Skip to main content
. 2020 Jan 15;10:338. doi: 10.1038/s41598-019-56989-5

Table 6.

Comparison of the proposed ensemble with state-of-the-art methods.

Method SN(%) SP(%) GM(%) BA(%)
LH10 0.6888 0.9376 0.7976 0.8132
VGG 0.6241 0.9319 0.7565 0.7780
VGG-P 0.6553 0.9703 0.7727 0.8128
GoogleNet-P 0.6930 0.9264 0.7943 0.8097
GoogleNet 0.6256 0.9341 0.7608 0.7798
VGG-EF 0.7762 0.9633 0.8647 0.8697
VGG-LT 0.8148 0.9678 0.8880 0.8913
Kim et al.33 0.3759 0.9027 0.5825 0.6393
Anthimopoulos et al.31 0.7687 0.9657 0.8567 0.8672
ECNN 0.9041 0.9818 0.9420 0.9430
BCNN2D 0.8615 0.9730 0.9152 0.9172
MSTAGE-CNN2D 0.8552 0.9740 0.9125 0.9146
MCONTEXT-CNN2D 0.8621 0.9766 0.9171 0.9194
BCNN2.5D 0.8426 0.9748 0.9051 0.9087
MSTAGE-CNN2.5D 0.8776 0.9754 0.9246 0.9265
BCNN3D 0.8271 0.9650 0.8917 0.8960
MSTAGE-CNN3D 0.8335 0.9727 0.8993 0.9031

The first group of methods (first seven rows) presents the results of the state-of-the-art and the proposed ensemble methods. The second group presents the results of the individual models.

SN: sensitivity; SP: specificity; GM: geometric mean; BA: balanced accuracy.