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Abstract
BACKGROUND
Hepatocellular carcinoma (HCC) is a common cancer with a poor prognosis.
Previous studies revealed that the tumor microenvironment (TME) plays an
important role in HCC progression, recurrence, and metastasis, leading to poor
prognosis. However, the effects of genes involved in TME on the prognosis of
HCC patients remain unclear. Here, we investigated the HCC microenvironment
to identify prognostic genes for HCC.

AIM
To identify a robust gene signature associated with the HCC microenvironment
to improve prognosis prediction of HCC.

METHODS
We computed the immune/stromal scores of HCC patients obtained from The
Cancer Genome Atlas based on the ESTIMATE algorithm. Additionally, a risk
score model was established based on Differentially Expressed Genes (DEGs)
between high and lowimmune/stromal score patients.

RESULTS
The risk score model consisting of eight genes was constructed and validated in
the HCC patients. The patients were divided into high- or low-risk groups. The
genes (Disabled homolog 2, Musculin, C-X-C motif chemokine ligand 8, Galectin
3, B-cell-activating transcription factor, Killer cell lectin like receptor B1, Endoglin
and adenomatosis polyposis coli tumor suppressor) involved in our risk score
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model were considered to be potential immunotherapy targets, and they may
provide better performance in combination. Functional enrichment analysis
showed that the immune response and T cell receptor signaling pathway
represented the major function and pathway, respectively, related to the
immune-related genes in the DEGs between high- and low-risk groups. The
receiver operating characteristic (ROC) curve analysis confirmed the good
potency of the risk score prognostic model. Moreover, we validated the risk score
model using the International Cancer Genome Consortium and the Gene
Expression Omnibus database. A nomogram was established to predict the
overall survival of HCC patients.

CONCLUSION
The risk score model and the nomogram will benefit HCC patients through
personalized immunotherapy.

Key words: Hepatocellular carcinoma; Prognostic model; Immune related gene;
Microenvironment; Risk score; Overall survival

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: We constructed a risk score model based on hepatocellular carcinoma (HCC)
microenvironment that could predict the overall survival (OS) of HCC. It has a high
sensitivity and specificity in predicting the OS, and was validated using the Gene
Expression Omnibus and the International Cancer Genome Consortium dataset. In
addition, the risk score model is associated with immunosuppressive environment and
immune checkpoint expression, which will assist clinicians in selecting personalized
immunotherapy for HCC patients.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and is
the main cause of cancer-related death[1]. Although there are multiple methods to treat
HCC, including surgical resection, liver transplantation, radiofrequency ablation and
chemotherapy,  the  efficacy  is  limited  by  high  recurrence  rates  and low rates  of
surgery and transplants because this cancer is usually diagnosed in a late stage[2-4].
Recently, immunotherapy has emerged as a novel and effective therapy and is being
applied  in  various  tumors  including  HCC[5].  In  particular,  treatment  targeting
immune  checkpoints  has  achieved  success  and  improved  patient  survival[6-8].
However,  only  a  small  number  of  patients  receiving  immunotherapy treatment
responded to the treatment due to the immunosuppressive microenvironment. Hence,
it  is  necessary  to  investigate  biomarkers  that  enable  us  to  predict  the  benefit  of
immunotherapy,  which may help in  clinical  decision making for  individualized
treatment.

The HCC microenvironment includes various cells, such as hepatic stellate cells,
cancer-associated fibroblasts, endothelial cells, neuroendocrine cells, immune cells,
bone-marrow derived cells, and the extracellular matrix (ECM), which plays a crucial
role  in  tumor  initiation,  progression,  drug  resistance  and immune escaping[9-15].
Immune cell infiltration is closely related to the survival of patients[16-20], indicating
that understanding and reshaping the tumor microenvironment (TME) may improve
the efficacy of  cancer treatments in the future[21-23].  ESTIMATE was an algorithm
designed by Yoshihara et al[24] to calculate immune and stromal scores based on the
gene expression profile. Subsequent studies have applied the ESTIMATE algorithm in
multiple  cancers  such as  prostate  cancer[25],  breast  cancer[26],  and colon cancer[27],
showing the capability of such big-data based algorithms, although the efficacy on
HCC has not been verified.
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In our study, we investigated the TME and the gene expression profile of HCC to
construct a risk score prognostic model for HCC based on The Cancer Genome Atlas
(TCGA) database. Furthermore, we have validated this model using the International
Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) databases.

MATERIALS AND METHODS

Gene expression datasets
The data of this study was mainly obtained from public databases. The transcriptional
profiles and clinical materials from HCC patients were downloaded from the TCGA
website (https://cancergenome.nih.gov/). HCC patients with R0 surgical resection
were chosen, who did not receive other treatment for their disease and had a survival
time of more than 1 mo. Among these patients,  361 HCC samples with complete
transcriptional data and the corresponding clinical information were selected for
consequent analyses. Immune and stromal scores were calculated by applying the
ESTIMATE algorithm to the mRNA expression data[24]. For further verification, the
code of LIRI-JP (n = 232) obtained from the ICGC database (https://icgc.org/) and the
dataset  GSE14520  (n  =  221)  downloaded  from  the  GEO  (https://www.ncbi.
nlm.nih.gov/geo/) database were selected for validation. The data downloaded from
the TCGA, ICGC, and GEO databases were publicly available and accessible. The
present  study  was  conducted  following  pertinent  guidelines  and  regulations
approved by the TCGA, ICGC, and GEO.

Differentially expressed genes analysis
To select the intersection genes, 361 HCC patients obtained from the TCGA dataset
were divided into high and low immune/stromal score groups according to the
ESTIMATE results. The differentially expressed genes (DEGs) were identified using
the package limma[28] in R software (Version 3.6.1; https://www.r-project.org/), and
the cutoffs were fold change > 1.5 and adjust P < 0.05. Volcano plot and heatmaps
were generated using the ggplot2 and pheatmap package in R software, respectively.

Overall survival curve
Kaplan-Meier  (K-M)  plots  were  generated  to  illustrate  the  correlation  of
immune/stromal scores with patients’ overall survival (OS). The relationship was
tested by the log-rank test.

Functional enrichment analysis of DEGs
The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway  enrichment  analyses  of  DEGs  were  performed using  the  Database  for
Annotation, Visualization and Integrated Discovery (Version: 6.8; https:// david.nci-
fcrf.gov/) to investigate the potential function of the DEGs[29]. Significant biological
processes and pathways were presented using the ggplot2 R packages.

Construction and validation of the risk score prognostic model
Univariate,  the  Least  Absolute  Shrinkage  and  Selection  Operator  (LASSO)  and
multivariate Cox regression analyses were performed to explore the relationship
between DEGs and patients’ OS. In the univariate Cox regression analysis, P < 0.05
was considered significant. To further narrow down correlated genes, the LASSO
with L1-penalty was applied[30]. Based on the LASSO analysis, the pivotal genes were
extracted  from DEGs  which  were  regarded  as  significant  in  the  univariate  Cox
regression analysis. Then, a sub-selection of genes associated with patient prognosis
was identified[31]. LASSO Cox regression analysis was performed using the glmnet R
package (Version: 2.0). To evaluate the contribution of each gene to prognosis, the
multivariate Cox regression analysis was performed. A stepwise method was used to
further determine the best rprognostic model. Finally, eight genes were selected to
construct a risk score prognosis model. HCC patients were divided into low- and
high-risk groups based on the median risk score. The K-M survival curves for the
cases with low or high risk were performed. The predictive ability of the risk score
prognosis model was assessed by the survival receiver operating characteristic (ROC)
package in R software. The concordance index (C-index) was calculated to investigate
the risk score prognostic model performance[32]. Then, the risk score prognosis model
was verified using the ICGC and GEO dataset, respectively.

Estimated immune cell type fractions
CIBERSORT is a gene expression-based deconvolution algorithm to describe the cell
constitution of tissues[33]. LM22 is defined as “barcodes” with 547 gene expression
signatures  that  distinguish  22  human hematopoietic  cell  phenotypes,  including
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plasma cells,  myeloid subsets,  seven T cell  types,  naive and memory B cells  and
natural killer (NK) cells. We used CIBERSORT in combination with LM22 to sort the
portions of 22 human immune cell types in HCC samples. For each sample, the sum of
all estimate immune cell type fractions equals to 1[34].

Independence of the risk score prognostic model
Among  361  HCC  patients  with  survival  data,  289  patients  with  full  clinical
parameters, including gender, age, histologic grade, pathologic stage and vascular
invasion, were subjected to consequent analyses. Univariate and multivariate Cox
regression analyses were performed to assess the predictive ability of the risk score
prognostic model for HCC patients. All statistical tests were two-sided, and P values
< 0.05 were considered as statistically significant.

Construction and validation of the nomogram
The  nomogram  is  widely  utilized  to  predict  the  prognosis  of  cancer  patients’
prognosis[35].  In  the  present  study,  a  nomogram  was  generated  based  on  the
independent prognostic factors identified by multivariate analysis to investigate the
probability of 1-, 3-, and 5-year OS of HCC patients. The nomogram and calibration
plots were generated using the rms R package (Version: 5.1-3). The calibration curve
of  the  nomogram was drawn to  evaluate  the  nomogram prediction possibilities
against the observed rates[36].

Statistical analysis
The R software v3.6.1 (R Foundation for Statistical Computing, Vienna, Austria) and
GraphPad Prism v8.0 (GraphPad Software Inc., United States) were used for statistical
analyses. All statistical tests were two-tailed with a statistical significance level set at
0.05.

RESULTS

Immune scores and stromal scores are significantly related to HCC prognosis
The flow chart of the study procedure is presented in Figure 1. In this study, 361 HCC
patients  with  complete  gene  expression  data  and  the  corresponding  clinical
information were downloaded from the TCGA database for subsequent analysis. As
shown in Supplementary Table 1, patients were 59.65 ± 13.33 years old, including 116
females (32.1%) and 245 females (67.9%). According to the ESTIMATE algorithm,
immune scores ranged from -1209.16 and 2934.36, and stromal scores ranged from -
1741.56 to 1195.07. Then, we investigated the relationship between immune/stromal
scores and clinical characteristics.  The result  showed that the immune score was
significantly negatively correlated with the pathologic stage (P = 0.032) (Figure 2B),
but not with histologic grade (P = 0.968) (Figure 2A). In contrast, the stromal score
was significantly negatively related to histologic stage (P = 0.008) (Figure 2C), but not
with pathologic grade (P = 0.329) (Figure 2D).

To investigate the influence of immune/stromal scores on prognosis, we divided
316 HCC patients into high- and low-score groups and constructed K-M curves. We
found  that  the  immune  scores  and  stromal  scores  were  significantly  positively
correlated with OS (Figure 2E and F). Overall, we found that the immune and stromal
scores were significantly correlated with poor prognosis.

Comparison of gene expression profiles with immune scores and stromal scores in
HCC
To  explore  the  difference  of  gene  expression  profiles  between  high-  and  low-
immune/stromal score groups, we compared 361 HCC cases obtained from the TCGA
database. Volcano maps in Supplementary Figure 1 showed the differential gene
results of the low vs high score group differential gene results. Heatmaps showed the
most  different  100  gene  expression  profiles  of  cases  belonging  to  low and high
immune scores/stromal scores groups. In comparison to the high immune scores
group, 689 genes were downregulated and 106 genes were upregulated in the low-
immune  score  group  (Supplementary  Table  2).  Similarly,  there  were  906
downregulated genes and 91 upregulated genes in the low stromal - score group
(Supplementary Table 3). In addition, Venn diagrams (Figure 3A) showed that 13
genes (Supplementary Table 4) were commonly upregulated in the low score groups,
and 473 genes were commonly downregulated (Supplementary Table 5).

Furthermore, the potential functions of the DEGs were evaluated by GO analysis
and KEGG pathway.  The top 5  GO terms identified included immune response,
inflammatory  response,  cell  adhesion,  chemotaxis  and  extracellular  matrix
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Figure 1

Figure 1  Overall design of the present study. TCGA: The Cancer Genome Atlas database; HCC: Hepatocellular
carcinoma; LASSO: Least absolute shrinkage and selection operator; GEO: Gene Expression Omnibus databases;
ICGC: International Cancer Genome Consortium database.

organization (Supplementary Figure 2). The KEGG pathway analysis revealed that the
DEGs  were  enriched  in  the  tumor  necrosis  factor  signaling  pathway,  cytokine-
cytokine receptor interaction,  complement and coagulation cascades,  chemokine
signaling pathway, and cell adhesion molecules (Figure 3B).

Construction of a risk score model and evaluation of its predictive ability in the
TCGA HCC cohort
To explore the potential roles of DEGs in OS, a univariate analysis was performed.
The results showed that 60 of the 486 intersection DEGs were significantly correlated
with OS in HCC patients (Supplementary Table 6). To screen the most prognostic
genes, LASSO analysis was performed. The contributions of 60 intersection DEGS
were weighted by their relative coefficients (Supplementary Figure 3A and B). As a
result, 13 genes were selected (Supplementary Table 7). Lastly, a multivariate analysis
was performed, and 8 genes were chosen to establish a risk score model (Supplement-
ary Figure 3C and Supplementary Table 8), and the final risk score formula was as
follows: Risk score = [0.184 × expression level of Disabled homolog 2 (DAB2)] + [0.102
× expression level of Musculin (MSC)] + [0.118 × expression level of C-X-C motif
chemokine ligand 8 (CXCL8)] + [0.147 × expression level of Galectin 3 (LGALS3)] +
[0.147 × expression level of B-cell-activating transcription factor (BATF)] + [ 0.48 ×
expression level of killer cell lectin like receptor B1 (KLRB1)] + [ 0.393 × expression
level of Endoglin (ENG)] + [ 0.113 × expression level of Adenomatosis polyposis coli
tumor suppressor (APCS)]. We then calculated the risk score according to the formula
and divided the patients into high- or low-risk groups based on the median risk score.
According to the K-M analysis  (Figure 4A),  there was a significant  difference in
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Figure 2

Figure 2  Immune and stromal scores are associated with clinical characteristics and overall survival of hepatocellular carcinoma patients in the Cancer
Genome Atlas database dataset. A-D: Correlation of the immune/stromal score with histologic grade and pathologic stage; E: Hepatocellular carcinoma (HCC) cases
were divided into two groups based on their immune scores, as indicated by the log-rank test; F: Similarly, HCC cases were divided into two groups based on their
stromal scores, as indicated by the log-rank test. TCGA: The Cancer Genome Atlas database; HCC: Hepatocellular carcinoma.

patients’ OS between high- and low-risk groups, and patients in the high-risk group
had significantly shorter OS than those in the low-risk group. Figure 4B shows the
distribution of the risk score and gene expression data. The prediction capability of
the risk score model was evaluated by calculating the area under the ROC curve
(AUC) (Figure 4C). The AUC of the prognostic model for OS was 0.778, 0.754 and 0.75
for the first, third, and fifth years, respectively, suggesting that the risk score model
had good performance.

Validating the risk score model in GEO and ICGC dataset
To verify the robustness of our findings, this risk score model was further evaluated
using the GEO and ICGC dataset, which included 222 and 233 HCC patients. The
patients from the GEO and ICGC dataset were divided into high- and low-risk groups
based on the previous formula. In agreement with the previous results, patients in the
high-risk group had significantly worse OS than the low-risk group (Figure 4E and I).
Figure 4F and J show the distribution of the risk score and gene expression data from
the GEO and ICGC HCC cohort. Furthermore, the risk score model yielded an AUC of
0.661 at 1 year, 0.663 at 3 years and 0.676 at 5 years based on the GEO HCC cohort
data (Figure 4G), and an AUC of 0.753 at 1 years, 0.65 at 3 years, and 0.715 at 5 years
based on the ICGC HCC cohort data (Figure 4K). Recently, Long et al[36] constructed an
immune prognostic model (IPM) including two genes (Triggering Receptor Expressed
On Monocytes 1 and Exonuclease 1) to assess the prognosis of HCC patients. We
calculated the C-indexes to compare the prognostic values of their model and our risk
score model. As shown in Figure 4D, 4H and 4L, the concordance index of the risk
score model for the first-, third-, and fifth-year OS was higher than the IPM in the
TCGA, GEO and ICGC HCC cohorts, indicating that our risk score model had a better
performance in evaluating prognosis. Above all, the risk score prognosis model is
robust and efficient.

The difference of immune infiltration between the low- and high-risk HCC patients
in the TCGA database
We estimated the difference of immune infiltration between low- and high-risk HCC
patients in 22 subpopulations of immune cells using the CIBERSORT algorithm. The
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Figure 3

Figure 3  Comparison of gene expression profile with immune scores and stromal scores of hepatocellular carcinoma in the Cancer Genome Atlas
database dataset. A: Venn diagrams showing the number of commonly upregulated or downregulated differentially expressed genes (DEGs) in stromal and immune
score groups; B: Kyoto encyclopedia of genes and genomes (KEGG) analysis of DEGs, top 10 GO terms were displayed. False discovery rate of KEGG analysis was
acquired from the database for annotation, visualization and integrated discovery functional annotation tool. DEGs: Differentially expressed genes; TNF: Tumor
necrosis factor; KEGG: Kyoto encyclopedia of genes and genomes; DAVID: Database for annotation, visualization and integrated discovery.

proportion of immune cells in HCC varied significantly between the high- and low-
risk  groups  (Figure  5A  and  B).  Figure  5C  shows  that  a  high  fraction  of  M0
macrophages, T regulatory cells (Tregs) and T follicular helper cells (Tfh) mainly
infiltrated in high-risk group patients.  In contrast,  a high fraction of CD8 T cells,
resting  CD4 memory T  cells  and monocytes  mainly  infiltrated in  low-risk  HCC
patients. In addition, the proportions of different tumor-infiltrating immune cells
(TIICs) showed a weak to moderate correlation (Figure 5D). Therefore, these results
indicated that the different immune infiltration in patients with HCC could be used as
a prognostic indicator and targets for immunotherapy.

Immunotherapy is increasingly applied to the clinical management of multiple
tumors.  However,  only  a  part  of  patients  with  cancer  showed  a  response  to
immunotherapy, and the efficacy of immunotherapy can be improved by identifying
the type of immune infiltration. Hence, we investigated the relationship between
patient risk scores and the expression of commonly immune checkpoints, and the
results showed that the risk score was significantly associated with the expression of
cytotoxic T-Lymphocyte associated protein 4 (CTLA-4), programmed cell death 1 (PD-
1), and T-cell immunoglobulin mucin receptor 3 (TIM-3) (P < 0.05) (Figure 6A, Supple-
mentary  Table  9).  Furthermore,  we  explored  the  expression  of  the  immune
checkpoints in the high- and low-risk HCC patients. High-risk HCC patients had
significantly higher expression of CTLA-4, PD-1 and TIM-3 than the low-risk HCC
patients (P < 0.05) (Figure 6B-D). Additionally, there was no significant difference in
the  expression  of  T  Cell  Immunoreceptor  With  Ig  And  ITIM  Domains  and
Lymphocyte-activation gene 3 between the high- and low-risk HCC group (Supple-
mentary  Figure  4A  and  B).  This  suggests  that  the  immunosuppressive
microenvironment in high-risk patients may be responsible for their poor prognosis.

Alteration in immune-related pathways between high- and low-risk group patients
To investigate the difference of immune genes between high- and low-risk patients,
we compared the gene expression profiles between the two groups. A total of 332
immune-related genes were extracted from the Molecular Signatures Database v6.2[20]

[(Immune system process M13664, Immune response M19817); http://www.broadin-
stitute.org/gsea/msigdb/index.jsp]. The results showed that there were 193 immune-
r e l a t e d  g e n e s  i n  t h e  D E G s  b e t w e e n  h i g h -  a n d  l o w - r i s k  g r o u p s
(Supplementary Figure 4C). Furthermore, the GO and KEGG pathway analysis was
performed to identify the potential functions of the 193 immune-related genes that
were differentially expressed (Figure 6E and F, Supplementary Figure 4D and E)
(Supplementary Table 10). The top 5 GO terms identified included immune response,
inflammatory response, innate immune response, and cell-cell signaling (Figure 6E).
The KEGG pathway analysis showed that these genes were enriched in the T cell
receptor  signaling  pathway,  cytokine-cytokine  receptor  interaction,  rheumatoid
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Figure 4

Figure 4  Prognostic analysis of the risk score model. A-C: Kaplan-Meier survival, risk score and time-dependent receiver operating characteristic (ROC) curves of
the risk score model for the Cancer Genome Atlas database (TCGA) hepatocellular carcinoma (HCC) cohort; E-G: Kaplan-Meier survival, risk score and time-
dependent ROC curves of the risk score model for the Gene Expression Omnibus databases (GEO) HCC cohort; I-K: Kaplan-Meier survival, risk score and time-
dependent ROC curves of the risk score model for the International Cancer Genome Consortium database (ICGC) HCC cohort. A, E and I: OS was significantly higher
in the low-risk score group than in the high-risk score group; B, F and J: Relationship between the risk score (upper) and the expression of eight prognostic immune
genes (lower) is shown; C, G and K: Time-dependent ROC curve analysis of the risk score model; D, H and L: The concordance index (C-index) was used to evaluate
prognostic performance for survival prediction. Performance was compared between the risk score model and immune prognostic model by calculating the C-index in
the TCGA, GEO and ICGC HCC cohorts. TCGA: The Cancer Genome Atlas database; GEO: Gene Expression Omnibus databases; ICGC: International Cancer
Genome Consortium database; IPM: Immune prognostic model; HCC: Hepatocellular carcinoma.

arthritis, chemokine signaling pathway and tuberculosis (Figure 6F).

The risk score model is independent of conventional clinical characteristics
As shown in Figure 7, the risk score was significantly correlated with patient age,
histologic grade, pathologic stage and vascular invasion (Figure 7A-Figure D, P <
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Figure 5

WJG https://www.wjgnet.com January 14, 2020 Volume 26 Issue 2

Zhang FP et al. Risk score prognosis model for HCC

142



Figure 5  Landscape of immune infiltration in high- and low-risk hepatocellular carcinoma patients in the Cancer Genome Atlas database dataset. A:
Relative proportion of immune infiltration in high- and low-risk patients; B: Heat map of the 22 immune cell proportions in high- and low-risk patients; C: Violin plots
visualizing significantly different immune cells between high-risk and low-risk patients; D: Correlation matrix of all 22 immune cell proportions.

0.05). To explore the independent prediction of the risk score model, univariate and
multivariate  analyses  were  performed,  the  results  showed  that  risk  score  and
pathologic stage were independent prognostic indicators (Figure 7E). Taken together,
these results indicated that the risk score model was an independent prognostic factor
for OS.

Developing and validating a nomogram based on the risk score model
To establish a clinically applicable method to assess the prognosis of HCC patients,
we developed a nomogram that included risk score and pathologic stage (Figure 7F).
The  concordance  index  of  the  nomogram was  0.71.  The  calibration  plot  for  the
possibility  of  1-,  3-  and  5-year  survival  showed  good  agreement  between  the
prediction by risk score and actual observations (Figure 7G-I). The AUC was 0.77,
0.799 and 0.773 for the 1,  3 and 5-year survival times, respectively. These results
demonstrate that the nomogram might be a better model for predicting OS, and aid
clinical management. Schematic diagram of the main altered pathway in the high- and
low-risk patients is shown in Figure 8.

DISCUSSION
HCC remains a major challenge for public health worldwide[1,37]. Despite multiple
therapeutic methods, such as surgical resection, liver transplantation, radiofrequency
ablation and chemotherapy, the efficacy is limited. Moreover, effective prognostic
indicators that can be utilized to guide cancer therapy is still lacking. Previous studies
have  shown  that  the  TME  is  associated  with  tumor  progression  and  patient
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Figure 6

Figure 6  Enrichment analysis of the immune prognostic model. A: Correlation of the risk score with the expression of several prominent immune checkpoints; B-
D: Violin plots visualizing significantly different immune checkpoints between high-risk and low-risk patients; E-F: The Gene Ontology (GO) and Kyoto encyclopedia of
genes and genomes (KEGG) analysis of immune related genes, top 10 GO terms were displayed. False Discovery Rate of GO and KEGG analysis was acquired from
the DAVID functional annotation tool. CTLA-4: Cytotoxic T-Lymphocyte associated protein 4; PD-1: Programmed cell death 1; TIM-3: T-cell immunoglobulin mucin
receptor 3; KEGG: Kyoto encyclopedia of genes and genomes; FDR: False discovery rate.

prognosis[38-40]. Therefore, it is important to investigate the TME to identify biomarkers
that can predict HCC patients’ OS.

The  ESTIMATE algorithm has  been applied  to  multiple  cancers,  showing the
effectiveness of the algorithms for big data analysis[41-44]. To investigate the TME of
HCC, the ESTIMATE algorithm was applied to attain immune and stromal scores,
where  the  results  showed  that  high  immune  scores  and  stromal  scores  were
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Figure 7
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Figure 7  Relationship between the risk score model and other clinical information. A: Correlation of the risk score with the age; B: Correlation of the risk score
with the histologic grade; C: Correlation of the risk score with the pathologic stage; D: Correlation of the risk score with the vascular invasion; E: Univariate and
multivariate regression analysis of the relation between the risk score prognostic model and clinicopathological features regarding prognostic value; F: Nomogram for
predicting the probability of 1-, 3-, and 5-year overall survival (OS) for hepatocellular carcinoma patients; G-I: Calibration plot of the nomogram for predicting the
probability of OS at 1, 3, and 5 years; J-L: Time-dependent receiver operating characteristic curve analyses of the nomogram. ROC: Receiver operating characteristic
curve; CI: Confidence interval.

significantly associated with worse OS, indicating that the TME was related to the
prognosis of HCC patients. Subsequently, we divided HCC patients into high- and
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Figure 8

Figure 8  Schematic diagram of the main altered pathway in the high- and low-risk patients. TME: tumor
microenvironment; DAB2: Disabled homolog 2; MSC: Musculin; CXCL8: C-X-C Motif chemokine ligand 8; LGALS3:
Galectin 3; BATF: B-Cell-activating transcription factor; KLRB1: Killer cell lectin like receptor B1; ENG: Endoglin;
APCS: Adenomatosis polyposis coli tumor suppressor.

low-immune/stromal score groups to screen prognostic genes. We then analyzed the
intersection DEGs yielded from the comparison of high vs  low immune/stromal
scores groups. GO analysis suggested that the DEGs were mainly involved in the
TME, such as immune response, inflammatory response, cell adhesion, chemotaxis
and extracellular matrix organization.  The results  were constitent  with previous
reports that immune cells  and ECM molecules in the TME were interrelated[45-48],
hence reshaping the immune microenvironment may improve the effect of cancer
treatment[49-51]. The DEGs were identified, and univariate, LASSO and multivariate
analyses were performed to construct a risk score model that could identify HCC
patients with unfavorable outcomes. The AUC for the risk score model for predicting
the 1-, 3-, and 5-year survival were 0.778, 0.754 and 0.75, respectively. Also, the risk
score model was validated in the GEO and ICGC dataset. The results suggested that
eight  immune-related  genes  had  a  good  performance  for  survival  prediction,
indicating that  shaping the TME may inhibit  or  eliminate tumors,  resulting in a
favorable prognosis. The genes (DAB2, MSC, CXCL8, LGALS3, BATF, KLRB1, ENG
and APCS) that compose our risk score model could be considered to be potential
targets, and they may provide better performance in combination.

DAB2 is an adapter protein with signaling roles in the domain of endocytosis, cell
differentiation, cell adhesion, angiogenesis, and homeostasis[52,53]. Previous studies
have reported that DAB2 is a negative regulator of immune function[54].  DAB2 is
expressed by macrophages, and it functions as a negative immune regulator of TLR4
endocytosis and signaling, controlling the inflammatory response to endotoxins[55]. In
addition, a recent study revealed that low expression of DAB2 by dendritic cell (DC)
enhanced IL-12 and IL-6 expression, besides improving the ability of DCs for antigen
uptake,  migration  and  T  cell  stimulation.  DAB2-silenced  DCs  inhibited  tumor
growth[53]. MSC, a member of the basic helix-loop-helix transcription factors, enforced
Foxp3 expression and promoted the unidirectional development of induced Treg cells
(iTreg cells) by repressing the Th2 developmental program[56,57]. However, the role of
MSC in HCC remains unclear. CXCL8 is a chemotactic factor secreted by malignant
cells  and various immune cells  of  multiple  cancer types,  which promotes tumor
progression, recurrence and metastasis through shaping pro-tumoral vascularization,
inflammation and immunity[58,59]. Accumulating studies demonstrate that CXCL8 is a
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prognostic  marker and is  a  potential  therapeutic  target  for  HCC[60-62].  LGALS3,  a
glycan-binding protein secreted by cancer cells, has been regarded as an important
regulator of multiple functions critical to cancer biology[63].  LGALS3, which is an
important biomarker in prostate cancer[64,65], plays important roles in the progression
and metastasis of colon cancer, acute myeloid leukemia, melanoma and pituitary
tumors[66-69], and correlates with the infiltration of M2 macrophages[70]; BATF contains
basic  leucine  zipper  domains,  is  a  member  of  the  AP-1/ATF  superfamily  of
transcription factors, plays a role in the growth and expansion of interleukin 17 (IL-
17)-producing  helper  T  cell  (Th17)  and  iNKT  cells  expressing  IL-17[71-73],  the
differentiation of Th17, Tfh and CD8+ T cells[74], and controls the tumor formation and
the progression of colorectal cancer[75].  KLRB1 (CD161) is a C-type lectin receptor
expressed by most NK cells and subsets of T cells[76]. Previous studies indicated that
KLRB1expressed by CD4+ or CD8+ T cells was associated with favorable outcomes in
certain  cancers  such  as  lung  cancer[77,78].  Recent  studies  demonstrated  that  the
expression of LLT1 (ligand of KLRB1) by tumor cells may facilitate their escape from
the immune system. Hence, the KLRB1/LLT1 receptor/ligand system appears to be a
novel therapeutic target in the treatment of cancer[79,80]. ENG is a transforming growth
factor beta 1 (TGFβ1) binding receptor. Teama et al[81] found that high expression of
ENG/ TGFβ1  may  contribute  to  carcinogenesis  and  the  progression  of  HCC in
cirrhotic patients. APCS (Amyloid P Component, Serum), a glycoprotein belonging to
the pentraxin family of proteins, has a characteristic pentameric organization. Further
functions of ENG and APCS remain unknown. In our study, increased expression of
ENG and APCS correlated with a favorable outcome in HCC. To our knowledge, the
eight gene signature related risk score prognostic model has not been previously
reported and could be a novel prognostic factor of HCC.

In  addition,  multivariate  Cox  analyses  demonstrated  that  the  risk  score  and
pathologic stage were independent prognostic indicators. Subsequently, a nomogram
that included risk score and the pathologic stage was constructed. The calibration plot
for the possibility of 1-, 3- and 5-year survival showed good agreement between the
prediction by risk score and actual observation. The main feature of the nomogram is
that it affords a personalized scoring system for patients and is feasible to predict
prognosis. During the progression of tumor, the immune system plays a dual role in
the complicated interactions between tumor and host; it conveys protective immunity
by recognizing tumor-specific antigens to eliminate tumor cells,  but also benefits
tumor  progression,  either  by  altering  tumor  immunogenicity  or  by  creating  a
microenvironment  that  can  promote  tumor  outgrowth  or  aid  in  a  subsequent
metastatic  cascade[82-85].  Therefore,  tumor  cell  escape  can  occur  through various
immunosuppressive mechanisms, such as recruiting immunosuppressive cells (e.g.,
Treg cells), increasing the expression of inhibitory ligands such as Programmed death
ligand 1 (PD-L1), and decreasing the expression of major histocompatibility complex
class  I  molecules,  which results  in  immune tolerance[86-88].  Moreover,  a  potential
antitumor  immune  response  can  be  unleashed  by  blocking  the  function  of
immunosuppressive cells and immunosuppressive mechanisms[89]. We explored the
immune mechanisms and the component of TIICs subpopulation between patients in
the low- and high-risk groups. The results have shown that a high fraction of M0
macrophages,  Tregs  and  Tfh  were  found  in  patients  in  the  high-risk  group.  In
contrast, a high fraction of CD8 T cell, resting memory CD4 T cells and monocytes
was mainly found in low-risk group patients. We also explored the expression of the
immune checkpoints between the high- and low-risk HCC patients. The high-risk
HCC patients had significantly higher expression of CTLA-4, PD-1 and TIM-3 than
the low-risk HCC patients (P < 0.05). Previous studies revealed that resting memory
CD4 T cells  can be  further  differentiated and endowed with multiple  functions,
including restoration of  immune tolerance to self-antigen or alloantigen and the
promotion of CD8+ T cells to anti-tumor[90,91]. Tregs, which expressed CTLA-4, plays a
vital role in the inhibition of anti-tumor immune responses. Treatment with an anti-
CTLA-4 antibody has emerged as an effective therapy for the treatment of cancer[92-96].
In our model,  high-risk HCC patients  had higher fraction of  Tregs and a higher
expression of CTLA-4, and a worse prognosis, indicating that the immunosuppressive
environment and high expression of immune checkpoints may be responsible for the
poor prognosis. Furthermore, these results suggest that treatment with antibodies
against immune checkpoints will benefit the high-risk HCC patients more than the
low-risk patients, hence resulting in a better prognosis.

In this study, we constructed a novel risk score model for prognostic prediction of
HCC. One of the advantages of our risk score model is that it has high sensitivity and
specificity in predicting the OS, being further validated using external databases. In
addition, the risk score model is associated with the immunosuppressive environment
and immune checkpoint expression, thus assisting clinicians in selecting personalized
immunotherapy for HCC patients.
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However, there are several limitations in our study. Firstly, the risk score model
needs to be further validated in multicenter clinical trials and prospective studies.
Secondly, the functional and mechanistic studies of the eight immune-related genes
should be further carried out.

In summary, our research established and validated a risk score model that is based
on eight immune-related genes to predict the OS of HCC, which may help in clinical
decision making for individualized treatment. Notably, the risk score model provides
an immunological viewpoint to clarify the mechanisms that determine the clinical
outcome of HCC.

ARTICLE HIGHLIGHTS
Research background
Hepatocellular carcinoma (HCC) is a common malignant tumor with a poor prognosis. In recent
years, immunotherapy has emerged as a novel and effective therapy and is being applied in
various  tumors  including  HCC.  However,  the  influence  of  genes  involved  in  the  tumor
microenvironment on the prognosis of HCC patients remains unclear. And the high-throughput
studies that investigated the potential prognostic role of immune prognostic models in HCC are
still lacking.

Research motivation
So far, only a small number of HCC patients receiving immunotherapy treatment exhibited
responses  due  to  the  immunosuppressive  microenvironment.  Hence,  it  is  necessary  to
investigate the HCC microenvironment to identify prognostic genes that enable us to predict the
benefit  of  immunotherapy,  which may help in clinical  decision making for  individualized
treatment.

Research objectives
To identify a robust gene signature associated with the HCC microenvironment to improve
prognosis prediction and effectiveness of immunotherapy of HCC, we analyzed the data from
The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and International Cancer
Genome Consortium (ICGC) databases.

Research methods
We computed the immune/stromal scores of HCC patients obtained from TCGA based on the
ESTIMATE algorithm. Univariate analysis, multivariate analysis and the least absolute shrinkage
and  selection  operator,  were  utilized  to  construct  our  predictive  model.  This  model  was
performed based on the significant differentially expressed genes screened established based on
mRNA expression profiles from the TCGA database. The robustness of this model was validated
using GEO and ICGC datasets.

Research results
The risk score model consisting of eight genes (Disabled homolog 2, Musculin, C-X-C motif
chemokine ligand 8,  Galectin 3,  B-cell-activating transcription factor,  Killer  cell  lectin  like
receptor B1, Endoglin, and Adenomatosis polyposis coli tumor suppressor) was constructed and
validated based on HCC patients who were divided into high- or low-risk group. The receiver
operating characteristic curve analysis confirmd the good potency of the risk score prognostic
model.  Moreover,  we  investigated  the  relationship  between  patient  risk  scores  and  the
expression of common immune checkpoints, and the results showed that the risk score was
significantly associated with the expression of Cytotoxic T-Lymphocyte associated protein 4,
Programmed cell death 1, and T-cell immunoglobulin mucin receptor 3. To establish a clinically
applicable method to assess the prognosis of HCC patients, a nomogram involving risk score
and the pathologic stage was formulated.

Research conclusions
Our research established and validated a risk score model that is based on eight immune-related
genes to predict the overall survival of HCC, which may help in clinical decision making for
individualized treatment. The risk score model and the nomogram will benefit HCC patients
through personalized immunotherapy.

Research perspectives
The risk score model provides an immunological viewpoint to clarify the mechanisms that
determine  the  clinical  outcome  of  HCC.  Identifying  effective  molecular  biomarkers  and
predictive markers of immunotherapy is a future direction for improving the effectiveness of
immunotherapy.
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