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Abstract
Epigenetic modifications play critical roles in modulating gene expression, yet their roles in regulatory networks in human
cell lines remain poorly characterized. We integrated multiomics data to construct directed regulatory networks with nodes
and edges labeled with chromatin states in human cell lines. We observed extensive association of diverse chromatin states
and network motifs. The gene expression analysis showed that diverse chromatin states of coherent type-1 feedforward loop
(C1-FFL) and incoherent type-1 feedforward loops (I1-FFL) contributed to the dynamic expression patterns of targets.
Notably, diverse chromatin state compositions could help C1- or I1-FFL to control a large number of distinct biological
functions in human cell lines, such as four different types of chromatin state compositions cooperating with K562-associated
C1-FFLs controlling “regulation of cytokinesis,” “G1/S transition of mitotic cell cycle,” “DNA recombination,” and
“telomere maintenance,” respectively. Remarkably, we identified six chromatin state-marked C1-FFL instances (HCFC1-
NFYA-ABL1, THAP1-USF1-BRCA2, ZNF263-USF1-UBA52, MYC-ATF1-UBA52, ELK1-EGR1-CCT4, and YY1-
EGR1-INO80C) could act as prognostic biomarkers of acute myelogenous leukemia though influencing cancer-related
biological functions, such as cell proliferation, telomere maintenance, and DNA recombination. Our results will provide
novel insight for better understanding of chromatin state-mediated gene regulation and facilitate the identification of novel
diagnostic and therapeutic biomarkers of human cancers.

Introduction

A variety of posttranslation modifications of histones were
reported including histone acetylation and methylation.
Aberrant histone modification patterns during tumorigenesis
frequently occurred and could trigger pathogenic mis-
regulation of gene expression or genome instability [1]. For
example, H3 lysine 9 methyltransferases induces the
deposition of H3 lysine 9 trimethylation which is a mark
associated with transcriptional repression. H3 lysine 36
dimethylation is associated with increased transcription by
counteracting PRC2-dependent histone H3 lysine 27 tri-
methylation (H3K27me3). Likewise, the acetyltransferase
can bind to promoter regions or distal enhancer elements to
activate gene expression. Histone demethylase LSD1 can
remove enhancer-specific histone H3 mono- and di-
methylation on lysine 4 (H3K4me1 and H3K4me2) which
in turn decreases enhancer activity. Combinations of histone
modifications (acetylation or methylation) could defined
open or closed chromatin states which provide information
about the transcriptional activity and regulatory element
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function of the associated DNA across human genome
[2, 3]. In addition, emerging evidence implicated that the
levels of histone modifications changed dynamically across
different human cell types and disease status [1]. The epi-
genetic regulators such as “writers” and “erasers” of epi-
genetic marks were highly mutated in human cancer. Thus,
aberrant histone modification patterns during tumorigenesis
frequently occurred and could trigger pathogenic mis-
regulation of gene expression or genome instability.

Network motifs, as building blocks of complex net-
works, provide a unifying language to describe regulatory
networks [4]. They can perform various computational tasks
and biological information processing in biological network
[5], and have architecture-dependent responses to internal or
external regulation signals, which offer dynamic behaviors
underlie a specific cellular state [6]. One of the most well-
studied motifs is feedforward loops (FFLs) in which a
transcription factor (TF) A regulates another one B, and
both jointly regulate a gene C. The coherent type-1 FFL
(C1-FFL) and the incoherent type-1 FFL (I1-FFL) fre-
quently occur in the biological networks. In the C1-FFL, a
TF A activates another TF B and gene C, and TF B activates
gene C. In the I1-FFL, the two arms of the FFL act in
opposition: TF A activates gene C, but also represses gene
C by activating the repressor TF B.

FFL motif is a best design for signal transduction
because it excels in the noise-reduction function [7]. Living
organisms could utilize FFLs for better survival in fluctu-
ating environments [8]. C1-FFL is capable of filtering noise
asymmetrically to have a precise and robust phenotype of a
particular trait (or cellular function) [9]. I1-FFL, as a noise-
buffering motif, can facilitate adaptive tuning of gene
expression through modulation of TF binding affinities [10].
FFLs are involved in many important biological processes.
For example, a positive FFL IL-6/JAK/Stat3, in which IL-6
activates JAK and STAT3 was involved in tumor prolifera-
tion, tumor microenvironment shaping, and metastasis [11].
Disruption of STAT3 can promote the apoptosis in human
cancer cells.

The close cooperation between TF regulations and
chromatin modifications gives rise to an interesting question
—how regulatory network collaborate with multiple chro-
matin states for controlling gene expression. To address this
question, we collected 269 ChIP-seq data including 140 TFs
and genome-wide chromatin states across human cell lines,
and then constructed directed regulatory networks with
nodes and edges labeled with multiple chromatin states. We
characterized the association of diverse chromatin states and
network motifs. Diverse chromatin states compositions of
targets in C1-FFL or I1-FFL control a large number of
distinct biological functions. Furthermore, we identified six
chromatin state-marked C1-FFL instances that could act as
prognostic biomarkers of acute myelogenous leukemia

(LAML). Our results suggest that multiple chromatin states
play crucial roles in controlling distinct biological functions
of regulatory networks and the modified FFLs could serve
as important prognostic biomarkers in human cancers.

Results

Integrating directed regulatory networks and
chromatin states

By integrating multiomics data of embryonic stem cells
(H1-hESC), lymphoblastoid (GM12878), myelogenous
leukemia (K562), and hepatocellular carcinoma (HepG2),
we constructed chromatin state-marked transcriptional reg-
ulatory network, in which nodes and edges were assigned
with specific chromatin states in each of the four cell lines.
In the directed transcriptional regulatory network, there are
15 types of chromatin states of genes, which are defined by
combinations of histone marks (acetylation or methylation).
For example, the active/weak promoter state is character-
ized by combinations of active epigenetic marks, such as
H3K4me2, H3K4me3 and H3K9ac, poised promoter state
by both active mark H3K4me3 and repressed mark
H3K27me3. The strong/weak enhancer state is character-
ized by combinations of H3K4me1 and H3K27ac. Different
chromatin states provide the central role of chromatin in
mediating regulatory signals and controlling DNA access.
The number of regulatory interactions ranged from 113,468
to 188,148 in the four cell lines (Fig. 1a).

We found that regulators and targets within regulatory
networks showed diverse chromatin states, reflecting their
active or repressed states. Apart from the active promoters,
a number of repressed states of genes present in regulatory
networks were also observed (Fig. 1b). One possible
explanation is that TF binding is required for hetero-
chromatin formation [12]. However, the promoters of genes
not connected to regulatory networks are highly enriched
for silent chromatin states (e.g., heterochromatin state).
Only a few chromatin states were represented on local TF
binding sites (TFBSs), primarily focusing on active and
weak promoter states as well as a minority of enhancer
states (Fig. 1c).

Characterizing diverse chromatin states of network
motifs

To gain insights into dynamic association between chro-
matin states and regulatory networks, we sought to sys-
tematically search for three-node motifs by taking into
account both the network topological structures and chro-
matin states of nodes and edges. Comparing with random
networks, we determined the over-represented association
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between three-node motifs and gene chromatin states,
which were defined as chromatin state-marked network
motifs. We found a large number of network motifs marked
by diverse chromatin state compositions in the four cell
types, including 10,974 in H1, 6,918 in GM12878, 11,340
in K562, and 7349 in HepG2, referring to a total of eighteen
types of motif structures (Fig. 2a). We observed that the
single-input module circuits were connected with a large
cluster of chromatin state compositions (Fig. 2b). FFLs, one
of the most important network motifs, also marked by
diverse chromatin states and were consistently present in all
of these cell lines, especially the C1-FFL and I1-FFL. For
instance, in GM12878, C1-FFLs cooperated with six kinds
of chromatin state compositions were significantly enriched
(Fig. 2c). For example, an active promoter state-marked C1-
FFL (Fig. 2c) represents that each of three nodes is both
marked by active promoter state which defined by

combinations of high level of H3K4me2, H3K4me3, and
H3K9ac. Active promoter chromatin state represents open
chromatin conformation and high DNA accessibility, which
in turn facilitate TF binding and activates gene expression
[13]. Thus, chromatin state of genes could help FFL motif to
precise control gene expression, signal transduction and
biological information-processing functions. Our results
underline the extensive association between chromatin states
and regulatory networks, suggesting that only focusing on
network structures are not enough to uncover complex
regulation principles underlying expression dynamics.

Diverse chromatin states influencing target
expression in FFLs

We analyzed expression levels of target genes in FFL
instances labeled with diverse chromatin states.

Fig. 1 Directed regulatory
networks and their chromatin
states in four cell lines. a The
numbers of regulatory
interactions and transcription
factors from ChIP-seq in four
cell types. b Fifteen chromatin
states used in this study from
Ernst et al. The distributions of
chromatin states for gene
promoters (c) and TFBSs (d).
Colors represent different
cell lines
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Interestingly, a dynamic expression change of target genes
modified by diverse chromatin states is observed in most
cell lines, even those sharing the same motif structure (Fig.
3a). For example, the promoters of TAF1 and SMC3 (active
state) are marked by active epigenetic marks H3K4me3 and
H3K27ac and showed high-level expression of TAF1 and
SMC3. TAF1 and SMC3 together regulate two targets
UQCRH (active state) and C3orf33 (weak active state)
forming two C1-FFL (Fig. 3b). Especially, a range from 2.9
to 458.8 FPKM were observed in 69 types of chromatin
state compositions which significantly modified the C1-FFL

in K562. We found significant expression differences
between diverse chromatin state compositions associated
with C1-FFL in K562 (Fig. 3c). Furthermore, chromatin
state alterations at different positions of FFLs can lead to
expression differences rather than just epigenetic states of
target genes (Fig. 3d). The UQCRH showed enrichment of
H3K27ac and H3K4me3 marks and high-level expression.
The decreased active epigenetic marks of C3orf33 sig-
nificantly decreased its expression (Fig. 4a). In K562,
“active promoter” and “strong enhancer” states occurred at
top and intermediate positions of C1-FLL had significantly

Fig. 2 Characterizing diverse chromatin states of network motifs. a
Significant association between chromatin state compositions and total
eighteen types of motifs in four cell lines. Different colors indicate
fifteen chromatin states used in this study from Ernst et al. b The

numbers of chromatin state compositions associated with a particular
motif. c Six kinds of enriched chromatin state-modified C1-FFL motifs
in GM12878. The colors of nodes indicate the chromatin states of
corresponding genes
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different expression of target genes. These observations
highlight the importance of diverse chromatin states in FFLs
to finely regulate expression of target genes.

Functions and prognostic utility of FFLs marked by
diverse chromatin states

We were interested in determining whether diverse chro-
matin states were frequently used by different motifs in a
given cell line. For each over-represented motif structure,
the top five state compositions were used to display the
usage of chromatin states across different motif structures.
We found that different types of motifs were associated with
diverse chromatin states and a few state compositions
shared by multiple motifs in each cell line (Fig. 4b).

The diverse chromatin states gives rise to an important
question, that is, why different chromatin states are required
for a given motif in human cell lines. To solve this problem,

we performed functional enrichment analysis using targets
of FFL with a specific chromatin state composition in the
four cell types. We found that these targets were sig-
nificantly enriched in many important biological functions,
such as cell cycle checkpoint, DNA repair and regulation of
telomere maintenance (Fig. 5a for C1-FFL; Fig. 5b for I1-
FFL). Notably, diverse chromatin state compositions of
targets in C1-FFL or I1-FFL contributed to a large number
of distinct biological functions in human cell lines. For
instance, in GM12878, “active promoter” states linking
with C1-FFL control biological functions associated with
DNA replication and DNA repair, however, another chro-
matin state composition (top position with “active pro-
moter” state, intermediate- and bottom positions with
“transcription elongation” states) was related to autopha-
gosome maturation (Fig. 5a). Five types of chromatin state
compositions modifying H1-associated I1-FFL were related
to different biological functions, such as DNA repair, cycle

Fig. 3 Diverse chromatin states influencing target expression in FFLs.
a The mean expression levels of targets in C1-FFL (blue) or I1-FFL
(red) marked by different chromatin states in four cell lines. b
Examples of different chromatin states at bottom position of C1-FFL
can lead to expression differences of target genes. c Significant

expression differences of targets between different chromatin state
compositions associated with C1-FFL in K562 using Wilcoxon’s rank
sum test. d Examples of different chromatin states at different posi-
tions of C1-FFL can lead to expression differences of target genes
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checkpoint, protein location to organelle, regulation of
signal transduction by p53 class mediator and regulation of
RNA export from nucleus, respectively (Fig. 5b).

Notably, diverse chromatin states seem to be associated
with distinct biological functions. Importantly, these func-
tions are related to specific cellular context (Fig. 6a). As an
example, H1-associated C1-FFL (TAF7-ZNF143-PRMT5)
marked by “active promoter” states in which TAF7 together
with ZNF143 regulate protein arginine PRMT5 contributing
to functions associated with the self-renew of stem cell,
such as regulation of cell cycle process (Fig. 6a, b). PRMT5
acting as a epigenetic regulator is required for human
embryonic stem cell proliferation [14]. Inhibition of
methyltransferase PRMT5 suppresses self-renewal of
human leukemia stem cells [15]. Two H1-associated I1-
FFLs (CREB1-MXI1-CDK2 and CREB1-MXI1-MAPK1)
marked by “active promoter” (top), “poised promoter,”
(intermediate) and “active promoter” (bottom) which, cap-
tured functions associated with DNA repair and telomere
maintenance (Fig. 5a, b). The CDK2 plays an important role
in DNA damage response in human embryonic stem cells
[16]. The “poised promoter” of MXI1 which is a negative
regulator of cell cycle leads to its reduced expression level
and in turn releases MXI1-mediated inhibition of CDK2 and

mitogen-activated protein kinase 1 (MAPK1). Telomere
maintenance is associated with stem cell renewal. In parti-
cular, it is consistent with essential roles of the “poised
promoter” state in stem cell maintenance and subsequent
differentiation [17]. In GM12878, PAX5 (“active pro-
moter”) and ELF1 (“weak transcribed”) together regulated
downstream target TECPR1 (“weak transcribed”) forming a
C1-FFL (PAX5-ELF1-TECPR1) which mediated autopha-
gosome maturation (Fig. 6a, b). Two HepG2-associated C1-
FFLs (FOSL2-GABPA-WRAP53 and FOSL2-GABPA-
CD46) marked by “active promoter” states of FOSL2,
GABPA and WRAP53, a weak transcribed state of CD46
controlling telomere maintenance and viral life cycle,
respectively. WRAP53, a novel regulator of p53, promotes
cancer cell survival and is a potential target for cancer
therapy [18]. Hepatitis B virus infection is one of major
viral risk factors for hepatocellular carcinoma [19]. CD46
acting as a complement regulatory protein contribute to
escape of hepatoma cells from complement-dependent
cytotoxicity [20]. Another example C1-FFL (CHD2-
TAF1-MAD2L1) marked by an “active promoter” state of
CHD2, a “weak/poised enhancer” state of TAF1 and an
“active promoter” of mitotic arrest deficient 2 (MAD2L1)
controlling cycle cell checkpoint [21].

Fig. 4 Diverse chromatin states influencing target expression and
functions of FFLs. a The distribution of gene expression, chromatin
state, and histone modifications of gene promoters in GM12878. b The

distribution of the top five chromatin state compositions with the
highest frequency across different types of motifs in each cell line
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More importantly, we try to identify prognostic bio-
markers in terms of chromatin state-marked network motifs
in human cancers. K562-associated FFLs marked by diverse
chromatin states were used to divide patients with LAML
into high-risk and low-risk groups. We found that six K562-
associated FFLs marked by diverse chromatin states could
distinguish the LAML patients with different survival times
(Fig. 6c and Table 1). For example, two K562-associated
C1-FFLs (HCFC1-NFYA-ABL1 and THAP1-USF1-BRCA2)
marked by “active promoter” states captured functions
associated with nuclear division and regulation of cytokin-
esis, respectively (Fig. 5a, b). Mutations of HCFC1 gene are
frequently observed in individuals with LAML [22]. NFYA
could promote self-renewal of hematopoietic stem cell and
inhibition of NFYA expression could hinder the progression
of endometrial cancer [23]. Fusion of ABL1 to BCR/TEL/
NUP214 is observed in a large number of leukemia patients
and allosteric stimulation of the normal ABL1 kinase
activity enhanced the antileukemia effect of ABL1 tyrosine
kinase inhibitors [24]. Low expression of HCFC1-NFYA-
ABL1 correlated with patient’s poor prognosis (P-value=
5.2e−3, log-rank test, Fig. 6c). THAP1, a gene encoding a
nuclear proapoptotic protein, could induce cellular apopto-
sis in acute lymphoblastic leukemia cells [25]. Tumor
suppressor protein BRCA2 paly important role in DNA
double-strand break repair. BRCA2 deficiency may pre-
dispose leukemia cells to synthetic lethality triggered by
PARP1 inhibitors [26]. High expression of THAP1-USF1-
BRCA2 correlated with patient’s poor prognosis (P-value=

7.4e−3, Fig. 6c). Likewise, the expression of two K562-
associated C1-FFLs (ZNF263-USF1-UBA52 and MYC-
ATF1-UBA52) was positively associated with the longer
overall survival of AML patients (P-value= 9.5e−3 and
9.4e−3, respectively, Fig. 6c). Both of these FFLs were
associated with G1/S transition of mitotic cell cycle in
which top and intermediate TFs were associated with
“active promoter” states and bottom target with a “tran-
scriptional elongation” state. Oncoprotein MYC is required
for chronic myelogenous leukemia progression [27].
Another example was DNA recombination-associated CI-
FFL YY1-EGR1-INO80C in which YY1 with a “weak pro-
moter” state directly binds to the EGR1 promoter with an
“active promoter” state for its transactivation. Both of them
regulate INO80C, a subunit of chromatin remodeling
complex (INO80 complex) showing a “weak transcribed”
state, forming a C1-FFL controlling DNA recombination in
K562. Low expression of YY1-EGR1-INO80C was sig-
nificantly correlated with AML patient’s poor prognosis
(P-value= 0.02, Fig. 5c). ELK1 (Transcriptional transition)
induced and rapidly regulate EGR1 transcription (active
promoter) [28], both together induced downstream target
CCT4 (strong enhancer) forming a C1-FFL in K562 (ELK1-
EGR1-CCT4), which mediated positive regulation of telo-
mere maintenance. ELK1 could promote osteosarcoma
progression by the inactivating Hippo pathway [29]. Loss of
EGR1 in cooperation with TP53 and APC loss could result
in myeloid neoplasms [30]. Amplification of CCT4 gene
were detected in clinical lung cancer cases and associated

Fig. 5 Revealing functions of FFLs marked by diverse chromatin states. The significantly enriched biological processes using target genes of C1-
FFL (a) and I1-FFLs (b) marked by diverse chromatin states in four cell types
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with decreased survival [31]. The low expression of a C1-
FFL (ELK1-EGR1-CCT4) correlated with patient’s poor
prognosis (P-value= 9.9e−3, log-rank test, Fig. 6c). The
chromatin state-marked FFL is involved in a mechanism
that maintains the length and integrity of telomeres which as
an independent prognostic factor in chronic lymphocytic
leukemia [32]. It is consistent with previous results that
telomere maintenance can act as a target for anticancer drug
discovery and its disruption triggers cell death [33]. These
observations suggest different chromatin states could
modulate TF binding and help FFL motif to precise control
gene expression and distinct functions. We identified six
chromatin state-marked FFLs which could act as indepen-
dent prognostic factors of leukemia. These chromatin state-
marked FFL circuit play key roles in identifying prognostic

biomarkers and understanding underlying mechanism for
the pathogenesis of human cancers.

Discussion

We constructed regulatory networks labeled with chromatin
states in human cell lines and performed a systemic analysis
of network motifs marked by chromatin states. We found
that dynamic association between diverse chromatin states
and network motifs. Diverse chromatin states could help
regulatory network to control distinct biological functions
that are essential for cell identity in human cell lines.
Notably, we identified six chromatin state-marked FFL
signatures as network-based prognostic biomarkers in
LAML. The detection of FFL motifs will help

Fig. 6 Diverse chromatin states contributing to distinct functions and
prognosis. a The examples of GO biological functions (left) sig-
nificantly enriched by FFL targets, which are marked by diverse
chromatin states (right). b Examples of FFL instances marked by a
specific chromatin state composition and their associated biological
functions. c Kaplan–Meier survival plots of overall survival using

K562-associated C1-FFL instances. AML patients were divided into
two groups according to the median of a linear combination of
expression values of three node in FFLs. Group 1 (yellow curve) and
group 2 (blue curve) indicate the high and low expression of an FFL,
respectively
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understanding the mechanism of transcriptional regulation
and network evolution [34]. Previous Studies showed that
FFL motif may represent evolutionary conserved topologi-
cal units of cellular network and exhibited high frequencies
and conserved across mouse and human cell/tissue type
regulatory networks as well as dominance networks from
data published over the past 80 years [35–38]. Recently,
ConsHMM, an extesion of ChromHMM, is presented to
define de novo “conservation states” based on the combi-
natorial and spatial patterns of a multiple species DNA
sequence alignment [39]. Analysis of relationship of con-
servation states to chromatin states showed that almost all of
chromatin states were enriched for at least one of con-
servation states [39], suggesting a high evolutionary con-
servation of chromatin states. Therefore, it is important to
analyze the evolutionary conservation of chromatin state-
marked FFL motifs in human diseases. Our approach
depends on multi-dimensional data availability including
gene expression, chromatin states, TFs Chip-seq and clin-
ical data to identify prognostic chromatin state-marked FFL
biomarkers. However, the lack of large-scale multi-
dimensional omics and clinical data of human cancers limits
the analysis of evolutionary conservation of chromatin
state-marked FFL motifs. As more large-scale multi-
dimensional omics and clinical data of human cancers
become available, it could further improve robustness and
predictive capacities and extend the application of our
approach.

In addition, in order to validate the stability of positive or
negative relationships between TFs and their targets,
Spearman’s rank correlation coefficient is calculated
between a TF and a target using Human Body Map 2.0
Project RNA-seq data for 16 different human tissues. As a
comparison, we found a high consistency between the
results from the Spearman’s rank correlation coefficient and
those from Pearson correlation coefficient (PCC), with an
average of 82.6% (82.2% for H1, 82.8% for GM12878
81.3% for HepG2, and 84.0% for K562). Furthermore, in
order to validate the effectiveness of the method, we used
the FANMOD approach [40], a tool for colored motif
detection in colored networks, to re-search the association
between network motifs and chromatin states. In order to
compare with the FANMOD approach, we removed chro-
matin states of edges from the directed regulatory networks
and then used FANMOD to re-search the association
between network motifs and chromatin states using the
same thresholds. As a comparison, we found a high con-
sistency between the results from the FANMOD approach
and those from our method, with an average of 84.64%
(100% for H1, 83.33% for GM12878, 70.59% for K562).

We systematically examined the association between
epigenetic regulation and transcriptional regulation in
human cell lines. Our results underline important roles ofTa
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diverse chromatin states in fine regulation of gene expres-
sion and distinct biological functions. Remarkably, we
identified six chromatin state-marked FFLs acting as
important prognostic biomarkers of LAML. Chromatin
state-mediated FFLs will provide novel insight for the
identification of novel diagnostic and therapeutic bio-
markers of human cancers.

Materials and methods

Data sets

ChIP-seq dataset: we obtained 269 ChIP-seq data sets
referring to 140 TFs in H1, GM12878, K562, and HepG2
from ENCODE (GSE32465 and GSE31477) [41]. Reads
from TF ChIP-seq data were aligned to hg19/GRCh37
assembly of the human genome using Bowtie2 (version
2.2.3) [42] allowing up to two mismatches. Only uniquely
mapping reads were retained and multiply mapping reads
were discarded. The MACS2 [43] peak caller was used to
compare ChIP-seq signal with a corresponding whole cell
extract sequenced control to identify regions of ChIP-seq
enrichment (peaks) at the threshold of P < 10−5 [44].
MACS2 can identify peaks from ChIP-seq data and reports
the summits of peaks (±20 bp) as TFBSs [45].

DNase-seq dataset: for each of these cell lines, sequence
reads of DNaseI-seq experiments from ENCODE Project
Consortium [41] were mapped to human reference genome
versions of hg19/GRCh37 using the Bowtie aligner,
allowing a maximum of two mismatches. Only reads
mapping uniquely to the genome were used in the analyses.
DNaseI hypersensitive sites (DHSs), which provide infor-
mation about which regions of a promoter have open
chromatin [46], were identified using the Hotspot algorithm
at an false positive rate (FDR) of 1% [47], and were
downloaded from the UCSC genome browser.

RNA-seq dataset: we extracted whole cell long polyA-
selected RNA-seq data sets from ENCODE (GSE26284)
[41]. Moreover, RNA-seq data sets of 16 human tissues
(adipose, adrenal, brain, breast, colon, heart, kidney, liver,
lung, lymph node, ovary, prostate, skeletal muscle, testes,
thyroid, and white blood cells) were extracted from Human
Body Map 2.0 Project (GSE30611; 50-nt paired end reads,
2018) [48]. In RNA-seq analyses, the raw reads were
aligned using the TopHat (version 2.0.11) to the human
reference genome (hg19/GRCh37), allowing a total of two
mismatches [49]. Fragments per kilobase of exon per mil-
lion mapped reads (FPKM) of gene-level expression of
UCSC known genes were calculated using Cufflinks (ver-
sion 2.2.1) [48]. FPKM method can provide a length and
depth normalization to permit both within-sample and
cross-sample comparisons [50].

Constructing directed regulatory networks in
human cell lines

Identifying TF-gene regulatory interactions

UCSC hg19 Known Gene annotation and 3 kb promoters
(2.5-kb upstream to 0.5-kb downstream) were used [51].
For each cell type, a gene was considered a target of a TF if
it had at least one TFBS in its promoter region that over-
lapped with a DHS by at least one base pair [52]. By
combining regulatory interaction between TFs and targets, a
TF-gene regulatory network in a particular cell line was
established.

Determining positive or negative relationships between TFs
and their targets

PCC was calculated between a TF and a target using Human
Body Map 2.0 Project RNA-seq data for 16 different human
tissues. Positive relationships between a TF and their targets
were determined by positive PCCs, and vice versa [53].

Identifying chromatin states of gene promoters and TFBS

We obtained genome-wide 15 types of chromatin states
based on recurrent combinations of histone marks using a
multivariate Hidden Markov Model (HMM) for these four
cell lines from UCSC genome browser [3]. Firstly, chro-
matin states associated with a specific gene promoter are
obtained using genome-scan method according to the
chromosome and the position on the chromosome. Sec-
ondly, in order to determine which chromatin state is the
most associated to the specific gene, the fold enrichment
method was used [54]. In detail, the enrichment score S of a
type of chromatin state s on a given region (such as a
promoter or a TFBS) was calculated by: S ¼ rs

n =
cs
t . Where rs

represents the number of bases in a given region over-
lapping with a specific chromatin state s (s in 1:15), n
represents the number of bases in the region, cs represents
the total number of bases of the chromatin state s and t
represents the total number of bases of all chromatin states.
A chromatin state with the highest enrichment score was
selected as the chromatin state of a promoter or a
TFBS [54].

Identifying significant association between
chromatin state and network motifs

We mapped the chromatin states of gene promoters and
TFBS to the nodes (i.e., TFs and genes) and edges (i.e., TF-
gene regulatory interactions), respectively, for forming the
directed regulatory network labeled with chromatin states.
In order to identify over-represented chromatin state-
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marked network motifs, frequency of occurrence of a
specific three-node network subgraph in which nodes
marked by specific chromatin states was estimated in the
real network. Next, the randomized networks were used to
calculate the significance level of the specific chromatin
state-marked network subgraph. A degree-preserving ran-
domized network was obtained by swapping edges
between random pairs of nodes 106 times, keeping the same
number of appearances of all two-node subgraphs as in the
real network. It can avoid assigning a high significance to a
network pattern only because it contains a highly sig-
nificant subpattern. We repeated this procedure 1000 times
to generate 1000 randomized networks, and assigned a P-
value to the chromatin state-marked network subgraph as
the fraction of randomized networks that lead to a greater
or equal number of frequency than those observed in the
real network. Besides, z-score was calculated by observed
frequency of the chromatin state-marked subgraph appears
in the network subtracting the mean of its appearances in
the randomized network and dividing by the standard
deviation of its appearances in the randomized network. A
normalized z-score by z-scores normalized to length 1 was
also used for evaluating the significance as previously
proposed [55]. We identified significant association
between chromatin states and network motifs according to
the following criteria: (i) P < 0.01 (ii) normalized z-score >
0 [56]. (iii) The number of the motif appeared in the real
network should not be <500.

Prognosis analysis using FFLs marked by diverse
chromatin states

Gene expression and survival data of 197 patients with
LAML were downloaded from TCGA Data Portal (https://
portal.gdc.cancer.gov/) on January 2015. We assigned each
patient a risk score according to a linear combination of the
expression level of nodes in the FFL instances weighted
equally. Patients with higher risk scores are expected to
have poor survival outcomes. We next divided the LAML
patients into high-risk and low-risk groups using the
median risk scores. The Kaplan–Meier method and log-
rank test were used to evaluate the effect of FFLs on overall
survival.

Functional analysis

We performed functional enrichment analysis based on
Gene Ontology (GO) annotation terms using R package
clusterProfile (version: 2.0.0) [57]. We used enrich GO
function of clusterProfiler to calculate enrichment test for
GO terms based on hypergeometric distribution. The clus-
terProfiler adjust the estimated significance level using

Benjamini–Hochberg method to control the FDR in multi-
ple testing. The adjusted P-value < 0.05 were regarded as
the cutoff criterion for GO enrichment analysis.
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