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The initial exponential growth rate of an epidemic is an important measure of the
severeness of the epidemic, and is also closely related to the basic reproduction number.
Estimating the growth rate from the epidemic curve can be a challenge, because of its
decays with time. For fast epidemics, the estimation is subject to over-fitting due to the
limited number of data points available, which also limits our choice of models for the
epidemic curve. We discuss the estimation of the growth rate using maximum likelihood
method and simple models.

© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi
Communications Co., Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
This is a series of lecture notes for a summer school in Shanxi University, China in 2019. The contents are based onMa et al.
(Ma, Dushoff, Bolker, & Earn, 2013). We will study the initial exponential growth rate of an epidemic in Section 1, the rela-
tionship between the exponential growth rate and the basic reproduction number in Section 2, an introduction to the least
square estimation and its limitations in Section3, an introduction to the maximum likelihood estimation in Section 4, and the
maximum likelihood estimation of the growth rate in Section 5.
1. Epidemic exponential growth rate

Epidemic curves are time series data of the number of cases per unit time. Common choices for the time unit include a day,
a week, a month, etc. It is an important indication for the severeness of an epidemic as a function of time. For example, Fig. 1
shows the cumulative number of Ebola cases during the 2014e16 Ebola outbreak in western Africa. The cumulative cases
during the initial growth phase form an approximately linear relationship with time in log-linear scale. Thus, in linear scale,
the number of deaths increases exponentially with time. The mortality curve (the number of deaths per unit time) shows a
similar pattern, as demonstrated by the daily influenza deaths in Philadelphia during the 1918 influenza pandemic shown in
Fig. 2.

In fact, most epidemics grow approximately exponentially during the initial phase of an epidemic. This can be illustrated
by the following examples.

Example 1. Consider the following Susceptible-Infectious-Recovered (SIR) model:
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Fig. 1. Cumulative Ebola cases during the 2014e16 western African Ebola outbreak, plotted in linear scale (left) and log-linear scale (right). Source: Center for
Disease Control Ebola case counts (Center for Disease Control, 2016).
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dS
dt

¼ � bSI ; (1a)

dI

dt

¼ bSI � gI ; (1b)

dR

dt

¼gI (1c)

where S is the fraction of susceptible individuals, I is the fraction of infectious individuals, and R is the fraction of recovered

individuals; b is the transmission rate per infectious individual, and g is the recovery rate, i.e., the infectious period is
exponentially distributed with a mean 1=g. Linearize about the disease-free equilibrium (DFE) ð1;0;0Þ,
Fig. 2. Weekly influenza mortality during the 1918 pandemic in Philadelphia, plotted in linear scale (left) and log-linear scale (right).
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dI
dt
zðb�gÞI: (2)
Thus, if b� g>0, then IðtÞ grows exponentially about the DFE. In addition, initially, Sz1, thus, the incidence rate (number
of new cases per unit time) C ¼ bSI also increases exponentially.

It is similar for an Susceptible-Exposed-Infectious-Recovered (SEIR) model, as illustrated by the following example.

Example 2. Lets consider an SEIR model:

dS
dt

¼ � bSI; (3a)

dE

dt

¼bSI � sE (3b)

dI

dt

¼ sE � gI; (3c)

dR

dt

¼gI; (3d)

where E is the fraction of latent individuals (infected but not infectious), s the rate that latent individuals leaving the class, i.e;

, the mean latent period is exponentially distributed with mean 1=s; S, I, R, b and g are similarly defined as in Example 1.
Again, ð1;0;0;0Þ is a disease free equilibrium representing a completely susceptible population. Linearize about this equi-
librium, the equations for E and I are decoupled, and become

dE
dt

¼ � sE þ bI;

dI

dt

¼ sE � gI:
Note that the Jacobian matrix

J¼
��s b

s �g

�
has two real eigenvalues, namely,
l1 ¼
�ðsþ gÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� gÞ2 þ 4sb

q
2

; l2 ¼
�ðsþ gÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� gÞ2 þ 4sb

q
2

:

Thus, about the DFE, the solution of the model is asymptotically exponential with a rate l1. Similar to Example 1, the
incidence rate also grows exponentially initially.

In general, suppose the infection states of an individual can be characterized by the following vector ð S!; I
!Þ, where S

!
represents multiple susceptible states, and I

!
represents multiple infectious (or latent) states. We also use S

!
and I

!
represent

the number of individuals in each state. Also assume that the epidemic can be modeled by the following generic system

d
dt

S
!¼ f ð S!; I

!Þ;

d ! ! !

dt

I ¼ gð S ; I Þ;

! ! ! ! !

Assume that gð S ;0Þ ¼ 0 for all S ; in addition, ð S 0; 0 Þ is a DFE, and the initial number of infectious individuals I ð0Þ is

very small, then, initially, the dynamics of I is governed by the following linearized system

d
dt

I
!¼ vg

v I
!ðS0;0Þ I

!
:

If the DEF is unstable, then IðtÞ grows asymptotically exponentially.
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2. The exponential growth rate and the basic reproduction number

The exponential growth rate is, by itself, an important measure for the speed of spread of an infectious disease. It being
zero is, like the basic reproduction numberR 0 ¼ 1, a disease threshold. The disease can invade a population if the growth rate
is positive, and cannot invade (with a few initially infectious individuals) if it is negative. In fact, it can be used to infer
R 0.There are two approaches to infer R 0 from the exponential growth rate, a parametric one, and a non-parametric one.

2.1. The parametric approach

For the parametric approach, we need an underlying model that gives both the growth rate and R 0.

Example 3. Consider the SIR model (1) in Example 1. Note that ð1;0;0Þ is an disease free equilibrium, representing a
completely susceptible population. As we discussed above, the exponential growth rate is l ¼ b� g. Note that the basic
reproduction number is R 0 ¼ b=g . If, for example, g is estimated independently to l, then,

R 0 ¼
l

g
þ 1:
Lets look at a more complicated example.

Example 4. Lets consider the SEIR model (3) in Example 2. The basic reproduction number is R 0 ¼ b=g. To link R 0 to the
exponential growth rate

l¼�ðsþ gÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� gÞ2 þ 4sb

q
2

;

express b in terms of l and substitute it into R 0, then

R 0 ¼
ðlþ sÞðlþ gÞ

sg
:

Thus, if the mean infectious period 1=g and the mean latent period 1=s can be independently estimated on l, thenR 0 can
be inferred from l.

Typically, for an epidemic model that contains a single transmission rate b, if all other parameters can be estimated
independently to the exponential growth rate l, then l determines b, and thus determines R 0.
2.2. The non-parametric approach

Models can be overly simplified for mathematical tractability. For example, Both the SIR model in Example 1 and the SEIR
model in Example 2 assume exponentially distributed infectious period. However, the infectious period and the latent period
are mostly likely not exponential. Wallinga and Lipsitch (Wallinga & Lipsitch, 2006) developed a non-parametric method to
infer the basic reproduction number from the exponential growth rate without assuming a model.

Let hðaÞ be the probability that a random individual remain infectious a time units after being infected (i.e., a is the
infection age); bðaÞ is the rate of transmission at the infection age a. Then,

tðaÞ¼ hðaÞbðaÞ
is the transmissibility of a random infectious individual at the infection age a, assuming that the whole population is sus-
ceptible. Thus,

R 0 ¼
Z∞
0

tðaÞda:
In addition, we assume that the population is randomly mixed, i.e., every pair of individuals have identical rate of contact.
Let cðtÞdt be the number of new infections during the time interval ½t;t þ dt�, that is, cðtÞ is the incidence rate, and SðtÞ be the
average susceptibility of the population, i.e., the expected susceptibility of a randomly selected individual. In addition, new
infections at time t is the sum of all infections caused by infectious individuals infected a time unit ago (i.e., at time t� a) if
they remain infectious at time t (with an infectious age a) and their contact is susceptible. That is,
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cðtÞ¼
Z∞
0

cðt� aÞtðaÞSðtÞda;

and thus
cðtÞ¼ SðtÞ
Z∞
0

cðt� aÞhðaÞda:
To compute R 0, we need to normalize tðaÞ as a probability density function,

wðaÞ¼ tðaÞZ ∞

0
tðsÞds

¼ tðaÞ
R 0

:

Note that wðaÞda is the probability that a secondary infection occurs during the infection age interval ½a;a þ da�. That is,
wðaÞ is the probability density function of the generation time, i.e., the time from being infected to generate a secondary
infection. This generation time is also called the serial interval. With the serial interval distribution wðtÞ,

cðtÞ¼R 0SðtÞ
Z∞
0

cðt� aÞwðaÞda: (4)
This means that the cðtÞ is only determined by R 0, wðtÞ and SðtÞ. At the beginning of an epidemic, where the epidemic
grows exponentially (with an exponential growth rate l), SðtÞz1 and cðtÞ ¼ c0elt where c0 is the initial number of cases at
time t ¼ 0. Thus,

elt ¼R 0

Z∞
0

elðt�aÞwðaÞda;

that is,

R 0 ¼
1Z ∞

0
e�lawðaÞda

¼ 1
Mð�lÞ; (5)

where MðxÞ ¼ R∞
0 exawðaÞda is the moment generating function of the serial time distribution wðaÞ.

Equation (5) links the exponential growth rate to the basic reproduction number though the serial interval distribution
only. That is, if we can estimate the serial interval distribution and the exponential growth rate independently, that we can
infer the basic reproduction number.

Note that the serial interval distributionwðtÞ can be estimated independently to the exponential growth rate. For example,
it can be estimated empirically using contact tracing. Alternatively, one can also assume an epidemicmodel. Herewe discuss a
few simple examples.

Example 5. Consider an SIR model. Let FðaÞ be the cumulative distribution function of the infectious period, and a constant
transmission rate b. The probability that an infected individual remains infectious a time units after being infected is

hðaÞ¼1� FðaÞ;

and thus the transmissibility is

tðaÞ¼b½1� FðaÞ�;

and the serial interval distribution is

wðaÞ¼ tðaÞZ ∞

0
tðtÞdt

¼ 1� FðaÞZ ∞

0
1� FðaÞdt

¼1� FðaÞ
m

;

where m is the mean infectious period. For the special case that the infectious period is exponentially distributedwith a rate g,
i.e., FðaÞ ¼ 1� e�ga, this model becomes Model (1). Then the density function of serial interval distribution is
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wðaÞ¼1� FðaÞ
1=g

¼ge�ga

which is identical to the density function of infectious period distribution. The moment generating function is

MðxÞ¼ g

g� x
;

Note that the exponential growth rate is l ¼ b� g, then

R 0 ¼
1

Mð�lÞ¼
gþ l

g
¼ b

g
:

Lets consider a more complex example with multiple infected states.

Example 6. Consider an SEIR model with a constant transmission rate b. Let FðaÞ and GðaÞ be the cumulative distribution
functions of the infectious period and the latent period, respectively. Given the latent period TL ¼ [ � a, the probability that
an infectious individual is infectious a time units after being infected is 1� Fða � [Þ:Thus,

hðaÞ¼
Za
0

1� Fða� [ÞdGð[Þ:

Hence, the serial interval distribution is

wðaÞ¼

Z a

0
½1� Fða� [Þ�G’ð[Þd[Z ∞

0

Z a

0
½1� Fða� [Þ�G’ð[Þd[da

:

For the special case that the latent period is exponentially distributed with a rate s (i.e., FðaÞ ¼ 1� e�ga) and the latent
period is exponentially distributed with a rate s (i.e., GðaÞ ¼ 1� e�sa), this model becomes Model (3), and

wðaÞ¼gse�ga
Za
0

eðg�sÞsds¼ðge�gaÞ�ðse�saÞ:

That is, if both distributions are exponential, the serial interval distribution is the convolution of the latent period dis-
tribution and the infectious period distribution. In this case, the basic reproduction number is

R 0 ¼
1

Mð�lÞ¼
1

MIð�lÞMLð�lÞ¼
ðlþ gÞðlþ sÞ

gs
;

where MIðxÞ and MLðxÞ are the moment generating functions of the infectious period and latent period, respectively.
Remark
In Equation (4),R ðtÞ ¼ R 0SðtÞ is the reproduction number, and thus this equation can be used to estimate the production

number at any time t during the epidemic given the incidence curve cðtÞ, namely,

R ðtÞ¼ cðtÞZ ∞

0
cðt � aÞwðaÞda

:

This is similar to, but different from, the nonparametric method developed by Wallingua and Teunis (Wallinga & Teunis,
2004).
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3. Least squares estimation

The least squares method is one of the most commonly used methods for parameter estimation in mathematical biology.
This method is in fact a mathematical method. For a family of curves f ðt; q!Þ, where q

!
2Rm is a vector of parameters of the

family, this method finds the curve f ðt; bqÞ in the family that minimizes the distance between the curve and a set of points
fðti; xiÞgn�1

i¼0 . Let x! ¼ ðx0; …; xn�1Þ, and f
!ð q!Þ ¼ ðf ðt0; q

!Þ; …; f ðtn�1; q
!ÞÞ, and x! be the Euclidean norm in Rn, then the

mathematical formulation of the least squares method is

bq ¼ argmin

q
! k f

!ð q!Þ � x!k2 ¼ argmin

q
!

Xn�1

i¼0

½f ðti; q
!Þ � xi�2; (6)

where argmin gives the parameter q
!

that minimizes the objective function. For our purpose, the observations fðti; xiÞgn�1
i¼0 is

the epidemic curve, i.e., x0 is the number of initially observed cases, and xi is the number of new cases during the time interval
ðti�1; t1�. We aim to find an exponential function f ðt; c0; lÞ ¼ c0elt that minimizes its distance to the epidemic curve, i.e., the
parameters q ¼ ðc0;lÞ. There are two commonly use methods to estimate the exponential growth rate l:

1. Nonlinear least square to fit to f ðt; c0; lÞ ¼ c0elt directly;
2. Linear least square to fit fðti; lnxiÞg to ln f ðt; c0;lÞ ¼ lnc0 þ lt.

The nonlinear least squares method does not have an analytic solution. Numerical optimization is needed to solve the
minimization problem (6). The linear least square method has an analytic solution: Let [0 ¼ lnc0, then the least squares
problem becomes

ð[0; lÞ¼ argmin
ð[0 ;lÞ

Xn�1

i¼0

ð[0 þ lti � lnxiÞ2:

b b
The objective function is a quadratic function of [0 and l, thus, the minimum is achieved at ð[0; lÞ that satisfies

vs
v[0

j
l

[0 ¼̂l0
¼bl[0¼bl0 ¼X

i¼0

n�1
2
�b[0 þ blti � lnxi

�
¼0;

vs Xn�1 � �

vl
j

l
[0 ¼̂l0

¼bl[0¼bl0 ¼ i¼0

2ti b[0 þ blti � lnxi ¼0:

1Pn�1 n
Let CyiD ¼ n i¼0 yi, which represents the average of any sequence fyigi¼0, then,"
1 CtiD

CtiD Ct2i D

#�b[0bl
�
¼
�

ClnxiD
Cti lnxiD

�
;

and thus the best fit exponential growth rate ls
bl¼ Cti lnx0D� CtiDClnxiD

Ct2i D� CtiD
2 :
Do these twomethods yield the same answer? To compare, we simulate an epidemic curve of the stochastic SEIR model in
Example 2, using the Gillespie method (Gillespie, 1976). The simulated daily cases (number of individuals showing symptom
on a day) are then aggregated into weekly cases. Then, we use both methods to fit an exponential curve to the simulated
epidemic curve. The simulated epidemic curve and the fitting results are shown in Fig. 3. This exercise illustrates a challenge
of fitting an exponential model to an epidemic curve: how to determine the time period to fit the exponential model. The
exponential growth rate of an SEIRmodel decreases with time as the susceptible population decreases. In Fig. 3, The epidemic
curve peaks inweek 13. We choose a sequence of nested fitting windows starting in the first week and ending in aweekw for
w ¼ 3;4;…;13. The SEIR model has an asymptotic exponential growth, so the fitted exponential growth rate is not monotonic
near the beginning of the epidemic. For larger fitting windows, both methods give an exponential growth rate that decreases
with the length of the fitting window. We need more data points to reduce the influence of the stochasticity. However, using
more data points also risks of obtaining an estimate that deviates toomuch from the true exponential growth rate. There is no
reliable method to choose a proper fitting window.

Fig. 3 also shows that the linear and nonlinear least squares methods may not yield the same estimate. This is because of a
major limitation of both least squares methods: they implicitly assume that the deviations jxi � f ðti; q

!Þj carry identical



Fig. 3. The simulated SEIR epidemic curve (upper) and the fitted exponential growth rate as a function of the end of the fitting window (lower). The epidemic
curve is simulated stochastically from the SEIR model in Example 2 using the Gillespie method (Gillespie, 1976) with the parameters b ¼ 0:3, s ¼ 1, g ¼ 0:2,
E0 ¼ 10, S0 ¼ 9; 990. I0 ¼ R0 ¼ 0. The rates have a time unit of a day. The daily cases are then aggregated by week. The data points are taken at times ti ¼ i, i ¼
0;1;2;…13 weeks. The theoretical exponential growth rate is l ¼ 0:547 per week.
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weights. With the nonlinear method, later data points (at larger times) deviate more from the exponential curve than the
earlier data points, because the exponential growth slows downwith time. Thus, the method is more biased to the later data
points. With the linear method, the deviations in lnxi are more even than in xi, and thus the linear method is less biased to the
later data points than the nonlinear method does.

The least squares method, as mentioned above, is a mathematical problem. It does not explicitly assume any error dis-
tributions, and thus cannot give us statistical information about the inference. For example, if we use two slightly different
fitting windows and get two slightly different estimates, is the difference of the two estimates statistically significant? Such a
question cannot easily be answered by the least squaresmethod. Interestingly, the least squaresmethodsmakemany implicit
assumptions to the deviations. We have mentioned the implicit equal-weight assumption above. It also implicitly assumes
that the order of the observations does not matter, and that positive and negative deviations are equivalent. Thus, they
implicitly assume that the deviations are independently identically and symmetrically distributed. In statistics, the least
squares method is commonly used in linear and nonlinear regression with an addition assumption that the errors are
independently and identically normally distributed. However, these assumption on the errors may not be appropriate. For
example, the new cases at time t þ 1 may be infected by those who are infected at time t. Thus, the number of new cases at
different times may not be independent. Also, the number of cases is a counting variable, and thus its mean and variance may
be closely related, meaning that the error may not be identically normally distributed. In the next section, we address some of
these problems using the maximum likelihood method.

4. Maximum likelihood estimation

Themaximum likelihoodmethod is a commonly used statistical method for parameter inference; see, e.g., [(Bolker, 2008),
p.170]. It relies on a “likelihood function” Lð q!Þ where q

!
is the vector of parameters. The likelihood function is a function

proportional to the conditional probability of observing the data points fðti; xiÞgn�1
i¼0 given the parameters q

!
, i.e.,

Lð q!ÞfP
�
fðti; diÞgn�1

i¼0

��� q!	
:

We choose the parameter values that maximize the likelihood, i.e.,

bq¼ argmin

q
! Lð q!Þ:
To construct the likelihood function we need to make assumptions on the error distribution. There are two types of error:
the process error and the observation error. The observation error is the error in the observation process. For example, most
people with influenza do not go to see a doctor, and thus there is no record of these cases, resulting in an under-reporting of
the number influenza cases. Also, many influenza related deaths are caused by complications such as pneumonia, and
influenza may not be recorded as the cause. Typos, miscommunication, etc, can all result in observation errors. The process
error originates from the stochasticity of the system that is independent to observation. For example, the disease dynamics is
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intrinsically stochastic. The time that an infectious individual recovers, and the time that a susceptible individual is infected,
are all random variables that affects the number of new infections at any time, even if we eliminate all observation errors.
These two types of errors have very different nature, and thus need very different assumptions. For example, it is reasonable
to assume that observation errors are independent to each other, but process errors at a later time are commonly dependent
on the process errors at earlier times.

4.1. Case 1: process errors are negligible

If observation errors are large and process errors are negligible, thenwe assume that the randomvariable Xi corresponding
to the observation xi is independently distributed with a probability mass function piðk; q

!Þwhere k is the values that Xi can
take. Then, the likelihood function is

Lð q!Þ¼
Yn�1

i¼0
piðdi; q

!Þ:
The maximization of this likelihood function rarely has an analytic solution, and commonly needs to be solved numeri-
cally. Note that each factor (probability) can be very small, and thus the product may be very difficult tominimize numerically
because of rounding errors (from the binary representation of real numbers in computers). It is a common practice to
maximize the log-likelihood function

[ð q!Þ¼ ln Lð q!Þ¼
Xn
i¼0

lnpiðdi; q
!Þ:
For example, we assume that the number of cases xðtiÞ at time ti is independently Poisson distributed with mean mi ¼
c0elti . Then, the log-likelihood function

[ðc0; lÞ¼
Xn
i¼0

ln
e�mimxii
xi!

¼
Xn�1

i¼0

�mi þ xi lnmi � lnxi!:
Note that the observed cases xi are constants, and thus the last term can be ignored for maximization. Thus,

ðbc0; blÞ¼ argmax
ðc0;lÞ

Xn�1

i¼0

�mi þ xi lnmi ¼ argmax
ðc0;lÞ

Xn�1

i¼0

� c0e
lti þ xi lnc0 þ lxiti:
This maximization problem can only be solved numerically.
We choose Poisson distribution because its simple form greatly simplifies the log-likelihood function. In addition, it does

not introduce more parameters, which is valuable to avoid over-fitting when the number of data points available is small. If
the process error is not completely negligible, then choosing an overly dispersed distribution, such as the negative binomial
distribution may be desirable. A negative binomial distribution has two parameters, the success probability q � 0 and the
shape parameter r>0. For simplicity, we assume that the shape parameter r is the same at each time ti, and will; be estimated
together with the model parameters q

!
; but q depend on ti. The probability mass function is

piðk; qi; rÞ¼
Gðkþ rÞ
k!GðrÞ qki ð1� qiÞr;

with the mean
mi ¼
qir

1� qi
¼ coelti :

Thus,
qi ¼
c0elti

r þ c0elti
;

and the log-likelihood function is
[ðc0; l; rÞ¼
X
i¼0

n�1
ln

Gðxi þ rÞ
xi!GðrÞ

cxi0 e
lxiti rr

ðr þ c0elti Þxiþr
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¼
X
i¼0

n�1
lnGðxi þ rÞ� lnGðrÞþ xic0 þ lxiti þ r ln r�ðxi þ rÞln
rþ c0e

lti
�� lnxi!:
Again, the last term can be ignored for the optimization problem. In addition, there is a constraint r>0.

4.2. Case 2: observation errors are negligible

If process errors are large and observation errors are negligible, thenwe cannot assume that the observed values Xiþ1 and
Xi are independent to each other. Instead, for all i ¼ 0;1;…;n� 2, we compute the probability mass function of Xiþ1 given
fXj ¼ xjgij¼0, namely, qiþ1ðk; q

!���fxjgij¼0Þ. Then, the likelihood function is

Lð q!Þ¼ P
�
fxign�1

i¼0

��� q!	
¼ P

�
x

��fx gn�2; q
!	

P
�
fx gn�2; q

!	

n�1� i i¼0 i i¼0

Yn�1 � !�� 
 	

¼

i¼1

qi xi; q
�� xj

i�1
j¼0 :

lðt �t Þ
For simplicity, assume that Xiþ1 is Poisson distribution with mean miþ1 ¼ Xie iþ1 i . Note that, since we assumed no
observation error, the initial condition c0 ¼ x0 is exact, and thus there is a single parameter l for the model. Thus,

qiþ1

�
k; q
!����xj
ij¼0

	
¼ emiþ1mkiþ1

k!
;

and thus the log-likelihood function is
lð q!Þ¼
X
i¼0

n�1
ln

emimxii
xi!

Xn�1

¼

i¼0

mi þ xi lnmi � lnxi!

Xn�1

¼

i¼0

xi�1e
lðti�ti�1Þ þ xilðti � ti�1Þþ xi lnxi � lnxi!:
Again, the last two terms can be ignored in maximization because they are constants. Thus,

l¼ argmax
l

xi�1e
lðti�ti�1Þ þ ðti � ti�1Þxil:
4.3. Case 3: consider both type of errors together

It is much harder to formulate the likelihood function if process errors and observation errorsmust both be considered.We
can simplify the problem by ignoring the process error and use an overly dispersed observation error distribution as a
compensation. Note that this simplification mainly affects the confidence intervals.

4.4. Confidence intervals

The maximum likelihood method gives a point estimate, i.e., one set of parameter values that makes it mostly likely to
observe the data. However, it is not clear how close the point estimates are to the real values. To answer this question we use
an interval estimate, commonly known as a confidence interval. A confidence interval with a confidence level a is an interval
that has a probability a that contains the true parameter value. A commonly used confidence level is 95%, which originates
from a normal distribution. If a random variable X is normally distributed with a mean m and a standard deviation s, then the
probability that X2½m�2s;mþ2s� is 95%.

The confidence interval can be estimated using the likelihood ratio test [(Bolker, 2008), p.192]. Let
c
q
!̂

be the point estimate
of the parameters. A value l0 is in the 95% confidence interval is equivalent to accepting with 95% probability that l0 is a
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possible growth rate. To determine this we fit a nestedmodel by fixing the growth rate l ¼ l0, suppose its point estimate is bq0.
We then compute the likelihood ratio

L¼ Lðbq0Þ
LðbqÞ :
The Wilks’ theorem (Wilks, 1938) guarantees that, as the sample size becomes large, the statistics �2lnL ¼ 2½[ðbqÞ�[ðbq0Þ�
is c2 distributed with a degree of freedom 1. We thus can compare �2lnL with the 95% quantile of the c2 distribution and
determine if l0 should be in the confidence interval or not. We can thus perform a linear search on both sides of the point
estimate to determine the boundary of the confidence interval.

5. Mechanistic and phenomenological models

We still have not addressed the problem of choosing a fitting window for an exponential model. Recall that the challenge
arises because the exponential growth rate of an epidemic decreases with time. Instead of finding heuristic conditions for
choosing the fitting window, we circumvent this problem by incorporating the decrease of the exponential growth rate into
our model. We have two choices, using either a mechanistic model such as an SIR or SEIR model, or a phenomenological
model.

5.1. Mechanistic models

Naturally, if we know that a mechanistic model is a good description of the disease dynamics, fitting such a model to the
epidemic curve is a good option (see, e.g., (Chowell, Ammon, Hengartner, & Hyman, 2006; Pourabbas, d’Onofrio, & Rafanelli,
2001),). We use an SIR model as an example. For simplicity, we assume that the process error is negligible, and the incidence
rate is Poisson distributed with a mean CðtÞ given by an SIR model (CðtÞ ¼ bSIN where N is the population size). To construct
the log-likelihood function, we need to calculate CðtÞ, i.e., numerically solve the SIRmodel. To do so, we need the transmission
rate b. the recovery rate g, the initial fraction of infectious individuals Ið0Þ ¼ I0 (with the assumption that Rð0Þ ¼ 0, Sð0Þ ¼
1� I0, and thus I0 determines the initial conditions), in addition to the population size N. Thus, the parameters of the model is
q
! ¼ ðb;g; I0;NÞ. Thus the log-likelihood function is (ignoring the constant terms)

[ðb;g; I0;NÞ¼
Xn�1

i¼0

� cðtiÞ þ xi ln cðtiÞ ;

where the number of new cases cðtiÞ in the time interval ½ti; tiþ1� is

cðtiÞ¼ Sðtiþ1Þ � SðtiÞ ;

and SðtiÞ is solved numerically from the SIR model. Thus, [ implicitly depend on b, g and I0 through SðtÞ.
One draw back using such a mechanistic model is its high computational cost, since each evaluation of the log-likelihood

function requires solving the model numerically, and numerical optimization algorithms can be very hungry on function
evaluations, especially if the algorithm depends on numerical differentiation.

Another draw back is that these mechanistic models can be overly simplified, and may not be a good approximation to the
real disease dynamics. For example, for seasonal influenza, due to the fast evolution of the influenza virus, individuals have
different history of infection, and thus have different susceptibility to a new strain. Yet simple SIR and SEIR models assume a
population with a homogeneous susceptibility. Thus using a simple SIR to fit to an influenza epidemic may be an over
simplification. However, realistic mechanistic models can be overly complicated, and involve toomany parameters that are at
best difficult to estimate. For example, a multi-group SIR model depends on a contact matrix consisting of transmission rates
between groups, which contains a large number of parameters if the model uses many groups.

5.2. Phenomenological models

If all we need to estimate is the exponential growth rate, we only need a model that describes the exponential growth that
gradually slows down. Most cumulative epidemic curves grow exponentially initially, and then saturates at the final epidemic
size. A simple phenomenological model can be used to describe the shape of the cumulative epidemic curve, but the model
itself may not have realistic biological meaning. However, if simple mechanistic models cannot faithfully describe the
epidemic process, using a simple phenomenological model with an analytical formula may be a better choice, at least
numerically, because repetitively solving a system differential equations numerically, and differentiating the log-likelihood
function numerically, can both be avoided with the analytical formula. Here we discuss some examples for such models.
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Logistic model
The logistic model is the simplest model that shows an initial exponential growth followed a gradual slowing down and a

saturation. The cumulative incidences CðtÞ (the total number of cases by time t) can be approximated by

d
dt

CðtÞ¼ rCðtÞ
�
1�CðtÞ

K

�
:

where r is the exponential growth rate, and K ¼ limt/∞CðtÞ. Let C0 ¼ Cð0Þ, its solution is
CðtÞ¼ KC0
C0 þ ðK � C0Þe�rt ; (7)
The new cases cðtiÞ in a time period ½ti; tiþ1� is thus

cðtiÞ¼Cðtiþ1Þ � CðtiÞ : (8)

!

The model parameters are q ¼ ðr;K;C0Þ. Note that it is less than the number of parameters of the simplest mechanistic

model (i.e., the SIR model).

Richards model
The logistic model has a fixed rate of slowing down of the exponential growth rate. To be more flexible, we can use the

Richards model (Richards, 1959) for the cumulative incidence curve. The Richards model, also called the power law logistic
model, can be written as

d
dt

CðtÞ¼ rCðtÞ
�
1�

�
CðtÞ
K

�a�
;

where ais the parameter that controls the steepness of the curve. Note that the logistic model is a special case with a ¼ 1. Its

solution is

CðtÞ¼ KC0264Ca
0 þ



Ka � Ca

0
�
e
� rtKa

Ka�Ca
0

375
1=a:

!

The new cases cðtiÞ in a time period ½ti; tiþ1� is also given by (8). The parameters are q ¼ ðr;K;C0;aÞ.

5.3. Comparison of the models

To compare the performance of both the SIR model and the phenomenological models, we fit these models to the sto-
chastically simulated SEIR epidemic curve of weekly cases that we introduced in Section 3 (Fig. 3).

We assume that the process error is negligible, and the observations are Poisson distributed about the mean that is given
by the correspondingmodels. We use themaximum likelihoodmethod. The results are shown in Fig. 4. The predictions of the
exponential model, as discussed before, quickly decreases as more data points are used. Both the logistic model and the
Richards model give robust estimates with fitting windows ending up to the peak of the epidemic. The SIR model gives a
robust estimate for all fitting windows up to the whole epidemic curve.

Thus, the SIR model is a good model to use to fit the exponential growth rate, even if it may not be the correct mechanistic
model. (e.g., it ignores the latent period in this example). It requires more computational power, because the epidemic curve
lacks an analytic formula, and needs to be numerically solved from a system of ordinary differential equations. The logistic
model and the Richards model can be used for all data points up to the peak of the epidemic.

5.4. Coverage probabilities

Fig. 4 also show that the SIR model and the logistic model give the narrowest confidence intervals. However, narrower
confidence intervals may not be desirable if it has a large chance that it does not contain the true value. Due to errors,
especially process errors, each realization of the underlying stochastic epidemic process yields a different epidemic curve.
These epidemic curves may exhibit different exponential growth rates even if the underlying parameter values are the same.
An observed epidemic curve is just a single realization of the epidemic process. Does the estimated confidence intervals
contain the theoretical exponential growth rate of the epidemic process? This question is answered by the “coverage
probability”, which is the probability that the confidence interval contains the true value. If the confidence interval properly
considers all sources of stochasticity, then the coverage probability should be equal to its confidence level.



Fig. 4. The comparison of the results of fitting the SIR, exponential, logistic, and Richards models to a simulated weekly incidence curve, as a function of the end
point of the fitting window (upper). The epidemic curve (lower) is shown as a reference. The epidemic curve and the theoretical exponential growth rate are the
same as Fig. 3 s.
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To illustrate this, we numerically compute the coverage of the confidence intervals by simulating the SEIRmodel 400 times
and compute confident interval of the exponential growth rate for each realization, and compute the fraction of the confident
intervals containing the theoretical value l ¼ 0:537. The results is summarized in below:
logistic model
 Richards model
coverage probability
 43%
 65%
That is, even though the logistic model gives a narrow confidence interval, its coverage probability is low. The coverage
probability of the confidence interval given by the Richards model is also significantly lower than the confidence level. This is
indeed caused by treating process errors as observation errors. If there is under reporting, that is, only a fraction p of the cases
can be observed, then the observation error becomes larger as p decreases (i.e., more under reporting). The coverage will
become larger as a result. For example, the case fatality ratio of the 1918 pandemic influenza is about 2% (Frost, 1920). Thus,
the mortality curve can be treated as the epidemic curve with a large under reporting ratio, and thus the observation error
dominates. In this case ignoring the process error is appropriate.

Acknowledgements

This research is partially supported by a Natural Sciences and Engineering Research Council Canada discovery grant, and
National Natural Science Foundation of China (No.11771075).

References

Bolker, B. M. (2008). Ecological models and data in R. Princeton: Princeton University Press.
Center for Disease Control. (2016). Ebola: Case counts. Tech. rep. https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/case-counts.html.
Chowell, G., Ammon, C. E., Hengartner, N. W., & Hyman, J. M. (2006). Transmission dynamics of the great influenza pandemic of 1918 in geneva,

Switzerland: Assessing the effects of hypothetical interventions. Journal of Theoretical Biology, 241, 193e204.
Frost, W. H. (1920). Statistics of influenza morbidity. with special reference to certain factors in case incidence and case-fatality. Public Health Reports, 35,

584e597.
Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational

Physics, 22, 403e434.
Ma, J., Dushoff, J., Bolker, B. M., & Earn, D. J. D. (2013). Estimating initial epidemic growth rates. Bulletin of Mathematical Biology, 76, 245e260.
Pourabbas, E., d’Onofrio, A., & Rafanelli, M. (2001). A method to estimate the incidence of communicable diseases under seasonal fluctuations with

application to cholera. Applied Mathematics and Computation, 118, 161e174.
Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290e300.
Wallinga, J., & Lipsitch, M. (2006). How generation intervals shape the relationship between growth rates and reproductive numbers. Proceedings of the

Royal Society B: Biological Sciences, 274, 599e604.
Wallinga, J., & Teunis, P. (2004). Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. American

Journal of Epidemiology, 160, 509e516.
Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. Annals of Mathematical Statistics, 9, 60e62.

http://refhub.elsevier.com/S2468-0427(19)30049-1/sref1
https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/case-counts.html
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref3
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref3
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref3
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref4
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref4
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref4
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref5
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref5
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref5
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref6
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref6
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref7
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref7
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref7
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref8
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref8
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref9
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref9
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref9
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref10
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref10
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref10
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref11
http://refhub.elsevier.com/S2468-0427(19)30049-1/sref11

	Estimating epidemic exponential growth rate and basic reproduction number
	1. Epidemic exponential growth rate
	2. The exponential growth rate and the basic reproduction number
	2.1. The parametric approach
	2.2. The non-parametric approach
	Remark


	3. Least squares estimation
	4. Maximum likelihood estimation
	4.1. Case 1: process errors are negligible
	4.2. Case 2: observation errors are negligible
	4.3. Case 3: consider both type of errors together
	4.4. Confidence intervals

	5. Mechanistic and phenomenological models
	5.1. Mechanistic models
	5.2. Phenomenological models
	Logistic model
	Richards model

	5.3. Comparison of the models
	5.4. Coverage probabilities

	Acknowledgements
	References


