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Metabolomics-Based Discovery 
of Molecular Signatures for Triple 
Negative Breast Cancer in Asian 
Female Population
Lixian Li1,2,4*, Xiaodong Zheng3,4, Qi Zhou1, Nathaniel Villanueva2, Weiqi Nian1*, 
Xingming Liu1 & Tao Huan   2*

Triple negative breast cancer (TNBC) is a devastating cancer disease characterized by its poor prognosis, 
distinct metastatic patterns, and aggressive biological behavior. Research indicates that the prevalence 
and presentation of TNBC varies among races, with Asian TNBC patients more commonly presenting 
with large invasive tumors, high node positivity, and high histologic grade. In this work, we applied 
ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS)-
based metabolomics to discover metabolic signatures in Asian female TNBC patients. Serum samples 
from 31 TNBC patients and 31 healthy controls (CN) were involved in this study. A total of 2860 
metabolic features were detected in the serum samples. Among them, 77 metabolites, whose levels 
were significantly different between TNBC with CN, were confirmed. Using multivariate statistical 
analysis, literature mining, metabolic network and pathway analysis, we performed an in-depth 
study of the metabolic alterations in the Asian TNBC population. In addition, we discovered a panel 
of metabolic signatures that are highly correlated with the 5-year survival rate of the TNBC patients. 
This metabolomic study provides a better understanding of the metabolic details of TNBC in the Asian 
population.

Among women, breast cancer (BC) is the most common type of cancer and also the 2nd leading cause of death 
worldwide1. BC can be divided into several major subtypes based on conventional immunohistochemistry detec-
tion of hormone receptors, including human estrogen receptor (ER), progesterone receptor (PR), and human 
epidermal growth receptor-2 (HER2). As a highly heterogeneous disease, patients with BC have various morpho-
logical spectrum, clinical presentation, and prognostic outcomes2. Among the various subtypes, triple negative 
breast cancer (TNBC) uniquely lacks expression of all three hormone receptors and accounts for 15–20% of 
the BC cases. TNBC has attracted more attention compared with other BC subtypes as it is typically associ-
ated with high aggression, poor prognosis and a high risk of disease relapse within 5 years following diagnosis3. 
Women with TNBC have a high frequency of metastasis to the lung, liver and brain, and survival is generally 
poor. Another troubling feature associated with the disease is the disparity of presentation and survival compared 
with other ethnicities4–9. It is thus of great demand to study the molecular basis of TNBC in order to guide the 
development of promising drugs and therapies for treatment.

Metabolomics is an emerging technology for health science research, representing a more recent addition to 
the suite of “omics” tools. In particular, mass spectrometry (MS)-based metabolomic analysis enables the most 
comprehensive measurement of metabolites in a given biological system. It is thus a powerful analytical tool to 
identify metabolic biomarkers associated with disease or abnormal phenotypes for clinical applications4. Since 
metabolites are the end products of gene regulatory processes and protein activities, metabolomics has also been 
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widely used to understand metabolic mechanisms underlying disease phenotypes in order to guide the develop-
ment of better therapeutic strategies.

The prevalence of TNBC varies among different races and ethnic groups. For instance, a previous study 
performed in California, USA showed that Asian women have a lower lifetime risk of TNBC than white, 
African-American, and Hispanic counterparts5. Other studies indicate that TNBC among Asians shows trends of 
earlier age of onset and more aggressive biological behavior6–8. The metabolic signatures in TNBC are of critical 
biological importance for both mechanistic research and clinical application. However, most previous studies 
have been conducted in Western populations, and few in Asian populations. We believe that a comprehensive 
metabolomics study of TNBC among Asians would facilitate the discovery of new treatment-dependent metabo-
lites and increase understanding of responses to treatment that occur in TNBC.

In this study, we collected serum samples from 31 TNBC patients and 31 healthy women in southwest China. 
We applied a UHPLC-HRMS platform for global metabolomic profiling, followed by univariate and multivariate 
statistical analyses to identify statistically significant metabolites in TNBC vs. CN. Our study discovered a total of 
77 significantly altered metabolites, covering a wide range of metabolic classes, including lipid, amino acids, and 
carboxylic acids. Comparing to the reported BC metabolomics studies, we identified some consistent metabolic 
changes as well as some unique metabolic changes in Asian female TNBC patients. Finally, from archived prog-
nostic data for the TNBC patients, we identified 6 metabolites that can stratify patients’ 5-year survival rate. This 
work presents the first metabolomics study of TNBC in Asian population, thus serving for a better mechanistic 
understanding of disease progression and prognosis.

Results
Clinical characteristics of subjects.  The study was conducted in accordance with the Declaration of 
Helsinki, and the protocol was approved by the Ethics Committee of Chongqing Cancer Hospital. All experiments 
were performed in strict compliance with the requirements of the Human Ethics Procedures and Guidelines of 
the People’s Republic of China. Serum samples of TNBC patients were collected from hospitalized female patients 
with histopathologically confirmed TNBC at Chongqing Cancer Hospital (China). These patients were enrolled 
in this study from October 2013 to February 2015. Serum samples of the CN group were collected from the age-
matched healthy participant volunteers. All serum samples were collected before any medication and surgery 
towards TNBC. The status of ER, PR and HER2 were negative and the cancers ranged from stages I to III. The 
demographic and clinical characteristics of study participants are shown in Table 1. Detailed clinical parame-
ter for the TNBC patients are presented in Supplementary Table S1. Informed consent and ethical committee 
approval was obtained from every participant.

Metabolomics workflow.  Figure 1 shows the schematic workflow of the global metabolomics study. Serum 
samples were collected from 31 TNBC patients and 31 CN volunteers. Metabolites were extracted from the serum 
samples and analyzed using the UHPLC-HRMS platform. Both electrospray ionization positive (ESI+) and 
negative (ESI−) mode-based MS analyses were performed to achieve comprehensive metabolome profiling of 
the serum samples. After LC-MS analysis, metabolic features were extracted from each individual sample and 
aligned to create a metabolite-intensity table for downstream data interpretation. In total, 2860 metabolic fea-
tures were consistently detected in all serum samples, including 1856 features in ESI+ mode and 1004 features 
in ESI− mode, respectively. The data interpretation was conducted by a suite of bioinformatic tools. Firstly, all 
metabolic features and their relative MS abundance were analyzed in principal component analysis (PCA) and 
orthogonal partial least square-discrimination analysis (OPLS-DA) to gain a global view of the metabolic differ-
ences between TNBC and CN (Fig. 2). Further, statistically significant metabolic features were extracted using 
the criteria of fold change ≥ 1.2 or ≤0.83 and p-value ≤ 0.05 and visualized using volcano plot and heatmap 
(Fig. 3). Metabolite identification was performed by comparing retention time, accurate mass, and tandem MS 
spectra of the metabolic features against in-house metabolite standard library as well as HMDB9 and METLIN10. 

Subjects TNBC CN

Sample size 31 31

Age (years), mean (SD) 51.5 (10.2) 51.7 (10.6)

Menopause status, n

Premenopausal 9 10

Perimenopausal 13 12

Postmenopausal 9 9

Cancer stage, n

I 4 NA

II 17 NA

III 10 NA

Cancer type, n (%) (ER−, PR−, 
HER2−), n (%) 100% NA

Sample collection before or after medication before NA

Sample collection before or after surgery before NA

Table 1.  Clinical features of subjects. The table shows age and range of subjects at the time of blood sample 
collection. NA: not applicable. TNBC, Triple negative breast cancer; CN, healthy controls; ER−, negative 
expression of estrogen receptor; PR−, negative expression of progesterone receptor; HER2−, negative 
expression of human epidermal growth factor receptor.
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Seventy-seven statistically significant metabolites were confirmed (Table 2). These metabolites were then used 
to construct correlation-based metabolic networking analysis and pathway enrichment analysis to better under-
stand their biological significance. Finally, since TNBC has poor prognostic outcome, we attempted to utilize the 
metabolomic data to identify metabolites that are potentially correlated with the 5-year survival rate.

Global metabolic profiles of TNBC and CN serum samples.  To gain an overview of the metabolic dif-
ferences between TNBC and CN, we first performed principle component analysis (PCA) of all 62 serum samples. 
Quality control (QC) data was also included in the PCA analysis to monitor the overall instrument robustness 
and stability. As shown in Fig. 2a,b, the PCA score plots clearly separate the TNBC and CN groups. In addition, 
the QC samples were clustered together, indicating the excellent analytical reliability of the applied metabolomics 
platform.

We next applied OPLS-DA, a supervised multivariate statistical analysis tool, to identify the metabolic features 
that contribute to the metabolic differences between TNBC and CN serum samples. The OPLS-DA score plots in 
Fig. 2c,d respectively show very clear separations between TNBC and CN groups in both ESI+ and ESI− modes. 
Metabolic features with VIP scores ≥ 1.5 in the OPLS-DA analyses were extracted and retained as significant 
metabolic features for downstream analysis. The quality of these OPLS-DA models were evaluated via an internal 
cross validation, which calculates the goodness of fit parameter (R2Y) and predictive ability of the model (Q2). In 
both ESI+ and ESI− analyses, we observed high R2Y and Q2 values and the differences between R2Y and Q2 are 
smaller than 0.2, which indicates no model overfitting. Together, these results show that there are significant and 
valid global metabolic differences between the serum metabolome of TNBC and CN.

Discovery of metabolic signatures for TNBC.  To identify and confirm high-confidence metabolic sig-
natures that contribute to TNBC, we first calculated fold changes and p-values for all metabolic features in TNBC 
vs. CN. In total, 805 and 257 significant metabolic features (FD ≥1.2 or ≤0.83 and p-value ≤ 0.05) were found 
in ESI+ and ESI− analysis modes, respectively. We further refined the list of significant metabolic features using 
OPLS-DA VIP scores and only kept those with scores ≥1.5. The refined significant metabolic features were then 
searched against our in-house metabolite library to confirm the identity of 77 metabolites. By applying the chem-
ical taxonomy in HMDB, we were able to categorize significant metabolites into 14 metabolite classes and 25 
subclasses (Table 2). Of these 77 altered metabolites, 38 metabolites were upregulated in the TNBC samples and 
the other 39 metabolites were upregulated in the CN samples. A large portion of the dysregulated metabolites (45 
out of the total 77) were in the class of glycerophospholipids. Notably, all altered amino acids were upregulated 
in the TNBC samples. Although directions of alteration for the significantly changed lipids are not consistent, we 
can observe some consistency within the subclasses of lipids. For example, all cardiolipin (CL) species are down-
regulated in TNBC samples. We also conducted literature mining of all 77 dysregulated metabolites to compare 

Figure 1.  Workflow of UHPLC-HRMS-based metabolomics for metabolomic profiling and data interpretation 
of serum samples from TNBC and CN.
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against other metabolomics studies of BC or TNBC. While most of the significant metabolites have been previ-
ously reported in literature, a few of them (e.g., N-acetyl-L-histidine, octanoylcarnitine) were uniquely discovered 
for the first time in this Asian female TNBC population. The table of detailed meta-analysis results is available in 
Supplementary Table S2.

Metabolic network and pathway enrichment analysis.  To further understand the underlying bio-
logical meanings of these dysregulated metabolites, we performed correlation-based metabolic network analy-
sis. Correlation-based network analysis was used to find the abundance correlation of two metabolites to infer 
potential biological interpretation. It provides convenient visualization of the potential biological relationships 
and underlying activity correlations of metabolites. The analysis results were visualized using the MetScape11 
plugin available in Cytoscape (3.7.1)12. Figure 4 shows the metabolic network analysis results in circle layout, 
which locates all nodes in the network around a circle. In the circle network, each node represents the signifi-
cantly altered metabolites and the edge between two nodes represents the correlation coefficient, with positive 
correlation in red and negative correlation in green. The darker color indicates the higher correlation coefficient. 
An edge is displayed only if the correlation between the two metabolites is ≥0.2 or ≤−0.2. The color labels of the 
metabolic nodes are based on their taxonomy classes identified from HMDB. From the molecular network results 
(Fig. 4) we can see that the dysregulated metabolites have strong correlations with each other, suggesting the 
important underlying biological meanings of the metabolites during the TNBC progression. Among these meta-
bolic correlations, we identified 68 pairs of metabolic correlation with coefficient ≥0.4 or ≤−0.4 (Supplementary 
Table S3).

To further understand the metabolic changes on the pathway level, we performed pathway enrichment analy-
sis in MetaboAnalyst (https://www.metaboanalyst.ca). A total of 16 metabolic pathways were predicted with path-
way significance p-value ≤ 0.05 Fig. 5, Supplementary Table S4) with the top three significantly altered metabolic 

Figure 2.  Multivariate statistical analysis results. (a) PCA score plot of the analysis in ESI (+) mode. (PC1 
covers 11.6% of the variables; PC2 covers 6.4% of the variables). (b) PCA score plot of the analysis in ESI (−) 
mode (PC1 covers 8.9% of the variables; PC2 covers 6.1% of the variables). (c) OPLS-DA score plot of the 
analysis in ESI (+) mode (R2X = 0.209, R2Y = 0.99, Q2 = 0.883). (d) OPLS-DA score plot of the analysis in ESI 
(−) mode (R2X = 0.183, R2Y = 0.984, Q2 = 0.833).
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pathways being glycerophospholipid metabolism, aminoacyl-tRNA biosynthesis, and valine, leucine and isoleu-
cine biosynthesis.

Metabolic signatures correlated with 5-year survival rate in TNBC patients.  TNBC is known 
to have poor prognostic outcomes; therefore metabolites correlated with prognostic outcomes at an early stage 
could guide further therapeutic intervention. In this study, we focused on the 5-year survival rate, which is an 
important statistic that reflects cancer progress and treatment success. Out of the 31 TNBC cases, 7 patients were 
deceased within 5 years of treatment and the other 24 patients survived 5 years following treatment. After log 
transformation and auto-scaling of the dataset, we performed Receiver Operating Characteristic (ROC) analysis 
of all significant metabolic features using IBM SPSS statistics. We successfully discovered 6 metabolites with Area 
Under Curve (AUC) values larger than 0.75 (Fig. 6). These metabolites are dUMP, L-octanoylcarnitine, L-proline, 
lysoPC (22:1), PS (22:0/0:0), and uric acid (Table 3).

Discussion
The overall goal of this study was to delineate the unique serum metabolic signature for TNBC in the Asian female 
population. Upon applying a state-of-the-art metabolomics platform on serum samples from 31 well-classified 
TNBC patients and 31 CN volunteers, we were able to detect a large number of significantly changed metabolites 
that are associated with TNBC and further confirmed 78 of them. Through comprehensive data interpretation, we 
acquired a better understanding of the metabolic features in Asian female TNBC patients. Finally, further statisti-
cal analysis suggested that six of the metabolites were well-correlated with the 5-year TNBC survival rate. To our 
present knowledge, this is the first metabolomics study of TNBC in the Asian female population.

One unique feature of this study is that all of the serum samples were collected after disease diagnosis and 
before drug treatment. Therefore, identified metabolic changes were the direct reflection of altered cancer metab-
olism rather than metabolic perturbations caused by therapeutic intervention. In our study, many of these meta-
bolic changes are consistent with previous BC or TNBC studies of blood, tissue samples of human population or 
cell culture-based studies. For instance, the dysregulation of glycerophospholipids, including phosphatidylcholine 

Figure 3.  (a) Representative Volcano plot (fold change threshold = 1.5 and p-value (FDR adjusted) in ESI (+) 
mode metabolomics data: 0.05; (b) Representative heatmap of top 100 significant metabolites in ESI (+) mode 
metabolomics data.
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Class Subclass Name RT massb t-test
Fold 
change* VIP Mode

Benzene and 
substituted derivatives Benzoic acids and derivatives Hippuric acid 5.09 179.0580 4.E-02 0.4 1.1 neg

Carboxylic acids and 
derivatives Amino acids, peptides, and analogues

Creatine 0.73 131.0692 5.E-03 1.6 1.116 Pos

L-Leucine 1.61 131.0945 1.E-03 1.8 1.663 neg

L-Proline 0.57 115.0634 4.E-05 1.4 1.569 Pos

L-Threonine 0.69 119.0577 2.E-04 1.4 1.452 Pos

L-Tyrosine 1.44 181.0736 2.E-04 1.4 1.863 neg

L-Valine 1.06 117.0791 5.E-04 1.2 1.359 Pos

N-Acetyl-L-Histidine 0.70 197.0802 2.E-03 1.7 1.554 neg

Pyroglutamic acid 0.87 129.0427 3.E-02 1.4 1.119 neg

Dihydrofuranes Furanones L-Ascorbic acid 0.75 176.0328 1.E-05 4.3 2.137 neg

Fatty acyls

Fatty acid esters

Decanoyl-L-carnitine 7.98 315.2412 1.E-04 0.4 1.502 Pos

Acetylcarnitine 0.75 203.1156 3.E-03 0.8 1.188 Pos

L-Octanoylcarnitine 6.98 287.2100 5.E-04 0.5 1.357 Pos

Propionyl-L-carnitine 2.07 217.1313 9.E-03 1.6 1.039 Pos

Fatty acids and conjugates

Leucinic acid 5.44 132.0775 1.E-02 1.6 1.269 neg

Oleic Acid 14.14 282.2558 4.E-02 0.8 1.092 neg

Palmitic acid 13.98 256.2400 1.E-03 0.7 1.636 neg

Fatty amides Oleamide 13.42 281.2721 3.E-04 1.7 1.413 Pos

Lineolic acids and derivatives

9(S)-HODE 12.11 296.2345 9.E-05 0.4 1.958 neg

9(S)-HpOTrE 10.66 310.2137 7.E-03 0.4 1.391 neg

Linoleic acid 13.50 280.2404 4.E-03 0.5 1.153 Pos/neg

α-Linolenic Acid 12.92 277.2246 6.E-05 0.6 1.542 Pos/neg

Glycerolipids Monoradylglycerols MG(0:0/24:1/0:0) 14.15 440.3834 2.E-04 0.4 1.875 neg

Glycerophospholipids

Glycerophosphates
PA(15:0/0:0) 13.98 393.3095 2.E-02 0.7 1.186 neg

PA(20:1/17:1) 10.88 714.5133 1.E-05 3.0 1.679 Pos

Glycerophosphocholines
Glycerophosphoeserines

Glycerophosphocholine 0.68 257.1025 2.E-13 0.3 2.45 Pos

LysoPC(0:0/18:0) 11.95 523.3650 1.E-05 0.6 1.668 Pos

LysoPC(15:0) 10.48 481.3177 2.E-08 0.3 2.025 Pos/neg

LysoPC(16:1) 10.37 493.3174 8.E-03 1.6 1.065 Pos

LysoPC(18:3) 10.12 517.3173 7.E-04 2.4 1.327 Pos

LysoPC(18:4) 6.68 515.3025 9.E-06 3.4 1.681 Pos

LysoPC(20:1) 12.40 549.3806 2.E-03 0.7 1.198 Pos

LysoPC(20:2) 11.64 547.3646 2.E-05 0.8 1.628 Pos

LysoPC(20:4) 10.53 543.3333 1.E-03 0.8 1.257 Pos

LysoPC(22:5) 10.92 569.3487 2.E-04 0.5 1.435 Pos

PC(16:0/3:0) 11.65 551.3571 6.E-06 0.7 2.213 neg

PC(17:0/0:0) 12.18 509.3470 1.E-05 0.7 2.158 neg

PC(17:1/18:1) 13.12 771.5719 6.E-11 3.8 2.27 Pos

PC(20:5/0:0) 10.48 541.3151 5.E-04 1.8 1.353 Pos

PC(O-12:0/O-1:0) 11.27 439.3042 2.E-02 0.5 1.24 neg

PC(P-18:1/14:1) 12.66 713.5298 1.E-06 3.1 1.821 Pos

PS(14:0/20:0) 8.59 763.5292 4.E-03 0.5 1.132 Pos

PS(19:0/0:0) 10.31 539.3215 6.E-03 1.9 1.407 neg

PS(20:3/21:0) 10.95 855.5941 2.E-03 0.5 1.564 neg

PS(22:0/0:0) 11.85 581.3670 4.E-02 0.5 1.09 neg

PS(22:0/17:2) 10.86 829.5771 1.E-02 0.5 1.301 neg

PS(O-18:0/0:0) 10.02 511.3281 8.E-09 3.6 2.073 Pos

PS(O-20:0/20:2) 13.55 829.6129 5.E-11 4.0 2.277 Pos

Glycerophosphoethanolamines

LysoPE(0:0/18:1) 11.29 479.3005 7.E-03 1.2 1.387 pos/neg

LysoPE(0:0/18:2) 10.61 477.2851 4.E-02 1.2 1.061 neg

LysoPE(0:0/22:0) 12.75 537.3803 3.E-05 0.6 1.603 Pos

LysoPE(0:0/22:5) 10.95 527.3004 1.E-02 1.8 1.266 neg

LysoPE(20:1/0:0) 11.14 507.3312 2.E-04 0.5 1.874 neg

LysoPE(22:4/0:0) 10.69 529.3158 9.E-03 0.8 1.36 neg

Continued

https://doi.org/10.1038/s41598-019-57068-5


7Scientific Reports |          (2020) 10:370  | https://doi.org/10.1038/s41598-019-57068-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

(PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylglycerol (PG), lysophosphatidyl-
choline (lysoPC), lysophosphatidylethanolamine (lysoPE), monoradylglycerolipid (MG), phosphatidic acid (PA), 
cardiolipin (CL) have been reported in many other types BC or TNBC studies13–15. We noted several metabolites 
as novel in our study, including N-acetyl-L-histidine, phosphatidylinositol (PIP), phosphatidylinositol (PI), and 
dehydroascorbic acid. These metabolic signatures could be sourced from the unique genetic, lifestyle, and other 
environmental factors, leading to the unique TNBC phenotype in Asian females, such as being diagnosed at a 
younger age of 40–50 and more aggressive disease behavior16. Therefore, these unique metabolic signatures could 
potentially be used to further investigate the intriguing mechanism of race-specific TNBC phenotypes and dis-
ease outcome.

Further metabolic network analysis (Fig. 4) suggested that the alterations of various metabolic concentrations 
in the serum of TNBC patients were not independent of each other. Instead, correlation-based metabolic network 
analysis suggested inherited correlations among the dysregulated metabolites. The most significant correlations 
between these metabolites are indicative of particular phenotypes or biological aberrations. While the dysreg-
ulated metabolic metabolites and metabolic pathways have been well investigated in disease phenotypes, the 
association between metabolites in disease conditions is not well studied. In this work, we provided a compre-
hensive correlation-based metabolic network for all dysregulated metabolites (Fig. 4, Supplementary Table S3). 
It thus provides rich information for further investigation to understand the underlying metabolic mechanisms 
for TNBC progression.

Beyond the alteration of individual metabolites, further pathway enrichment analysis systematically predicted 
the alteration of metabolic pathways (Fig. 5, Supplementary Table S4). The systems level alteration of metabolites 
in glycerophospholipid metabolism pathway is consistent with metabolomics studies of BC in other popula-
tions14,17. The altered lipid concentrations are important to cell membrane modeling and inflammation and have 
been reported to be associated with advanced metastatic BC in cell lines18, serum19, plasma20, and tissue21,22.

The consistent upregulation of amino acids in this study suggested that the pathway of aminoacyl-tRNA bio-
synthesis was disrupted. Aminoacyl-tRNA biosynthesis, an essential process for protein synthesis and cell viabil-
ity23, conjugates amino acids to tRNA and delivers amino acids for incorporation into polypeptide chains. Cancer 
proliferation requires large amounts of biomass to sustain tumor growth, and the elevated concentration of amino 
acids in the blood is likely due to the increased demand for protein synthesis in TNBC patients.

Class Subclass Name RT massb t-test
Fold 
change* VIP Mode

Glycerophosphoglycerols

PG(10:0/10:0) 6.76 554.3248 8.E-05 3.5 1.518 Pos

PG(16:0/0:0) 6.55 484.2806 1.E-05 3.4 1.655 Pos

PG(18:1/0:0) 6.67 510.2983 7.E-04 2.4 1.326 Pos

PG(22:0/18:2) 11.89 830.5975 2.E-03 3.6 1.212 Pos

PG(22:2/22:2) 9.02 882.6263 2.E-04 0.2 1.454 Pos

Glycerophosphoglycerophosphoglycerols

CL(18:2) 12.07 1452.9920 2.E-13 0.0 2.453 Pos

CL(20:2) 10.88 1479.0088 4.E-03 0.1 1.134 Pos

CL(20:3) 10.22 1467.0059 7.E-05 0.3 1.532 Pos

CL(22:6) 9.76 1544.9748 3.E-05 0.3 1.592 Pos

Glycerophosphoinositol phosphates PIP(18:0/18:3) 6.30 940.5063 1.E-05 4.3 2.145 neg

Glycerophosphoinositols

PI(18:3/22:1) 13.98 914.5961 6.E-05 3.3 1.549 Pos

PI(22:0/16:1) 13.96 892.6115 5.E-05 2.9 1.558 Pos

PI(22:0/18:0) 10.79 922.6567 4.E-05 0.2 1.585 Pos

Imidazopyrimidines Purines and purine derivatives Uric acid 1.14 168.0284 1.E-02 1.4 1.034 Pos

Indoles and 
derivatives Indolyl carboxylic acids and derivatives L-Tryptophan 4.34 204.0898 4.E-04 1.2 1.779 neg

Lactones Gamma butyrolactones Dehydroascorbic acid 0.75 174.0165 6.E-04 3.2 1.749 neg

Organonitrogen 
compounds Quaternary ammonium salts Phosphocholine 10.81 183.0662 9.E-14 0.4 2.471 Pos

Pyridines and 
derivatives Pyridinecarboxylic acids and derivatives Niacinamide 1.27 122.0477 3.E-03 1.6 1.172 Pos

Pyrimidine 
nucleotides Pyrimidine deoxyribonucleotides

Deoxyuridine 
monophosphate 
(dUMP)

1.11 308.0422 9.E-03 1.2 1.357 neg

Steroids and steroid 
derivatives

Bile acids, alcohols and derivatives
Cholic acid 9.08 408.2869 6.E-03 5.8 1.422 neg

Steroids and steroid 
derivatives Deoxycholic acid 10.51 392.2922 2.E-03 2.5 1.57 neg

Steroids and steroid 
derivatives Hydrosteroids corticosterone 12.92 346.2111 5.E-03 0.5 1.461 neg

Tetrapyrroles and 
derivatives Bilirubins Bilirubin 6.36 584.2638 2.E-17 0.1 2.663 Pos/neg

Table 2.  Significantly altered metabolites in TNBC vs. healthy controls in the analysis of LC-MS positive mode 
and LC-MS negative mode. *fold change was calculated as TNBC/CN.
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Another unique feature of this study is that all participating patients were recruited in 2013–2015 and consist-
ent follow-ups on prognosis outcomes were maintained. For instance, 5-year survival and cancer metastasis status 
are available for all patients. Determination of prognosis is the most immediate challenge in patient management 
and is critically important for the design of the most appropriate cancer therapy to improve survival. The develop-
ment of traditional prognostic factors (e.g., lymph node metastasis, tumor size, and tumor grade) and molecular 
prognostic biomarkers (e.g., uPA/PAl1, Oncotype DX, and MammaPrint) has demonstrated great success for BC 
prognosis24. Apart from the aforementioned tissue biopsy-based analysis, the use of “liquid biopsy” from a blood 
sample has become an appealing expectation as it provides a non-invasive and easily accessible tool for patient 
stratification. From that perspective, mi-RNA, circulating tumor cells, and circulating tumor DNA-based assays 
have been developed and have shown promising predictive power. Since metabolites are the downstream product 
of gene and protein activity, metabolites can potentially be used as prognostic biomarkers.

Using this prognostic information, six metabolites (Table 3), including dUMP, L-octanoylcarnitine, L-proline, 
lysoPC (22:1), PS (22:0/0:0), and uric acid, were discovered as highly associated with 5-year survival rate. dUMP 
is the precursor of dTMP, which is necessary for DNA synthesis and repair. The conversion of dUMP to dTMP is 
catalyzed by thymidylate synthase. A previous study in colon cancer demonstrated that high level of thymidylate 
synthase is associated with lymph node metastasis and more advanced stages25. Similarly, L-octanoylcarnitine, 
an important metabolite in carnitine metabolism, has been shown to be a prognostic marker to differentiate 
between prostate cancer and benign prostatic hyperplasia26. L-proline is a non-essential amino acid in humans. 
Proline can feed the TCA cycle through the urea cycle and is oxidized by proline dehydrogenase to form reactive 
oxygen species (ROS). The potential application of proline as the biomarkers for BC diagnosis and prognosis 

Figure 4.  Correlation-based metabolic network analysis. Each node represents one metabolite and the edge 
connecting two nodes represents the correlation coefficient, with positive correlation in red and negative 
correlation in green.

Figure 5.  Metabolic pathway analysis. Predicted metabolic pathways with p-value ≤ 0.05 are listed.
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has been previously suggested, though the mechanisms leading to its perturbance are unclear27. LysoPC is an 
abundant extracellular lipid that stimulates cell proliferation. Previous studies have shown that lysoPC is not only 
significantly altered in BC28 but can also stimulate cancer cell migration and early tumor recurrence23,29. PS is an 
essential component of human cells and presents mainly on the inner leaflet of the cell membrane; however, the 
oxidative stress in BC cells can cause the exposure of PS. We believe that the higher concentration of PS (22:0/0:0) 
observed in the study is correlated with higher metastasis and death rate of TNBC patients. Finally, serum uric 
acid has long been known as a significant risk factor for excessive cancer risk, recurrence, and mortality30. It is 
therefore expected that the elevated concentration of uric acid (or called hyperuricemia) in TNBC patients could 
be a good indicator of poor 5-year survival rate.

Among the limitations of the present study is the relatively small to medium sample size. This is attributed to 
the relatively low percentage of TNBC in the overall incidence of BC. Future work is needed in a more targeted 
approach to validate the discovery using a larger cohorts, ultimately including samples from population-wide 
case-control studies.

In summary, we presented a global metabolomics study of TNBC patients in the Asian population. We 
observed significantly altered metabolites in TNBC serum samples and developed a metabolite-based prognostic 
biomarker panels for the prediction of 5-year survival rate of TNBC. The application of information-rich ana-
lytical methods provides insights into understanding metabolic signatures that are associated with TNBC. We 
expect that our study will facilitate the development of better treatment strategies to combat TNBC within the 
Asian population. It may also open up new possibilities for the development of personalized medicine for TNBC 
patients.

Methods
Serum sample collection.  Before treatment of BC, 3–5 ml blood samples were drawn from 31 TNBC 
patients and 31 healthy controls, respectively. The clinical characteristics of subjects were summarized in Table 1 
and detailed clinical parameters were presented in Supplementary Table 1. Blood samples were incubated at room 
temperature for 30 min to allow the blood to clot. To purify serum samples, the clotted blood was centrifuged for 
5 min at 3000 r/min. The upper serum layer was extracted and stored in −80 °C until needed.

Metabolite extraction.  Prior to LC-MS analysis, 400 μL methanol was added to 100 μL serum sample in a 
1.5 ml Eppendorf tube and vortex-mixed for 30 s to precipitate serum proteins and extract serum metabolites. The 
sample mixture was centrifuged at 12000 rpm for 15 min at 4 °C. 200 μL of the supernatant was transferred to LC 
vials for LC-MS analysis. Samples were kept at 4 °C throughout the analysis31.

Metabolomic profiling by UHPLC-QTOF MS.  LC-MS analysis was carried out using an Agilent 
1290 Infinity ultrahigh performance liquid chromatography system coupled to an Agilent 6530 UHD and 
Accurate-Mass QTOF MS. An Agilent Zorbax C18 column (100 mm × 2.1 mm, 1.8 μm particle size) was used 
for LC separation. Mobile phase A was water in 0.1% fomic acid (FA) and mobile phase B was ACN in 0.1% FA. 
The flow rate was set as t = 0 min, 5% B; t = 1 min, 5% B; t = 6 min, 20% B; t = 9 min, 50% B; t = 13 min, 95% B; 
t = 15 min, 95% B. Additional 10 min post gradient run at 5% B was performed to re-equilibrium the column for 
the next analysis. The LC flow rate was 0.35 mL min−1. The column was maintained at 40 °C. Experimental sample 
injection order was randomized and each sample was injected 4 μL.

The Agilent QTOF MS was equipped with an electrospray ionization (ESI) source operating in either positive 
or negative ion mode. The ESI+ with the spray voltage set at 4,000 V, Sampling cone 3,500 V. Nitrogen was used 
as nebulizer gas, and nebulizer gas was delivered at a flow rate of 50 L h−1 with a source temperature of 100 °C. 
Extraction cone 4 V. Desolvation gas (nitrogen) was heated to 350 °C and delivered at a flow rate of 600 L h−1.

The negative ion mode with the capillary voltage set at 3 500 V, Sampling cone 5 000 V, Source temperature 
100 °C, Desolvation temperature 300 °C, Cone gas flow 50 L/h, Desolvation gas flow 700 L h−1, Extraction cone 

Figure 6.  ROC curves for dUMP, L-octaoylcarnitine, L-proline, LysoPC (20:1), PS (22:0/0:0), and uric acid.
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4 V, Scan time 0.03 s, Inter scan time) 0.02 s. Masses were acquired from m/z 50 to 1,000 with a scan time of 0.03 s 
and inter scan delay of 0.02 s over a 15 min analysis time.

The MS was operated in full scan mode. Data dependent LC-tandem MS was performed on the pooled sample 
to collect fragmentation spectra for metabolite identification. Leucine encephalin (100 ng/ml) was used as the 
lock mass ([M+H]+, m/z 556.2771 in ESI (+) and [M−H]−, m/z 554.2615 in ESI (−)) for internal mass calibration.

QC sample was prepared by taking 10 µL of each individual sample and pooled them together. QC served as 
“technical replicates” for the study and was analyzed in between every 8 sample injection.

Data processing, statistical analysis and metabolite identification.  Agilent Mass Profiler software 
was used to extract metabolic features from the LC-MS data and generate a metabolite-intensity table containing 
the retention time, accurate mass and intensities of all metabolites found in the samples.

Prior to any statistical analysis, data transformation and data scaling were performed on metabolic features 
using log transformation and auto scaling (mean-centered and divided by the standard deviation of each met-
abolic features) Multivariate statistical analysis, including principle component analysis (PCA) and orthogonal 
signal correction partial least squares discrimination analysis (OPLS-DA) was performed on SIMCA-P (version 
13.0). Univariate statistical analysis, including volcano plot, fold changes, and t-test statistics were performed 
using MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/)32.

Metabolite identification was performed by matching experimental tandem MS spectra, retention time, and 
accurate mass of the metabolic features against in-house standard tandem MS spectra library as well as spectral 
databases such as METLIN and HMDB.

Correlation-based metabolic network analysis and metabolic pathway analysis.  
Correlation-based metabolic networking analysis was performed using the MetScape 3 plugin available on 
Cytoscape 3.7. After log transformation and auto scaling, the confirmed significantly changed metabolites and 
their MS signal intensities were used to calculate the Pearson’s correlation coefficient and debiased squared partial 
correlation results using the CorrelationCalculator available on the MetScape website (http://metscape.ncibi.org/
calculator.html). The correlation file was then uploaded onto the MetScape plugin on Cytoscape to visualize the 
correlation network.

Metabolic pathway analysis was performed using the pathway analysis function available on MetaboAnalyst 
4.0 (https://www.metaboanalyst.ca/)32. The 77 confirmed significant metabolites were entered as the input list. A 
hypergeometric test was used to evaluate the pathway significance. Homo sapiens (KEGG) was used as the path-
way library for prediction analysis. The hypergeometric test and relative-betweenness centrality were selected for 
over representation analysis and pathway topology analysis, respectively.

Discovery and evaluation the performance of prognostic biomarkers.  Diagnostic performance 
was evaluated on the IBM SPSS statistics 25 platform. After log transformation and auto scaling, the confirmed 
significantly changed metabolites and their MS signal intensities were used in SPSS for ROC analysis.

Ethical approval and informed consent.  The study was conducted in accordance with the Declaration of 
Helsinki, and the protocol was approved by the Ethics Committee of Chongqing Cancer Hospital. All experiments 
were performed in strict compliance with the requirements of the Human Ethics Procedures and Guidelines of 
the People’s Republic of China.
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