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Development of digital biomarkers for resting tremor and
bradykinesia using a wrist-worn wearable device
Nikhil Mahadevan1, Charmaine Demanuele1, Hao Zhang1, Dmitri Volfson 1, Bryan Ho2, Michael Kelley Erb 1 and Shyamal Patel1*

Objective assessment of Parkinson’s disease symptoms during daily life can help improve disease management and accelerate the
development of new therapies. However, many current approaches require the use of multiple devices, or performance of
prescribed motor activities, which makes them ill-suited for free-living conditions. Furthermore, there is a lack of open methods that
have demonstrated both criterion and discriminative validity for continuous objective assessment of motor symptoms in this
population. Hence, there is a need for systems that can reduce patient burden by using a minimal sensor setup while continuously
capturing clinically meaningful measures of motor symptom severity under free-living conditions. We propose a method that
sequentially processes epochs of raw sensor data from a single wrist-worn accelerometer by using heuristic and machine learning
models in a hierarchical framework to provide continuous monitoring of tremor and bradykinesia. Results show that sensor derived
continuous measures of resting tremor and bradykinesia achieve good to strong agreement with clinical assessment of symptom
severity and are able to discriminate between treatment-related changes in motor states.
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INTRODUCTION
Parkinson’s disease (PD) is one of the most common neurode-
generative disorders affecting approximately 10 million people
worldwide.1–3 The loss of dopaminergic neurons in the substantia
nigra region of the midbrain, which is critical for motor control, is a
primary contributor to the pathophysiology of PD.3–5 Tremor,
bradykinesia (i.e., slowness of movement), postural instability and
rigidity (i.e., stiffness and resistance to passive movement) are the
cardinal motor symptoms of PD.1 In addition, patients also
experience non-motor symptoms like dysarthria, hyposmia, sleep
disorders, and cognitive impairments. Collectively, these symp-
toms have a significant impact on the functional ability of patients
and their overall quality of life. In early stages of the disease,
dopamine replacement therapy, such as levodopa (L-Dopa), is
highly effective at controlling motor symptoms. However, as the
disease progresses, patients often develop complications like
dyskinesias and motor fluctuations, which reduces the efficacy of
levodopa-based treatments.6 Despite many advances in the
development of therapies for managing PD symptoms, there are
currently no available therapies that slow disease progression or
address the wide range of symptoms in patients with more
advanced PD.7

The use of subjective, episodic, and insensitive clinical assess-
ment tools,8 which provide sparse data and poor ecological
validity, can be an impediment to the development of new
therapies. The current standard for clinical assessment of PD is the
Movement Disorder Society’s Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS).9 Clinical assessments performed using the
MDS-UPDRS are time-consuming, require the presence of a
trained clinician, are inherently subjective and lack the necessary
resolution to track fine grained changes (MDS-UPDRS items are
rated on an ordinal scale of 0–4). A home diary10 completed for a
few days preceding clinic visits by the patient or caregiver is
another instrument that is commonly used in clinical trials for
evaluating treatment efficacy based on a report of motor
symptoms experienced outside the clinic. However, issues such

as lack of compliance, recall bias and diary fatigue limit the
accuracy of information that can be collected with this
approach.11 The limitations of these tools contribute to the need
for large sample sizes and long durations of clinical trials for new
therapies, and increase the risk of failures.12

Advances in sensing technology have fostered the develop-
ment of new methods for objective measurement of PD motor
symptoms.13 Early efforts14 were focused on the development and
validation of methods with data collected using multiple sensing
modalities (e.g., accelerometers,14 gyroscopes,15 and electromyo-
graphy16) often from multiple body locations during the
performance of scripted motor tasks (e.g., tasks from the MDS-
UPDRS) under supervision in a clinic or lab. These investigations
demonstrated the feasibility of extracting clinically meaningful
information from data collected using wearable sensors in the
clinic. More recently, smartphone-based tools, which are easier to
scale and deploy compared to wearable devices,17–19 are making
it easier to perform frequent assessments outside the clinic.
However, assessments performed using smartphones are still
episodic in nature and the quality and quantity of information will
be dependent on the compliance and motivation of patients.
Therefore, there is significant interest in developing systems that
can continuously and unobtrusively monitor motor symptoms
during daily life.20

In order to deploy wearable sensors in a real-world setting, it is
essential to develop and validate methods that are able to extract
clinically meaningful information from data collected during
unstructured activities typically performed under free-living
conditions while relying on a minimal number of devices.21 In
addition, the choice of sensing modality, which has a significant
impact on usability of the system, also needs to be considered.22

For example,15 while gyroscopes are excellent at capturing the
motion dynamics associated with tremor and other movements
that involve a rotational component, power consumption of
gyroscopes is typically at least an order of magnitude higher
than accelerometers.23 As a result, devices with gyroscopes would
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need to be frequently recharged resulting in increased patient
burden or have to be very bulky and hence have poor wearability
because of a large battery.
Here, we present the development and validation of a method

for continuous, objective assessment of resting tremor and
bradykinesia based on data from a single wrist-worn acceler-
ometer. The proposed method follows a hierarchical paradigm by
first determining activity periods of interest (i.e., context) and then
applying context specific processing steps to detect the presence
of motor symptoms and derive objective measures of their
severity. We demonstrate criterion validity of the system by
showing that sensor-derived measures are significantly associated
with corresponding clinical ratings provided by a trained examiner
(“live-rater”) during in-clinic visits. In addition, we show that
sensor-derived measures are significantly different between self-
reported motor states (confirmed before and after medication),
which demonstrates discriminative validity of the proposed
system. Lastly, utility was confirmed by a marked patient
preference for the wrist location and an adhesive patch form
factor as well as a willingness to wear the device during daily life.

Related work
A survey of prior work focused on development and validation of
methods aimed at monitoring tremor and bradykinesia during
free-living activities can be found in Supplementary Table 1. Many
of these systems use multiple sensing devices24–26 and mod-
alities27–30 to measure a number of motor symptoms that are
present in PD. For example, Zwartjes et al.29 proposed a
hierarchical framework for context specific assessment of tremor
and bradykinesia using inertial sensors (accelerometer and
gyroscope) located at four locations on the body. This system
achieved high accuracy for activity classification (~99%), showed
good agreement with clinical ratings and was responsive to
changes in treatment settings (DBS “on”, “intermediate (80% of
optimal settings)”, and “off”). A multi-modal system proposed by
Roy et al.28 uses accelerometer and surface EMG data recorded
from four wearable devices placed on the limbs for monitoring
tremor and dyskinesia during unconstrained activity. The system
achieved high (>90%) sensitivity and specificity for detection of
symptoms as well as severity assessment and results show that
use of EMG contributed to improved accuracy for tremor
detection (~10% improvement). Systems like SENSE-PARK31 and
PERFORM30 have been designed for a comprehensive assessment
of a broad range of PD motor and non-motor symptoms during
daily life. In addition to multiple wearable devices, they include
peripheral tools like a balance board and touch screen computer
to perform prescribed tests and log information about food intake,
medication timings and self-assessment of symptoms. While these
systems have the ability to perform continuous assessment of
motor symptoms, the need for multiple device locations and
technical complexity (e.g., use of EMG) are challenges that would
need to be addressed before they can be deployed at scale.
In contrast, commercially available systems like Kinesia32 and

Personal KinetiGraph (PKG)33 aim to minimize patient burden by
reducing the number of devices for monitoring patients under
free-living conditions. Using multi-modal (accelerometer and
gyroscope) data recorded from devices located on the wrist and
ankle of the most affected side, Pulliam et al.27 were able to
achieve good accuracy (AUC > 0.8) for detection of tremor,
bradykinesia, and dyskinesia as well as ability to differentiate
(p < 0.01) between treatment states (ON and OFF). The PKG is a
wrist-worn device for continuous at-home monitoring, which
implements heuristic algorithms that process raw accelerometer
data to generate a score for motor symptoms (e.g., dyskinesia and
bradykinesia34). Measures derived using the PKG system from at
home recordings have demonstrated criterion and discriminative
validity,35 and researchers evaluating the clinical utility of these

systems are finding that it could help improve disease manage-
ment and improve outcomes.36–38 However, while the original
developers of these commercially available systems have worked
on clinically validating the algorithms, they are proprietary and
therefore not available for others to reproduce, validate and
improve. In fact, the lack of open analytical methods20 was one of
the challenges highlighted by the MDS Taskforce on Technology.
While these efforts have certainly advanced the field, there are

still significant gaps that need to be addressed.39 Several of these
approaches rely on the use of multiple devices across different
body locations with the aim of characterizing a range of motor
symptoms and quality of life (e.g., gait, tremor, bradykinesia, and
sleep). In addition, while most approaches demonstrate good
detection accuracy for clinical features (e.g., tremor periods and
freezing of gait events), there is a lack of consideration for
demonstrating both criterion (i.e., association between sensor
measures and clinical ratings) and discriminative validity (i.e.,
ability of sensor measures to discriminate between different
disease states) for methods aimed at monitoring motor symptoms
during free living conditions. Furthermore, there needs to be an
emphasis on formal testing of the utility and acceptability40 of
these systems as patients might be required to wear the device(s)
for days or weeks at a time.

RESULTS
As illustrated in Fig. 1, our analysis approach consists of two steps:
(1) context detection and, (2) symptom severity estimation. The
context detection step includes detection of hand movement
followed by detection of gait (if hand movement was detected).
The symptom severity estimation step includes detection and
assessment of resting tremor (if no hand movement was detected)
and assessment of bradykinesia (if hand movement was detected
and gait was not detected). We removed periods of gait from
bradykinesia analysis because motor symptoms associated with
gait are generally assessed separately.41 Data from the wrist-worn
device located on the most affected side spanning the duration
(44.13 ± 10.53 min) between the start of first protocol activity and
end of the last protocol activity during each visit (Supplementary
Table 2) was used in this analysis. A detailed description of the

Hand Movement
Classifier†

Raw Accelerometer Data
From Wrist on Most

Affected Side

Resting Tremor 
Classifier*

Gait Classifier†

NO YES

NO

Bradykinesia
Assessment*

Resting Tremor
Assessment*

YES

† Context Detection
* Symptom Severity Estimation

Fig. 1 Flow chart illustrating the hierarchical approach for
detection and assessment of resting tremor and hand bradykinesia
using accelerometer data from a wrist-worn device. This approach
utilizes context detection (hand movement and gait) to identify
periods of interest from raw sensor data and subsequently performs
detection and assessment of motor symptoms (tremor and bradyki-
nesia). Tremor is assessed when the hand is at rest and bradykinesia is
assessed during periods of hand movement that are not due to gait.
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experimental protocol and data analysis steps can be found in the
Methods section.

Training and performance of the context classifiers
Hand movement classifier. The video-based manual annotation
process resulted in a total of 1186 3-s windows (118 goal directed
(GD) and 1068 nongoal directed (NGD)) with hand movement and
807 3-s windows without hand movement. The hand movement
classifier achieved an accuracy of 92.82% (weighted precision:
93%, recall: 93% and F1 score: 93%) with a false-negative rate of
4.72% and false-positive rate of 10.78%. The classification accuracy
for GD movements and NGD movements was comparable (GD—
sensitivity: 95.8%, false-negative rate: 4.2%; NGD—sensitivity:
95.2%, false-negative rate: 4.8%).

Gait classifier. We used a leave-one-subject-out cross validation
approach with data from both healthy controls (HC) and PD
subjects (N= 81) to assess performance of the gait classifier.
Observations for the positive class (gait) were derived from two
gait tasks (2.5-m walk and 10-m walk), whereas observations for
the negative class (no gait) were derived from the remaining tasks
with the exception of carry a book out and back 10m (activities of
daily living (ADL) 13) and carry a suitcase out and back 10 m (ADL
14; Supplementary Table 2). These ADL tasks involved short,
sporadic periods of gait and were therefore excluded to ensure
that the negative class only included non-gait observations. To
address class imbalance, we randomly sampled the negative class
to match the number of observations in the positive class. The
final dataset included 9706 observations with a 50:50 split
between the positive and negative classes. 24 (out of 47) features
were retained after feature selection and used for training the gait
classifier (Supplementary Table 3). The gait classifier achieved an
accuracy of 96% (weighted precision: 96%, recall: 96% and
F1 score: 96%) with a false-negative rate of 2.45% and false-
positive rate of 6.4%. The difference in the classification accuracy
between HC and PD subjects was not significant (95.96% vs.
95.32%). An ensemble of ten estimators (i.e., trees) was used for
training the random forest model. We evaluated multiple settings
for numbers of estimators (5, 10, 20, 50, and 100), but observed no
significant improvement in model performance as we increased
the number of estimators beyond 10.

Training and performance of the resting tremor classifier
We implemented a gyroscope-based heuristic algorithm15 to
generate labels for training the tremor classifier. To evaluate the
reliability of the heuristic algorithm as a source of labels for
tremor, we first assessed its performance on data from PD
subjects. We found significant agreement between resting tremor
constancy derived using the heuristic algorithm and clinical
ratings of resting tremor constancy (MDS-UPDRS 3.18) provided by
the live rater (Kruskal–Wallis chi-squared= 28.55, p < 0.0001). In
addition, resting tremor constancy derived using this algorithm
was able to significantly differentiate (p ≤ 0.05) between all pairs of
clinical ratings except between 3 and 4 (p= 0.10). However, when
we applied the algorithm to data from HC subjects, it resulted in a
false positive rate of 10.21%.
Consequently, we developed a binary resting tremor classifier

using a machine learning (ML) approach and used data from HC
subjects as the negative class (no tremor) and periods of tremor
detected by the heuristic algorithm in PD subjects as the positive
class for training. After feature selection, 18 features (out of 64)
were retained for training the tremor classifier (Supplementary
Table 3). Like the gait classifier, we evaluated multiple numbers of
estimators (5, 10, 20, 50, and 100) but observed no significant
improvement in model performance beyond 10. To evaluate the
performance of the ML resting tremor classifier we used a leave-
one-subject-out approach across all 81 subjects (50 HC and 31 PD).

The classifier achieved an accuracy of 83% (weighted precision:
86%, recall: 86% and F1 score: 83%) across all subjects. As shown
in Fig. 2, the predictions of the heuristic algorithm and ML
classifier in PD subjects were strongly correlated (Pearson’s R=
0.97, p < 2.2e−16). In addition, there was a reduction in the false
positive rate (6.83%) for the ML classifier in HC subjects.

Agreement between clinical scores and sensor-derived measures
Resting tremor. Fig. 3a, b shows the agreement between sensor-
derived measures and clinical ratings of resting tremor constancy
(MDS-UPDRS 3.18) and amplitude (MDS-UPDRS 3.17). Because of a
small number (<4) of samples, we grouped class 0 with class 1 for
resting tremor constancy and class 3 with class 4 for resting
tremor amplitude. We found good agreement between sensor-
derived measures with clinical ratings of resting tremor constancy
(Kruskal–Wallis chi-squared= 27.52, p < 0.0001) and resting tre-
mor amplitude (Kruskal–Wallis chi-squared= 18.14, p= 0.0004).
Post hoc Conover–Iman tests for pairwise comparisons with
multiplicity adjustment using false-discovery rate correction
revealed that the classifier was also able to significantly
differentiate between adjacent pairs of clinical scores for resting
tremor constancy and resting tremor amplitude (p ≤ 0.05), with
the exception of scores 2 and 3 (p= 0.067) and 3 and 4 (p= 0.054)
for resting tremor constancy (which were trending toward
significance), and scores 0 and 1 (p= 0.096) and 2 and 3 (p=
0.1) for resting tremor amplitude.

Bradykinesia. Sensor-derived features of bradykinesia derived
from data captured during unscripted activities (i.e., excluding
MDS-UPDRS motor tasks) were compared with the hand
bradykinesia clinical score (range: 0–12), which was derived by
taking a sum of clinical scores of the most affected side for finger
tapping (MDS-UPDRS 3.4), hand movements (MDS-UPDRS 3.5),
and pronation-supination movements of the hand (MDS-UPDRS
3.6). The hand bradykinesia score was strongly negatively
correlated (Pearson’s R=−0.69, p < 0.0001) with amplitude of
hand movement measure and moderately correlated (Pearson’s
R= 0.37, p= 0.003) with average length of bouts without hand
movement measure.
We fit a longitudinal mixed effects model to predict the live

rater’s hand bradykinesia score (see Methods for details). The
optimal model included only one bradykinesia feature as
predictor: amplitude of hand movements. This model predicted
the live rater’s hand bradykinesia score with a RMS error of 2.01.
As shown in Fig. 4, we observed a strong correlation (Pearson’s

Fig. 2 Agreement between the heuristic algorithm and ML
classifier for resting tremor detection. Resting tremor constancy
was estimated as a fraction of the total visit duration when resting
tremor was detected from sensor data. Each point corresponds to
one subject visit, solid line represents line of best fit and shaded
region represents the confidence interval.
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R= 0.67, p < 0.0001) between the predicted and live rater’s hand
bradykinesia score.

Treatment related changes in sensor-derived measures
To evaluate the effect of treatment related changes, we examined
the relationship between patient reported motor state (ON—i.e.,
when motor symptoms are well controlled and OFF—i.e., when
motor symptoms are poorly controlled) and sensor-derived

measures of resting tremor and bradykinesia. Fig. 5a, b illustrates
the distribution of differences between sensor-derived measures
of resting tremor constancy and resting tremor amplitude
between visit 1 and visit 2. We observed an increase in resting
tremor constancy and amplitude for subjects who transitioned
from an ON state to OFF state and vice versa for subjects who
transitioned from an OFF state to ON state. A Wilcoxon signed
rank test showed that changes in sensor-derived measures of
resting tremor constancy and amplitude between the ON and OFF
states were statistically significant (p < 0.0001 and p= 0.0002,
respectively). The same trend was observed when analyzing the
change in live rater score for resting tremor constancy and
amplitude (p < 0.0001 for both tremor constancy and tremor
amplitude).
Figure 5c illustrates the distribution of differences between the

predicted hand bradykinesia score between visit 1 and visit 2. We
observed a smaller median decrease in the predicted hand
bradykinesia score for subjects who transitioned from an ON to
OFF state compared to subjects who transitioned from an OFF to
ON state. A Wilcoxon signed rank test showed that changes in
predicted hand bradykinesia score between the ON and OFF
states were statistically significant (p= 0.009). When comparing
each of the four sensor-derived features with the ON and OFF
states, only amplitude of hand movement feature showed
statistically significant changes between each state (Wilcoxon
p= 0.008). We observed an increase in live rater’s hand
bradykinesia score for subjects who transitioned from an ON
state to OFF state and vice versa for subjects who transitioned
from an OFF state to ON state (p= 0.0005).
For both tremor and bradykinesia, we observed that the

magnitude and variability of the change in sensor-derived
measures as subjects transitioned from the OFF to ON state was
larger than when subjects transitioned from the ON to OFF state.
This can be explained by the fact that the time since last levodopa
dose in the OFF state for subjects who transitioned from an OFF to
ON state (889.87 ± 160.66 min) was significantly longer (p=
0.0002) compared to subjects who transitioned from ON to OFF
state (mean: 497.89 ± 270.04 min). Time since levodopa was not

Fig. 4 Sensor-based assessment of hand bradykinesia and clinical
rating. Agreement between predicted hand bradykinesia score and
live rater’s hand bradykinesia score. Each point corresponds to one
subject visit, solid line represents line of best fit and shaded region
represents the confidence interval. Hand bradykinesia score (range:
0–12) is a composite score derived by taking the sum of finger
tapping (MDS-UPDRS 3.4), hand movement (MDS-UPDRS 3.5) and
hand pronation-supination (MDS-UPDRS 3.6) scores.

Fig. 3 Sensor-based assessments of resting tremor and clinical ratings. Agreement between a sensor-derived measures of resting tremor
constancy and MDS-UPDRS score of rest tremor constancy, and b sensor-derived measures of resting tremor amplitude and MDS-UPDRS score
of rest tremor amplitude. Box plot center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers.
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significantly different (p= 0.42) in the ON state for the two groups
(ON to OFF and OFF to ON).

Agreement between live rater and video raters
Video-based assessments performed using telemedicine can be
an alternative approach to capturing more data outside of the
clinic. However, while there is evidence of satisfactory inter-rater
reliability of the motor examination section of the UPDRS between
live raters,42 the agreement between live and video-based motor
examination is not well understood. To investigate this, we
examined the agreement between ratings provided by the live
rater (during clinic visits) and by video raters who were blinded to
when the patients took their medications. As shown in Table 1, for
tremor constancy and tremor amplitude, the level of agreement
between the live and video ratings as measured by Cohen’s Kappa
K was poor (K < 0.39) to fair (K < 0.59) whereas agreement between
the two video raters was moderate (K > 0.6). For hand bradykinesia
score, we observed a moderate to good agreement as measured
by the intraclass correlation coefficient (ICC) (0.5 < ICC < 0.75)
between the live and both video raters as well as between the two
video raters. These results point to the challenges of using a
subjective rating scale like the MDS-UPDRS for performing video-
based remote assessments.

Patient acceptance of wearable devices
Patient acceptance is essential for the viability of wearable devices
as tools for continuous monitoring of motor symptoms. In this
study, we used devices that came in two form factors: rigid box
(APDM Opal) and flexible patch (MC10 BioStamp). Although the
analysis presented in this work is based on data from a single
wrist-worn sensor (APDM Opal), we assessed wearability of all
devices worn by patients (11 devices at multiple body locations).
To assess wearability, a questionnaire was administered after
subjects completed the second in-clinic visit. Subjects were asked
to rate their willingness to wear the devices continuously for an
extended period of time, overall comfort of the devices, and
whether any specific sensor locations were uncomfortable.
Approximately, 85% of subjects were either likely or very likely
to wear the sensors for an extended period of time (Fig. 6). Of the
subjects that were very likely to wear the devices for an extended

Table 1. Comparison of video raters and live rater for tremor and
hand bradykinesia MDS-UPDRS scores.

Comparison Score Statistic

Live Rater vs.
Video Rater 1

Tremor Constancy K= 0.325, p < 0.0001

Tremor Amplitude K= 0.395, p < 0.0001

Hand Bradykinesia ICC= 0.704, (0.377, 0.848)

Live Rater vs.
Video Rater 2

Tremor Constancy K= 0.317, p < 0.0001

Tremor Amplitude K= 0.45, p < 0.0001

Hand Bradykinesia ICC= 0.565, (0.101, 0.784)

Video Rater 1 vs.
Video Rater 2

Tremor Constancy K= 0.620, p < 0.0001

Tremor Amplitude K= 0.623, p < 0.0001

Hand Bradykinesia ICC= 0.61, (0.419, 0.75)

Fig. 6 Willingness of subjects to wear rigid (Opal) or flexible
patch-like (BioStamp) devices continuously at home. A marked
preference for a flexible patch-like device was observed for subjects
who were very likely to wear devices continuously at home.

Fig. 5 Motor state associated changes in sensor-based assessment of resting tremor and hand bradykinesia. Distribution of difference
between ON and OFF states of sensor-derived measures of a tremor constancy, b tremor amplitude, and c predicted hand bradykinesia score
grouped by the randomized order of motor state in visit 1. Box plot center line, median; box limits, upper and lower quartiles; whiskers, 1.5×
interquartile range; points, outliers; **p < 0.01, ***p < 0.001.
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period of time and reported them very comfortable, there was a
marked preference (54.3% vs. 40%) for the flexible patch form
factor. While both type of devices were rated highly by subjects
for comfort, 7 out of 8 subjects reported sternum as the most
uncomfortable location for devices with a rigid form factor;
whereas 3 out of 4 subjects reported flexible patches placed on
the lower extremity (thigh and ankle) as uncomfortable. We
observed a high level of acceptance for the wrist location for
either device types.

DISCUSSION
We investigated the use of accelerometer data captured by a
single wrist-worn device for monitoring resting tremor and
bradykinesia in patients with PD. The proposed method was able
to derive clinically meaningful measures of symptom severity from
data collected during the performance of unscripted activities
during in-clinic visits. An example of the continuous measures
produced by the proposed method is shown in Fig. 7. As the
subject transitions from the OFF to ON state, we can observe a

marked decrease in the constancy and amplitude of resting
tremor, and a marked increase in the amount and amplitude of
hand movement. The motivation behind using a hierarchical
framework to identify context and then assess motor symptoms
was to provide more interpretable data during unsupervised
ambulatory monitoring. However, because of the hierarchical
relationship between context detection and symptom assessment,
there is a risk of error propagation if mistakes are made early on.
While the false positive rates for hand movement (10.78%) and
gait (6.4%) classifiers did not appear to have a significant impact
on motor symptom assessment, application of this method to
data collected over longer durations (days or weeks) is necessary
to investigate its generalizability.
By assessing agreement of sensor-derived measures with

clinical assessments (MDS-UPDRS) and PD motor states (ON–OFF),
we were able to assess criterion and discriminative validity of the
proposed method. While maintaining high sensitivity, a random
forest classifier trained for classifying resting tremor using features
extracted from accelerometer data was able to achieve a 3.4%
reduction in false-positive rate compared to a previously

Fig. 7 An example showing continuous assessment of resting tremor and bradykinesia using accelerometer data from a device worn on
the most affected wrist. Data was collected on one PD patient across two in-lab visits. The first visit was in the OFF state and second visit in
the ON state. a Continuous tremor detection and tremor amplitude measurement in the OFF (left panel) and ON (right panel) state. Inset
shows aggregate measures of tremor constancy and tremor amplitude. Tremor constancy was rated 3 in the OFF state and 1 in the ON state.
Tremor amplitude was rated 2 in the OFF and 0 in the ON. b Continuous hand movement detection and hand amplitude measurement in the
OFF (left panel) and ON (right panel) state. Inset shows aggregate measures of hand movement amplitude and length of no hand movement
bouts. Hand bradykinesia was rated 9 in the OFF state and 2 in the ON state.

N. Mahadevan et al.

6

npj Digital Medicine (2020)     5 Scripps Research Translational Institute



published gyroscope-based heuristic algorithm.15 This translates
into sensor-derived tremor constancy of 4.42 ± 2.64% (mean ±
std.) in the HC subjects, which is close to the level that would be
considered a score of 0 on the UPDRS III rating of tremor
constancy. The improvement in specificity can be largely
attributed to (1) the use of ML to learn the rules in a higher
dimensional feature space, and (2) the inclusion of data from HC
subjects as the negative class during training. While completely
eliminating false positives might not be feasible, future efforts
should focus on further refinements that could help reduce the
false positive rate. One approach could be to apply post-
processing rules for removing isolated tremor windows at the
cost of reducing sensitivity. Alternatively, the classification thresh-
old could be tuned to increase specificity (i.e., lower false-positive
rate) at the cost of reducing sensitivity. The suitability of an
approach will depend on the application scenario and a careful
analysis of tradeoffs. Sensor-derived measures for both resting
tremor constancy and amplitude showed good agreement with
respective clinical measures and demonstrated excellent ability to
discriminate between ON–OFF motor states. However, we
observed a tendency of sensor-derived estimates to under-
estimate at higher scores. For example, the sensor-derived
estimate of tremor constancy was between 75–100% for only
two observations out of 7 that had been assigned a clinical score
of 4. One potential reason for this could be that while sensor-
derived measures are based on the entire observation period (i.e.,
entire visit), clinical scores might be influenced by what the live
rater observes in a period closer to the point of assessment.
Of the four sensor-derived bradykinesia measures that were

extracted during periods of voluntary hand movement, most of
the variance in the hand bradykinesia score was explained by the
hand movement amplitude feature (48%) followed by the no
hand movement bouts feature (14%). A possible explanation for
this is that when raters are scoring bradykinesia items of the MDS-
UPDRS, movement amplitude is the primary factor in their
assessment whereas aspects such as smoothness of hand move-
ments or amount of hand movement observed during the
assessment period are discounted. Using a longitudinal mixed-
effects model we were able to achieve RMSE of 2.01 for predicting
the hand bradykinesia score (range: 0–12) and 7.57 for predicting
the total bradykinesia score (range: 0–44). The increased RMSE for
the total bradykinesia score can be explained by the fact that a
single wrist worn device is limited to the most affected side and
not able to measure bradykinesia on the contralateral arm or
lower limbs. Future efforts should be aimed at investigating the
tradeoff between improving sensitivity of the sensor-derived
measures and increasing system complexity by using multiple
devices.
A high degree of compliance is essential for deployment of

wearable device based digital endpoints. An advantage of the
proposed method is that it relies on a single, power efficient
accelerometer sensor, which can be deployed in a wristwatch-like
device that does not require frequent charging. However, while
we observed a strong preference for wrist-worn devices, in a large
study (N= 953) aimed at assessing feasibility of using wearable
devices for long-term (monitoring duration ranged from 6 to
13 weeks) continuous monitoring of PD motor symptoms, the
median compliance for the wrist-worn device was only 65%.43

Therefore, considerations for human factors like esthetics, comfort,
and usability in the design of wearable devices will play a critical
role in ensuring compliance, and ultimately determine the quality
and quantity of data that can be collected.
Clinical trials aimed at improving the management of PD motor

symptoms largely rely on the use of subjective endpoints to assess
the efficacy of new therapies. These endpoints, which are typically
based on either infrequent clinical assessments or unreliable patient
self-reports, can fail to capture the impact of disease on daily life.44

Wearable devices, which can provide objective and high resolution

monitoring of motor symptoms, have the potential to deliver new
insights that can transform the development of new therapies as
well as improve clinical management of PD.39 However, deploying
wearable devices under free-living conditions comes with a unique
set of challenges. First and foremost, will the performance of
methods developed based on data collected in constrained or semi-
constrained settings (e.g., clinic or research lab) be generalizable to
free-living conditions? This question of ecological validity is further
compounded by factors such as compliance with the use of
wearable devices, as well as errors in device setup (e.g., device
placed at the wrong body location), which could impact the data
quantity and quality. Furthermore, the heterogeneity of PD45 implies
that wearable devices will only be able to provide a partial picture of
the clinical features that are experienced by a patient. Therefore, it
will be important to develop digital tools such as smartphone apps
that can capture a more holistic representation of various motor19

and nonmotor46 symptoms. Subjective clinical assessments (e.g.,
MDS-UPDRS) and patient self-reports (e.g., motor diaries) are
typically used to validate digital assessment tools. While it is
necessary to demonstrate agreement between a new digital tool
(objective and continuous) and currently accepted methods
(subjective and episodic), there is a fundamental difference between
the type of information that is captured by the two approaches. An
opportunity for the research community is to come up with new
objective measures or scales along with target ranges that can be
used for clinical decision-making.47

While there are practical advantages to minimizing the number
of devices, because PD motor symptoms can manifest across the
body, application of the proposed approach may be limited to
monitoring patients who have not developed axial symptoms like
gait impairments and postural instability. Consequently, multiple
devices and sensing modalities (e.g., gyroscopes and electromyo-
graphy) might be essential for quantifying motor symptoms in
patients with advanced PD. Data were collected in an in-clinic
setting from a small sample of PD and HC subjects who were not
age or gender matched. The impact of this mismatch was partly
mitigated by the fact that (a) data from HC subjects only were
used for training the tremor classifier as the negative class (no
tremor) and, (b) a closer examination of the performance of the
gait classifier revealed comparable accuracy for the PD (95.32%)
and HC (95.96%) subjects. Nonetheless, further validation of this
approach in a semi-constrained or unconstrained setting in a
larger population is needed before the system can be deployed at
home. Experimental conditions might also have had an influence
on motor behavior of subjects (for both HC and PD). Besides being
in the clinic under observation of the study staff, subjects had to
deal with the physical and psychological aspects associated with
wearing 11 devices at multiple locations on the body. While it has
previously been shown that stress can have an impact on tremor
characteristics48 and there is some evidence that motivation can
be helpful in overcoming bradykinesia,49 it is not possible to
directly assess the impact of the experimental conditions on
motor symptoms in this study.
PD motor symptoms fluctuate on a continuum between the ON

and OFF state. Data were only collected in the ON and OFF state,
which limited our ability to assess criterion validity during the
transition period. Future studies could be designed to capture
wearable sensor data continuously under free-living conditions
along with periodic clinical assessments (e.g., every 30min) that
provide anchor points for assessing criterion validity. Finally,
minimizing motor fluctuations and dyskinesias50 is a significant
focus area for disease management and development of new
therapies because of their impact on quality of life and functional
abilities of patients. Because only a few subjects in our study
experienced dyskinesias, we were not able to develop an
approach to detect and quantify dyskinetic movement.
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METHODS
Study design
Data from HC and PD patients was collected in two studies with similar
experimental protocols.51 Both studies consisted of two in-clinic visits each
lasting approximately one hour. Visits were separated by a few hours on the
same day or by up to 14 days depending on subject preference. For HC both
visits were identical whereas PD patients were randomly assigned to be in
their self-reported ON (i.e., when motor symptoms are well controlled) or OFF
(i.e., when motor symptoms are poorly controlled) motor state52 for a given
visit. For PD subjects who completed both visits on the same day, if visit 1
was in the ON state, visit 2 (OFF state) began 0.5–1 h before the next
scheduled L-Dopa dose, whereas if visit 1 was in the OFF state, visit 2 (ON
state) began with the subject taking their L-Dopa dose with ON/OFF
questioning every 0.5 h until ON state was confirmed or 1.5 h post-dose. The
washout period for PD subjects who were OFF in visit 1 was 889.87 ±
160.66min compared to 497.89 ± 270.04min for subjects who were OFF in
visit 2. The study had approval from the Tufts Medical Center and Tufts
University Health Sciences Institutional Review Board. All participants in the
study gave written informed consent prior to enrollment.

Instrumentation
Subjects wore multiple devices with inertial sensors (three-axis accel-
erometer, thre-axis gyroscope, and three-axis magnetometer) on their
arms, legs, and torso as illustrated in Fig. 8a. Devices included Opal (APDM,
Inc.), and BioStamp (MC10, Inc.) devices. The analysis presented in this
work is based on inertial sensor data recorded by Opal devices located on
the wrist (dominant side for HC’s and most affected side for PD patients).
Sensor data included triaxial accelerometer, gyroscope, and magnetometer
recordings sampled at 128 Hz. In addition, video recordings of all study
activities were performed for later review.

Subjects
A total of 60 HC subjects (Age: 44.1 ± 10.70 [23–69] years; Sex: 27 M/33 F)
and 35 PD subjects with mild to moderate PD (Age: 68.31 ± 8.03 [46–79]
years; Sex: 23 M/12 F; Hoehn & Yahr stage <= 3 (H & Y I/II/III: 2/26/7); MDS-
UPDRS III: 52.86 ± 16.03) participated in the two studies. All PD patients
were taking Levodopa and could recognize their “wearing off” symptoms.
The HC population had no known sensory or motor deficits. For the
analysis presented herein, data from a total of 50 HC (Age: 43.9 ± 10.02
(23–64), Sex: 23 M/27 F) and 31 PD subjects (Age: 68.1 ± 8.13 (46–79), Sex:

20M/11 F) were used. Detailed subject characteristics are listed in Table 2.
Four PD and ten HC subjects were excluded from the analysis because of
issues with time alignment of sensor data with protocol activities or
missing data from the wrist sensors. Time alignment issues resulted from a
mismatch between clocks associated with wearable devices and video
recordings, which prevented ground truth labels being generated for
various activities performed during the experimental protocol.

Experimental protocol
The experimental protocol comprised of two visits to the study site (Fig.
8b). During each visit, subjects were instructed to perform a series of
tasks (Supplementary Table 2). These tasks can be broadly divided into
activities of daily living (ADL), controlled speech activities (CSA), and
tasks from the motor assessment section of the MDS-UPDRS Part III.9

ADL tasks were selected because they involved a combination of gross
mobility (e.g., carrying a book) and fine coordination (e.g., writing a
sentence),53 which are typically performed during daily life. The

Controlled Speech Activities
Scripted Motor Tasks from MDS-

UPDRS Part III
Activities of Daily Living

Total Duration: 45 to 60 minutes

Parkinson's Disease 
(N = 35)

Visit 1 (ON)

Visit 2 (OFF)Visit 1 (OFF)

Visit 2 (ON)

Visit 2Visit 1

Healthy Control
 (N = 60)

R
an

do
m

iz
at

io
n

Time between visit 1 & visit 2: hours to 14 days

Experimental Protocol (per visit)

a b

Fig. 8 Sensor setup and experimental protocol. a An illustration of the sensor setup used for data collection. Sensor data from only one
device (blue) attached to the wrist of the most affected side (PD) or dominant side (HC) was used for the analysis presented in this paper. b
Both the PD study and the HC study consisted of two in-clinic visits. Subjects performed a series of activities that were repeated in each visit.
Activities were categorized into controlled speech activities, scripted MDS-UPDRS tasks, and activities of daily living. For HC’s both visits were
identical whereas PD patients were randomly assigned to be in their self-reported ON or OFF motor state for a given visit.

Table 2. Characteristics of subjects used for analysis.

Characteristic HC (n= 50) PD (n= 31)

M/F (n) 23/27 20/11

Age (years) 43.9 ± 10.02 68.1 ± 8.13

Levodopa Equivalent Daily Dose (mg/day) – 157.81 ± 80.92

Time Since First Diagnosis (years) 5.62 ± 3.46

Hoehn and Yahr (n) – H & Y I–2
H & Y II−24
H & Y III−5

MDS-UPDRS III – 50.55 ± 15.53

Tremor Constancy (MDS-UPDRS 3.18) – 2.16 ± 1.25

Tremor Amplitude (MDS-UPDRS 3.17) – 1.42 ± 0.91

Finger Tapping (MDS-UPDRS 3.4) – 2.65 ± 0.86

Hand Movements (MDS-UPDRS 3.5) – 2.42 ± 0.98

Pronation Supination (MDS-UPDRS 3.6) – 2.97 ± 0.86

Hand Bradykinesia (MDS-UPDRS 3.4+MDS-
UPDRS 3.5+MDS-UPDRS 3.6)

– 8.03 ± 2.4
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duration of these tasks ranged from ~5 s to ~3 min, with each visit
totaling ~45–60 min. A neurologist administered Part III of the MDS-
UPDRS and rated the items on a scale from 0 to 49 (live rater). In
addition, video recordings of these assessments were retrospectively
reviewed and scored by two neurologists (video raters). Video raters
were blinded to the treatment state (ON or OFF) of PD subjects.

Detection and assessment of motor behavior
We chose a 3-s window length for the gait and tremor classifier based on
prior work14,54 in the area of monitoring PD symptoms and human activity
recognition that has shown that this duration provides sufficient resolution
for extracting relevant time and frequency domain features.55 Because
tremor has a fundamental frequency typically between 3–8 Hz, a 3-s
window length should be sufficient14 for capturing signal features
associated with high frequency movements. For the gait classifier,
considering normative values of cadence (>102 ± 11 steps/min) in older
adults,56 we can expect that a 3-s window would be able to capture
multiple steps. Furthermore, a systematic analysis54 of effect of window
length on accuracy of human activity classification revealed that a
minimum window length of 1–2 s is required to achieve a good tradeoff
between classification accuracy and inference speed.

Hand movement classifier
To assess performance of the hand movement classifier, we randomly
selected ten PD subjects and manually annotated (marked the start and end)
periods involving hand movement by reviewing video recordings. This
choice was motivated by the common ML practice of using 20–30% of data
for testing. Annotations were performed by three raters and reviewed by an
arbitrator for accuracy. Data from the following tasks were annotated:
conversation (CSA 1), kinetic tremor of the hands (MDS-UPDRS 3.16),
pronation/supination movements of the hand (MDS-UPDRS 3.6), bottle shake
(ADL 7) and gait (MDS-UPDRS 3.10; Supplementary Table 2). These tasks were
selected because they provided a good representation of different types of
hand movements that are performed in daily life. Hand movements were
annotated as either GD (e.g., reaching for a glass of water) or NGD (e.g., hand
gestures while having a conversation or during gait)57 movements. The
distinction between GD and NGD was made to assess if the type of hand
movement had an impact on the performance of the classifier.

Sensor data acquired during the performance of these tasks were then
segmented into 3-s nonoverlapping windows. A window was labeled as hand
movement if more than 50% of its duration was marked as either GD or NGD
movement. For each 3-s window, raw accelerometer data was first processed
by first taking the vector magnitude (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

) to remove dependence
on device orientation. This was followed by low-pass filtering the resulting
signal using a sixth order Butterworth infinite impulse response (IIR) filter with
a 3 Hz cutoff frequency to attenuate high frequency movements typically
associated with tremor. We then computed a rolling coefficient of variation
(cv ¼ σ=μ;where σ ¼ standard deviation; μ ¼ mean) by sliding a 1-s win-
dow across the filtered signal to create an envelope like representation of the
signal. A threshold of 0.01 was determined empirically and any coefficients of
variation values above this threshold were marked as periods of hand
movement. The resulting binary time series (0= no hand movement, 1=
hand movement) was then divided into nonoverlapping 3-s windows. If more
than 50% of the samples in a window were marked as hand movement, then
that window was labeled as a hand movement window. Figure 9 shows an
example of the output at each processing step of the hand movement
detection method.

Gait classifier. We trained a binary machine learning (ML) classifier to
detect periods of gait from the raw accelerometer data. Observations of
the positive class (gait) were derived from two gait tasks (2.5-m walk and
10-m walk) whereas the remain tasks (excluding the ADL tasks that
included walking) from each visit were used to derive observations of the
negative class (not gait). All data from the available HC and PD subjects
were used for training the gait classifier model.
The pipeline for training the gait classifier, included steps for

preprocessing, feature extraction, feature selection, and model training/
evaluation. The raw acceleration data was band-pass filtered using a first
order Butterworth IIR filter with cutoff frequencies of 0.25–3.0 Hz to
attenuate high frequency movements associated with tremor. We then
projected the band-pass filtered three-axis accelerometer signals along the
first principal component derived using principal component analysis
(PCA) to generate a processed signal that is independent of device
orientation. These preprocessing steps yielded 4 processed time series of
acceleration signals (3 band-pass filtered signals and 1 PCA projection). The
signals were then segmented into 3-s nonoverlapping windows and a total
of 47 time and frequency domain features (listed in Supplementary Table
3) were extracted from each window. The number of observations was
then randomly sampled to balance both the positive and negative classes
prior to the feature selection step. Feature selection was performed using
recursive feature elimination with cross-validated selection of the optimal
features using a decision tree classifier.58 We then trained a random forest
classifier using the selected features. A leave one subject out approach was
used to assess the performance (accuracy, precision, recall, and F1 score) of
the gait detection model.

Resting tremor. Assessment of resting tremor is based on two measures:
constancy and amplitude. Constancy measures the percentage of time that
tremor is present whereas amplitude measures how fast and big the
tremor related movements are. We trained a binary machine learning
classifier to detect periods of tremor from raw accelerometer data. To
generate labels for training the classifier, we implemented a heuristic
algorithm15 based on angular velocity signals measured by the three-axis
gyroscope (on the same device) as an alternative to generating labels by
manually annotating the video recordings. The heuristic algorithm is
straightforward to implement and has been shown15 to be very accurate
(99.5% sensitivity and 94.2% specificity) when compared to video
reference. While the heuristic algorithm might not provide perfect labels,
it is preferable to manually annotating videos, which is extremely time
consuming, error prone and suffers from inter and intra rater reliability
issues.59 To generate labels for the positive class (tremor present), we
applied the heuristic algorithm to continuous stream of sensor data from
the entire visit for PD subjects. We then segmented the data into 3-s
nonoverlapping windows. Any 3-second window where tremor was
present for more than 50% of the duration was assigned a positive label.
To generate labels for the negative class (no tremor), we used all available
data from HC subjects. This was justified by the fact that HC subjects were
significantly younger than PD subjects (p < 0.0001) and had no sensory or
motor impairments.
The pipeline for training a tremor classifier based on three-axis

accelerometer data, included steps for preprocessing, feature extraction,
feature selection, and model training and evaluation. The first step in the
pipeline generated multiple processed signals by applying filtering and

Raw
Accelerometer

Signal

Vector
Magnitude

Signal

Filtered
Signal

Coefficient of
Variation with

Threshold

Hand
Movement
Detection

Fig. 9 Method for detecting hand movement from raw accel-
erometer data. Vector magnitude derived from raw triaxial
accelerometer data is filtered to remove high frequency compo-
nents. An empirically derived threshold is then applied to coefficient
of variation of the filtered signal to detect hand movement. HM,
hand movement; NHM, no hand movement.
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dimensionality reduction to the raw acceleration signals. Processed signals
were first derived by applying a first order Butterworth IIR band-pass filter
in the nontremor movement (cutoff: 0.25–3 Hz) and tremor (cutoff:
3.5–7.5 Hz) band. The first principal component was calculated from the
filtered signals in both the nontremor movement and tremor movement
bands. The first principal component was included as a processed signal
for feature extraction to reduce dependence on device orientation. These
preprocessing steps resulted in eight processed signals (i.e., three signals in
the tremor movement band, three signals in the nontremor movement
band, one PCA projection in the tremor movement band, and one PCA
projection in the non-tremor movement band).
The 8 processed signals were then segmented into 3-s nonoverlapping

windows and a total of 64 time and frequency domain features (listed in
Supplementary Table 3) were extracted from each window. Observations
were then randomly sampled to balance both the positive and negative
classes prior to feature selection. Feature selection was performed using
recursive feature elimination with cross-validation using a decision tree
estimator.58 We then trained a random forest classifier using the selected
features. A leave one subject out approach was used to assess the
performance (accuracy, precision, recall, and F1 score) of the tremor
detection model.
Tremor amplitude was calculated for each 3-s window that was classified

as tremor. First, in order to attenuate acceleration related to movements
outside the tremor band, the raw accelerometer data was band-pass
filtered in the tremor band with a third order Butterworth IIR filter with
cutoff frequencies of 3.5–7.5 Hz. The vector magnitude (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

) of
the filtered signal was then computed to remove dependence on device
orientation as well as directionality of tremor movements. Tremor
amplitude (unit: g) was then calculated by computing the root mean
square (RMS) of the vector magnitude signal for each 3-s window. To
estimate the tremor amplitude value for the entire visit, we calculated the
85th percentile value across all 3-s windows within the duration of the visit.
The percentile value was determined by assessing the correlation with the
tremor amplitude score in increments of 5% from 80th percentile to 95th
percentile. This was done to mimic the clinical assessment of tremor
amplitude, which is based on the maximum amplitude observed by the
examiner during the assessment period.

Bradykinesia. The assessment of bradykinesia is based the examiner’s
observation of slowness, hesitancy and amplitude of movement as well as
poverty or absence of movement.9 To capture these aspects of
bradykinesia, we derived four measures from raw accelerometer data:
amplitude of hand movements (amplitude and slowness), smoothness of
hand movements (hesitancy), percentage of time spent with no hand
movement (poverty or absence), and average length of bouts with no
hand movement (poverty or absence). These four measures were
calculated when hand movement was detected from data collected
during the entire visit except during scripted MDS-UPDRS Part III tasks.
MDS-UPDRS Part III tasks were excluded because they required subjects to
engage in highly prescribed motor tasks, which were often performed at
the subject’s maximum capacity (e.g., a typical MDS-UPDRS Part III
instruction would be “perform pronation-supination of the hand as fast
and wide as you can”). A given 3-s window was used for calculating
bradykinesia measures if hand movement was present (hand movement
classifier= YES) and the subject was not walking (gait classifier= NO).
Aspects associated with poverty or absence of hand movement were

captured by measuring percentage of time spent without hand movement
as well as average duration of periods without hand movement. Longer
average duration of periods without hand movement would indicate that
long stretches of time were spent without movement whereas shorter
duration would indicate that movements are frequent. Percentage of time
spent with no hand movement was calculated by dividing the aggregate
duration of 3-second windows with no hand movement (hand movement
classifier= NO) by the total duration of data used for analysis. Average
length of bouts with no hand movement was calculated by taking the
mean value of contiguous blocks of windows that were classified as no
hand movement (hand movement classifier= NO).
Amplitude of hand movement was derived as a measure of both

amplitude and slowness as accelerometer measurements at the wrist
would respond to how small and slow the hand movements are. For
example, large but slow movements would generate lower levels of
acceleration compared to small but fast movements. Smoothness of hand
movement captures aspects associated with hesitancy during performance
of a task. Acceleration signals generated during performance of fluid
motions will be smoother compared to those with hesitations and halts. To

calculate amplitude and smoothness measures, raw accelerometer data
was first band-pass filtered using a fourth order Butterworth IIR filter with
cutoff frequencies of 0.25–3.5 Hz to attenuate tremor related movements.
For each 3-s window we then calculated the RMS value of the vector
magnitude (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

) of the filtered accelerometer signal. Amplitude
of hand movement was calculated by taking the mean of the RMS values
across all 3-s windows within the duration of the visit. Smoothness of hand
movements was calculated by computing the mean squared jerk60 (i.e.,
rate of change of acceleration), which was scaled by the maximum value of
the vector magnitude signal and duration for each 3-s window. The value
of mean squared jerk will be higher for movements that involve sudden
and frequent changes in direction of movement and lower for movements
that are smooth and fluid. To estimate jerk measure for the entire visit, we
calculated the 95th percentile value of mean squared jerk across all 3-s
windows within the duration of the visit. The percentile value was
determined by assessing the correlation with the hand bradykinesia score
in increments of 5% from 80th percentile to 95th percentile.

Statistical methods to measure agreement between sensor-
derived measures and clinical assessments
Shapiro–Wilk test was used to assess normality of features. Since features
were not normally distributed, nonparametric statistical methods were
used throughout. Variation of features with the live rater’s item score was
quantified by the Kruskal–Wallis test. Post hoc Conover-Iman tests were
used for pairwise comparisons and multiplicity was adjusted using false-
discovery rate correction. Pairwise differences in tremor and bradykinesia
features between ON and OFF states, and between transitions from ON to
OFF and OFF to ON were tested using Wilcoxon rank sum test.
Bradykinesia features were used to fit a longitudinal mixed effects

regression model to predict the live rater’s bradykinesia score using the
four sensor-derived bradykinesia features as well as visit number, subject
specific covariates, namely gender and years since first symptoms as
fixed effects, and subject as random effect. Stepwise model selection
was performed using Akaike Information Criterion as a cost function to
achieve the optimal model fit. The accuracy of the model prediction
based on its fixed effects was tested via leave-one-subject-out cross
validation.
Agreement between the video raters and live rater for tremor constancy

and amplitude (which are ordinal ratings from 0 to 4) was assessed using
Cohen’s Kappa K with linear weights.61 The hand bradykinesia score was
considered as a continuous variable ranging from 0 to 12, and hence the
ICC was computed as a measure of agreement between raters. ICC
estimates and their 95% confidence intervals were calculated using the R
package irr based on a 2-way mixed-effects model using “agreement” as
the ICC type.62

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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