Table 6.
Method | SN(%) | SP(%) | GM(%) | BA(%) |
---|---|---|---|---|
LH10 | 0.6888 | 0.9376 | 0.7976 | 0.8132 |
VGG | 0.6241 | 0.9319 | 0.7565 | 0.7780 |
VGG-P | 0.6553 | 0.9703 | 0.7727 | 0.8128 |
GoogleNet-P | 0.6930 | 0.9264 | 0.7943 | 0.8097 |
GoogleNet | 0.6256 | 0.9341 | 0.7608 | 0.7798 |
VGG-EF | 0.7762 | 0.9633 | 0.8647 | 0.8697 |
VGG-LT | 0.8148 | 0.9678 | 0.8880 | 0.8913 |
Kim et al.33 | 0.3759 | 0.9027 | 0.5825 | 0.6393 |
Anthimopoulos et al.31 | 0.7687 | 0.9657 | 0.8567 | 0.8672 |
ECNN | 0.9041 | 0.9818 | 0.9420 | 0.9430 |
BCNN2D | 0.8615 | 0.9730 | 0.9152 | 0.9172 |
MSTAGE-CNN2D | 0.8552 | 0.9740 | 0.9125 | 0.9146 |
MCONTEXT-CNN2D | 0.8621 | 0.9766 | 0.9171 | 0.9194 |
BCNN2.5D | 0.8426 | 0.9748 | 0.9051 | 0.9087 |
MSTAGE-CNN2.5D | 0.8776 | 0.9754 | 0.9246 | 0.9265 |
BCNN3D | 0.8271 | 0.9650 | 0.8917 | 0.8960 |
MSTAGE-CNN3D | 0.8335 | 0.9727 | 0.8993 | 0.9031 |
The first group of methods (first seven rows) presents the results of the state-of-the-art and the proposed ensemble methods. The second group presents the results of the individual models.
SN: sensitivity; SP: specificity; GM: geometric mean; BA: balanced accuracy.