 

composition of the gut microbiome. Fecal transplants from lean to obese individuals have 

been associated with reduction in recipient body weight, and vice versa (Garrett, 2013; 

Ridaura et al., 2013). In turn, the gut microbiota is shaped by a host of factors, including 

birth mode, infant feeding, diet, antibiotic use, and household ecology, many of which are 
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undergoing dramatic changes with globalization (Bokulich et al., 2016; David et al., 2014; 

Maslowski & Mackay, 2011). Childhood body mass index (BMI) was linearly and 

negatively associated with age at onset of puberty among Scandinavian schoolchildren 

monitored 1930–1969, suggesting the importance of weight per se rather than overweight 

(Aksglaede, Juul, Olsen, & Sorensen, 2009). Hence, more “thrifty” microbiota may 

contribute to weight gain and thereby modulate pubertal timing.

So far, much of the microbiome research relating to puberty has been conducted in animal 

models, but the theoretical models emerging from such work (Neufeld, Luczynski, Oriach, 

Dinan, & Cryan, 2016) signify the potential of the microbiome as a biomarker in future 

studies of health during puberty in humans as well. Early indications from the pace and 

direction of microbiome research are that findings may radically transform understandings 

of puberty, behaviour and health. Sample collection protocols will need to be fielded, but 

initiatives such as the Earth Microbiome Project have demonstrated the feasibility and global 

reach of human microbiome sampling (Gilbert, Jansson, & Knight, 2014).

Puberty and the nervous system.—The need for research to capture the unique and 

coordinated development of all neural systems during pubertal development long has been 

recogized (Dahl, 2004), because pubertal processes have transformative effects on the brain, 

changing both neural architecture and biochemistry, and affecting processes including 

apoptosis, myelination, neuropeptide expression, and neurotransmitter receptor sensitivity 

(McEwen & Alves, 1999). A body of work has mapped out the synaptic pruning and 

myelination that occur in the second decade (Blakemore & Choudhury, 2006; Goddings et 

al., 2014; Sisk & Zehr, 2005), and regionally specific differences in brain volume have been 

related to circulating levels of testosterone and estradiol (Neufang et al., 2009; Peper, 

Hulshoff Pol, Crone, & van Honk, 2011) as well as to sex and pubertal stage (Bramen et al., 

2011). Gonadal steroids act on the brain in both organizational and activational ways; they 

alter brain structure by, for example, influencing myelination, dendritic branching, and the 

addition of neurons in specific regions (Ahmed et al., 2008; Ladouceur, Peper, Crone, & 

Dahl, 2012). They furthermore can alter the activity of neural systems (Koolschijn & Crone, 

2013). Direct measurement of the activity in the central neuroendocrine system is difficult, 

although application of novel functional techniques such as optogenetics offers powerful 

means to track functional pathways (Le Tissier et al., 2017), and there is much to be 

discovered about the timing and magnitude of pubertally mediated changes in the nervous 

system. Tracking such processes is made more complex by differences in the timing and 

degree of sensitivity to the effects of hormones at different stages of pubertal development 

(Schulz, Molenda-Figueira, & Sisk, 2009). The congruence of sample timing and pubertal 

events must be carefully gauged, and the potential upstream and downstream correlates 

specified for biomarkers to have maximal value (Worthman & Costello, 2009). Changes in 

brain architecture and function, for instance, may occur after a pubertal biomarker is 

obtained (Belchetz, Plant, Nakai, Keogh, & Knobil, 1978; Moenter, 2015). Algorithms to 

model associations of puberty and brain development (Faghih, Dahleh, Adler, Klerman, & 

Brown, 2015) may be used to address such challenges, and to design studies that capture the 

temporal associations of pubertal processes and changes with neural architecture, 

neurotransmitters and neural systems.
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Tracking interactions of puberty and neural development faces twin challenges to feasibility 

for obtaining appropriate measures of puberty, and assessing brain morphology, chemistry 

and activity in humans. Collecting data about brain structure and function in large scale 

studies has been difficult, but research consortia currently are compiling imaging databases 

with thousands of participants, capturing ages representing puberty and adolescence and 

often focused on mental health. Examples include IMAGEN, a longitudinal imaging and 

genetics study (Schumann et al., 2010), and the ENIGMA major depressive disorder 

consortium (Schmaal et al., 2017). Other examples of data aggregation and meta-analytic 

work examining brain structure and function also serve as useful models for researchers 

interested in puberty (Biswal et al., 2010; Choudhury, Fishman, McGowan, & Juengst, 

2014). Despite existing administrative or other barriers to access, the principles of data 

sharing, cooperation, and research investment should direct efforts to make use of the trove 

of data already collected (Poline et al., 2012). Aggregation and mining of extant data afford 

opportunities to accelerate research on puberty and the nervous system that are as great, or 

greater, than newly generated data and techniques. We note that these opportunities do not 

rely on technical advances in measurement, but arise directly from data sharing 

collaborations across research fields and laboratories, along with the application of novel or 

underused statistical approaches. However, the various measures used to assess puberty tap 

different relevant processes, and although they are related, they are not necessarily 

equivalent. Harmonisation of data across studies is crucial for future progress in this area, 

and requires exacting precision to define measures with equivalence in quality, specificity, 

and representation of pubertal process or stage.

Puberty and the immune system.—The complexity of dynamics between the 

reproductive endocrine system and the immune system is indicated by the 

immunomodulatory effects of sex steroids (Grossman, 1985; Kane & Ismail, 2017; 

Trigunaite, Dimo, & Jorgensen, 2015) but rarely studied in relation specifically to puberty 

(Shanahan et al., 2013). The mapping of the interactions between the immune and 

reproductive neuroendocrine systems does not as yet suggest strong candidate biomarkers 

for studies focussed on puberty, but there are several promising directions for research. The 

effects of gonadal steroids on the immune system are dimorphic; estrogens have immune-

enhancing effects and progesterone and androgens, including testosterone, are more often 

associated with immunosuppression, and these effects become apparent after puberty 

(Lamason et al., 2006). However, it still is not standard practice in research on immune 

responses to examine sex differences or interactions of other factors with sex, even less 

common to include measures of reproductive hormones or pubertal status. As with other 

candidate biomarkers that can contribute to a systems based study of puberty, significant 

efforts are needed to map the interactions of pubertal and immune processes in humans. 

Here again, interdisciplinary collaboration is essential.

Biomarkers of puberty may prove valuable to probe the pathways underlying sex-based 

differences in innate and adaptive immune responses, perhaps especially insofar as they may 

be related to the sex differences in depression and other psychopathologies. Onsets of 

psychobehavioral disorders that characterize the second decade peak at age 14 among U.S. 

adolescents (Paus et al., 2008), and direct relationships to gonadal hormones have been 
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identified. These hormones, in particular testosterone, have known relationships to limbic 

system maturation and changes in reward processing at puberty (Bramen et al., 2012; 

Spielberg, Olino, Forbes, & Dahl, 2014). Moreover, the neural circuits associated with threat 

and reward processing involve two major systems that are directly implicated in 

development of depression (Stringaris et al., 2015; Swartz, Hariri, & Williamson, 2017; 

Swartz, Knodt, Radtke, & Hariri, 2015), are furthermore linked to increased susceptibility to 

stress (Nikolova, Bogdan, Brigidi, & Hariri, 2012; Swartz et al., 2015), and finally are 

sensitive to changes in inflammation (Eisenberger et al., 2010; Harrison et al., 2016; Inagaki, 

Muscatell, Irwin, Cole, & Eisenberger, 2012; Swartz, Prather, Di Iorio, Bogdan, & Hariri, 

2017). Gender differences in these relationships have been identified but are not consistently 

studied. Together, these intersecting lines of evidence suggest that further inquiry into 

interactions of puberty, immune activity, psychobehavioral regulation and mental health risk 

will yield important insights that also will inform prevention and intervention efforts.

Advances in Biostatistics

Expanded use of biomarkers for measuring puberty, along with new studies capable of 

integrating across data streams and including genetic information, have necessitated 

concomitant advances in biostatistics. As technology and computing resources continue to 

expand, so do the possibilities for increasing the scope and complexity of the longitudinal 

study designs required for investigating developmental processes. The use of historical 

databases in conjunction with current studies now allows for comparisons of pubertal 

trajectories across generations (Walvoord, 2010). The increasing ease of technologically-

mediated global collaborations allows for cross-cultural comparisons of puberty. Continual 

expansion of technological resources facilitates generation and aggregation of ever more 

data to test theories of pubertal development. Core methodological issues and exciting future 

directions are discussed in detail in Susman et al. (2019). Here, we highlight two major 

recent biostatistical contributions to our understanding of puberty: modeling developmental 

processes themselves, and capitalizing on new interdisciplinary techniques in genetics.

Modeling developmental processes.—Biostatistical advances for modeling 

phenotypic measures of pubertal maturation have advanced our understanding of puberty as 

a process, enabling investigators to gauge the tempo or rate of development, often through 

the use of growth curve modeling(Beltz, Corley, Bricker, Wadsworth, & Berenbaum, 2014; 

Keenan, Culbert, Grimm, Hipwell, & Stepp, 2014; Mendle, Harden, Brooks-Gunn, & 

Graber, 2010). A small body of work has sought to apply nonlinear modeling techniques and 

better match current models of puberty to theoretically nonlinear trajectories that have been 

described for decades (Greulich, Dorfman, Catchpole, Solomon, & Culotta, 1942). 

Nonlinear growth curve models have been used to examine pubertal timing (age at the mid-

point of puberty) and tempo (number of stages each individual progresses through per year), 

and generally have been found to fit repeated measures data better than linear models across 

different time scales and pubertal measures (Beltz et al., 2014; Eaves et al., 2004a; Marceau, 

Ram, Houts, Grimm, & Susman, 2011; Susman et al., 2010). Nevertheless, nonlinear growth 

curve models still simplify pubertal maturation in such a way as to miss important variation 

in pubertal onset and course. First, in the aforementioned studies, the sigmoid-shaped course 

of development is assumed to be symmetrical: youth start development slowly, mature the 
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fastest in the middle, and slow down again toward the end. This pattern is unlikely to reflect 

the development of most (if any) individuals. Ellis, Shirtcliff, Boyce, Deardorff, and Essex 

(2011) used piece-wise growth curves to estimate separate rate parameters for early vs. late 

puberty, showing differential prediction of rate changes over development. Although the 

method allows for asymmetrical development (e.g., starting slow and finishing quickly), 

their inclusion of only two “pieces” assumed a single rate change and was driven by 

modeling decisions rather than underlying theory of pubertal processes. Testing various 

forms of growth curve modeling constitutes an important first step towards better 

characterization of puberty, but future work can do much better in terms of identifying 

important theoretical characteristics of puberty that should be explicitly modeled. For 

example, the degree of synchrony in adrenal and gonadal development remains relatively 

understudied in longitudinal research on puberty; consequently, its significance is scarcely 

understood (Susman et al., 2010). Future work explicitly could model synchrony in multiple 

growth characteristics that change during the pubertal process (e.g., skeletal maturation, 

Flor-Cisneros et al., 2004, height). Analysis of different maturation patterns-including 

characterization of time to each of several distinct pubertal milestones (e.g., through survival 

analysis), and the number and spacing of inflection points marking shifts in the rate of 

change in metrics of maturation-would provide new theory-based measures of puberty that 

would advance our understanding not only of predictors of pubertal trajectories, but also of 

outcomes from different maturation profiles.

Capitalizing on genetics to illuminate pubertal process.—Genetic analysis further 

illustrate biostatistical innovations that greatly have advanced the understanding of puberty. 

Expanded computational resources have allowed twin studies effectively and efficiently to 

examine the contributions of genetic and environmental influences on multiple aspects of 

pubertal development in large samples (Eaves et al., 2004b; Mendle et al., 2006). Genome-

wide association studies have identified novel genes linked to puberty (e.g., Cousminer et 

al., 2013; Elks et al., 2010; He & Murabito, 2014; e.g., Liu et al., 2009; Perry et al., 2014). 

This population-based research identifies genetic contributions to pubertal onset, tempo and 

timing, and has revealed an intricate and coordinated network of genes that control 

physiological processes of puberty (Cousminer et al., 2013; Day et al., 2017; Elks et al., 

2010). These include genes that encode leptin and kisspeptin and their receptors (e.g., LEP/

LEPR; KISS1/KISS1R[GPR54])(Rostami, Kohan, & Mohammadianpanah, 2015; Seminara 

et al., 2003), as well as those that control the sensitivity of the GnRH feedback loop (e.g., 

GNRH1)(Day et al., 2017).

Given the enormous number of candidate genes, a vigorous field of research aims to identify 

which genes are critical to puberty. Collating data from 40 studies with >370,000 European 

women, a research consortium has identified 389 independent genetic signals for age at 

menarche (Day et al.,2017). These signals account for just 25% of the estimated heritability 

of age at menarche, a mere 7.4% of the total variance in age at menarche (Day et al., 2017). 

In addition to consortium-based and meta-analytic approaches, novel computational methods 

have facilitated formulation of biologically relevant methods that inform the biology of 

puberty, including gene enrichment and over-represention analysis, gene set and network-

based analyses, and other systems-biology techniques. Gene set (using an a priori set of 
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genes) and network-based (a parallel but more data-driven approach) analyses examine 

associations of DNA variation at the level of the gene or a network or set of genes (e.g., 

testing the joint associations of all included markers with puberty), rather than at the level of 

specific single nucleotide polymorphisms (or other markers), and can be a useful tool for 

reducing the type-1 error rate and increasing power (de Leeuw, Mooij, Heskes, & Posthuma, 

2015; Jia & Zhao, 2014). Gene enrichment, or over-representation analysis, is a systems-

biology tool that aids interpretation of gene lists, like those generated from GWAS, to 

determine whether particular biosystems or biological pathways (cascades of actions or 

interactions among molecules that lead to assembly of proteins, fats, or other changes like 

gene expression and cell movement) include a statistically significant proportion of genes on 

the target list. These analyses provide a broader picture of the biological systems in which 

genes (e.g., that have been empirically linked to puberty) operate, and has been used to 

generate hypotheses about how specific genes are related to puberty phenotypes (Cousminer 

et al., 2013; Zhu et al., 2010).

Nonetheless, much of the work on the genetics of puberty has focused on one sex (most 

often females) and been conducted within ethnicity (most often Caucasian). Consequently, 

even these ‘best’ estimates may not be as robust in populations with high racial/ethnic 

diversity (Cousminer, Widen, & Palmert, 2016). In addition, sex specificity has been 

reported, such that signals identified in females may have greater or lesser effect in males. 

Indeed, genome-wide association studies have identified only a few loci that contribute to 

pubertal timing in males, and with fewer signals (Cousminer et al.,2016). Many promising 

paths of inquiry are suggested by such sex specific genetic variability in pubertal timing and 

tempo, and in differential sensitivity to rearing conditions. For instance, the exact primary 

mechanisms that underlie activation of HPG axis maturation and regulate the onset of 

puberty remain to be discovered, although recent discoveries about the role of epigenetic 

mechanisms (Messina et al., 2016) and the nature of neuroendocrine regulation are taking us 

closer. Further investigation of the maturation of GnRH secretion and pituitary 

responsiveness is vital to understanding the mechanisms of the wide spectrum of pubertal 

development.

Less than five years ago, little was known about the role of epigenetic mechanisms in the 

development of neuroendocrine reproductive function. The availability and affordability of 

epigenetic assays allow for the examination of specific molecular mechanisms linking 

genetic and environmental influences to pubertal maturation. As reviewed above and 

elsewhere in this issue (Aylwin et al., 2019), identification of epigenetic and other non-

genomic mechanisms is delineating how environmental and metabolicfactors act as crucial 

regulators of the HPG axis including the timing and initiation of puberty. application of 

epigenetics to puberty continues to expand, we will gain insight into tissue- and timing-

specific mechanisms contributing to normative and abnormal variations in pubertal 

maturation. Here again, biomarkers will be useful in elucidating intricate person-context 

dynamics across development and leveraging predictive and real-time interventions to 

enhance pubertal outcomes.

Summary: methodological advances.—In sum, although accumulated data focused 

on the reproductive neuroendocrine system provide opportunities for collaborative 
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approaches and the application of new analytical techniques discussed elsewhere in this 

issue (Aylwin et al., 2019; Susman et al., 2019), additional biomarkers can more expansively 

map the multiple and interactive actions of biological systems that influence puberty. 

Puberty research in recent decades has concentrated on GnRH and sex steroids, using both 

animal and human models to articulate the role of the endocrine system in puberty, and on 

improving our statistical methods of longitudinally quantifying the pubertal process. 

However, as demonstrated by the advances in our understanding of the genetics of puberty in 

the field of statistical genetics, adopting a systems biology approach is necessary to parse the 

complex interactions of genes, cells, tissues and organs involved in puberty. Additionally, 

extant and emerging arrays of biomarkers and functional measures suited to ambulatory 

application in everyday settings offer tremendous potential for research that integrates 

biological processes with cognition, affect, behavior, and context across time and space 

(Baum et al., 2014; McDade et al., 2007; Shiffman et al., 2008). Such capabilities are 

especially valuable for expanding research on puberty to more geographically and culturally 

diverse populations, a need discussed in the next section.

Puberty in Global Context

These are exciting times in developmental science, when empirical, conceptual, and 

methodological advances greatly have expanded knowledge about ontogeny itself, resolving 

entrenched debates and challenging or modifying established views in the process. Old 

nature-nurture distinctions have receded, as evidence at many levels of granularity-from 

molecular to evolutionary-points to mutual interdependence of biological and contextual 

sources of information throughout development and across generations. Such foundational 

insights have fueled surging attention to supporting youth strengths and needs across the 

globe (UNICEF, 2011; WHO, 2001), and to bringing developmental science into 

conversation with global health and policy actors to inform this enterprise (Patton et al., 

2016; Sawyer et al., 2012). Advances in adolescent health and survival have not matched the 

great gains realized for infants and children, even as those gains have increased the numbers 

surviving to the second decade (Hill, Zimmerman, & Jamison, 2015; UNICEF, 2012). 

Adolescents’ welfare is in everyone’s interest (Kleinert & Horton, 2016), but neglect of their 

needs arises from relatively low mortality risk in this period although it is known to harbor 

the roots of long-term chronic diseases. Moreover, ascendant challenges to adolescent health 

differ from those encountered earlier in life, and involve sexual and reproductive risk, mental 

illness, injury, and lifestyle formation (Mokdad et al., 2016). Recent insights in pubertal and 

adolescent development offer translational opportunities to more effectively address 

adolescent health needs (Patton et al., 2016).

Other considerations spur the drive for global action: these also are challenging times for 

youth. Rapidly shifting geopolitical, climatic, demographic, and global economic conditions 

challenge youth’s crucial project of life construction (UNICEF, 2012; Worthman, 2011). 

Macro-level forces shape the landscapes that adolescents must navigate to build their lives, 

raising an imperative for large societal discussion and action within and among nations to 

negotiate societal goals and opportunities with individual youth interests and needs. Many 

forces have converged to urge the importance of attending to adolescence: as the drive 

moves forward, we point to three significant knowledge gaps that merit attention: cultural 
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factors, the impact of “mismatch” in maturational components of puberty, and 

multidimensional studies of puberty embedded in the broader social context.

The first concerns integration of cultural factors in studies of puberty and adolescent 

development. We have emphasized the need for systematic incorporation of biomarkers in 

longitudinal population studies of puberty, and pointed to the many advances made by doing 

so in psychobehavioral research. Expansion of research on puberty and its relationships with 

psychobehavioral development to a wider range of cultural contexts within and across 

societies is needed and feasible. Development of field-friendly sampling methods has 

facilitated inclusion of biomarkers in large scale international programs such as the 

Demographic and Health Surveys (Garrett, Sangha, Kothari, & Boyle, 2011; McDade et al., 

2007). Biomarkers have been incorporated extensively by anthropologists for population 

research in non-western settings (Gurven et al., 2017; Leonard et al., 2015; Worthman & 

Panter-Brick, 2008), including in large birth cohort studies (Bui et al., 2012; Gettler, 

McDade, & Kuzawa, 2011; Kuzawa, Gettler, Muller, McDade, & Feranil, 2009; McDade et 

al., 2017). Nevertheless, our present understanding of human development-both biological 

and psychobehavioral-is recognized as limited by reliance on a narrow sampling from the 

wide sociocultural diversity that humans inhabit. This is particularly true of puberty and 

adolescence in the contextualized body-brain-psychosocial sense as they are now 

understood. Given what has been learned about the significance of spatiotemporal contexts, 

priority among developmental scientists should be given to tapping strategically the 

enormous human diversity to understand its correlates in puberty, beyond mere timing of 

menarche or height gain.

Second, evidence is needed about the impact of “mismatch” brought on by shifting 

schedules in components of maturation in puberty, particularly in view of dramatic secular 

trends to faster growth and earlier puberty even as rising bars for adult independence delay 

attainment of social maturity (McCarthy, 2013; Sawyer et al., 2012). Asynchrony among 

elements of brain maturation have been proposed as grounds for rising rates of mental 

disorders beginning at puberty (Paus et al., 2008), but inquiry into patent questions about the 

extent and possible effects of asynchrony among physical, psychobehavioral, and social 

maturational schedules has been largely focused on studies of effects of early vs. late 

puberty on behavior and attainment within western populations (Angold, Costello, & 

Worthman, 1998; Keenan et al., 2014; reviewed in Dorn & Biro, 2011; Marceau et. al., 

2011). The very social and technical advances that brought about improvements in nutrition 

and health that, in turn, prompted earlier onset of puberty, also occurred alongside 

demographic, economic, and educational changes that have altered cultural maps for the life 

course including adolescence. Social scripts for the transition to adulthood have both 

changed and become less orderly (Furstenberg, 2013). Very few studies have integrated 

biological, behavioral, and cultural factors in the study of puberty and adolescence in non-

western settings (Worthman, 1993), though a growing number comes from western 

populations (Sweet, 2010; Telzer, Fuligni, & Galván, 2016).

Third, multidimensional studies of puberty are needed which probe the impact on youth of 

social systemic forces such as socioeconomic inequality. We have seen that recognition of 

the powerful role of context in trajectories and outcomes of development is one of the great 
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advances in developmental science. Indeed, growth rates and timing of maturation have 

come to be regarded as indicators of environmental quality, even across generations 

(Perkins, Subramanian, Davey Smith, & Ozaltin,2016). Key ingredients of environmental 

quality comprise not only access to material resources or exposure to insults, but also 

availability of social-emotional resources and societal affordances and opportunities. 

Differential distribution of important affordances or challenges becomes embodied through 

developmental processes, leading to disparities in capability, function, and health (Hertzman 

& Boyce, 2010; Nussbaum, 2011). The wealth of global data on factors influencing child 

growth, maturation, and health is not matched by similarly robust data on issues heavily 

explored in postindustrial settings, such as pathways to differential vulnerability to stress and 

its long-term outcomes in areas of well-being, function, resilience, and health. As a recent 

review observed: “The health of adolescents is strongly affected by social factors at 

personal, family, community, and national levels.” (Viner et al., 2012, p. 1641). But health is 

not the only or necessarily the most important outcome from puberty; rather, others such as 

ability to achieve personal and socially desirable goals, or a sense of meaning and value, 

may be significant (Petersen, Koller, Motti-Stefanidi, & Verma, 2017; Worthman, 2011).

In sum, we have discussed key theoretical and methodological advances in puberty research, 

and the importance of continued growth in these areas combined with inclusion of diversity 

in a global context. We have argued that puberty is a multidimensional interacting suite of 

maturational processes in body, brain, and socioemotional capacities that is important at the 

individual level, for example, in shaping the likelihood of realizing full potential and the 

capacity to capitalize on developmental gains, and at a very broad social level, with 

implications for improving adolescent morbidity and mortality, and economic conditions. 

Theoretical and conceptual advances bridging the levels of physiology, individual, and 

population have been supported by concurrent methodological advances in use of 

biomarkers from multiple coordinated biological systems, and ever-growing computational 

capacities mapped onto developmental and systems biology approaches. As developmental 

science related to puberty continues to advance, we challenge researchers to take and expand 

the examples of integrative conceptual models and new and ever-evolving technological 

advances to a wider range of cultural contexts. Integrated study of biological, 

psychobehavioral, and contextual dynamics in puberty and adolescence offers tremendous 

opportunity to tackle these issues at a pivotal, and hence highly informative, point in the life 

cycle. Skillful application of insights and methods from developmental science to investigate 

these important dynamics in diverse sociocultural settings will advance capacity to promote 

both well-being and health, and will require continued expansion of multi-national, multi-

ethnic human capital and interdisciplinary collaboration.
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