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Abstract: Background: Aberrant DNA methylation plays an important role in cancer and has been recognized to 
contribute to the activity of oncogenes and inactivity of tumor suppressor genes. RAS association domain family 
(RASSF) members have been shown to be epigenetically silenced by promoter methylation in cancers, including 
hepatoblastoma. Methods: We assessed the methylation patterns in the gene of RASSF5 from hepatoblastoma 
tissue samples harvested from patients using high-throughput mass spectrometry on a matrix-assisted laser de-
sorption/ionization time-of-flight mass array. Results: Hypermethylation was found in the RASSF5 gene transcribed 
regionand was correlated with downregulation of RASSF5 RNA expression levels in the hepatoblastoma samples. 
Conclusions: The results indicate that aberrant methylation of RASSF5 may contribute to its downregulated mRNA 
expression in hepatoblastoma.

Keywords: RASSF5, methylation, hepatoblastoma

Introduction

Hepatoblastoma (HB) is the most common liver 
tumor in children with 0.5-1.5 cases per million 
children per year and an increasing incidence 
[1, 2]. Previous studies suggested an increases 
risk in patients with familial adenomatous pol-
yposis coli, both low and high birth weights, 
maternal tobacco exposure, and constitutional 
trisomy [3-6]. However, the etiology of HB rema- 
ins obscure. Currently, despite recent advances 
in the treatment of HB, the mortality rate is 
35-50% in high-risk patients [7], and alpha-
fetoprotein level, histological analysis, tumor 
resectability, and metastasis are the only prog-
nosis factors for HB. To better understand the 
underlying pathophysiology and treatment of 
this disease, novel targets for early detection 
and improved therapies and prognosis are 
required.

DNA methylation is one of the key mechanisms 
of epigenetic alteration and the identification of 
DNA methylation is important for understand-
ing cancer pathogenesis. Hypermethylation of 
DNA in promoters is recognized to silence gen- 
es, and many studies have focused on promot-
er methylation patterns [8]. Recently, research-

ers have shown that aberrant DNA methylation 
in transcribed regions of genes is also correlat-
ed with gene expression [9-11]. 

The RAS association domain family (RASSF), 
including 10 members (RASSF1-10), was recog-
nized to be frequently inactivated by promoter 
hypermethylation in cancers including HB [12-
14]. Previously, we performed a genome-wide 
analysis of DNA methylation in HB tissues to 
identify novel targets for further study of HB, 
and found distinctly higher levels of methylation 
in HB tissues compared with non-tumor tissue 
[15], including in regions around the RASSF5 
gene. In this study, we used high-throughput 
mass spectrometry on a matrix-assisted laser 
desorption/ionization time-of-flight (MALDI-
TOF) mass array to detected methylation chan- 
ges in RASSF5 in HB tissues and investigated 
the possibility of RASSF5 becoming a therapeu-
tic target in HB.

Material and methods

Sample collection and clinical information

Human HB and non-tumor liver tissues were 
obtained from patients who underwent resec-
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tion of HB in the Children’s Hospital, Fudan 
University, Shanghai, China. Informed consent 
was obtained from the legal guardians of the 
patients. Clinical and pathologic data for these 
patients are listed in Table 1. The use of these 
human samples was approved by the Ethics 
Committee of the Children’s Hospital of Fudan 
University. HB tumors and non-tumor tissue 
sections were stored at -80°C immediately 
after surgery until the time of analysis. 

DNA/RNA extraction and quantitative reverse 
transcription-PCR (qRT-PCR)

DNA was extracted from nine HB primary 
tumors and adjacent non-tumor tissues and 
stored until subsequent use for mass spec-
trometry analysis. Total RNA was isolated from 
HB and normal tissues using TRIzol reagent 
(Invitrogen; Thermo Fisher Scientific, Inc., Wal- 
tham, MA, USA) according to the manufactur-
er’s instructions and then reverse transcribed 
using a PrimeScript RT reagent kit (Perfect Real 
Time) with Gdna Eraser (Takara Biotechnology 
Co., Ltd., Dalian, China). qRT-PCRs were con-
ducted using qPCR with a SYBRGreen PCR kit. 
Gene expression was normalized to the GAPDH 
expression level and represented as fold-chan- 
ge by the 2-ΔΔCt method and statistically ana-
lyzed [16]. The RASSF5 primers used for q-PCR 
were as follows: Forward, 5’-TGCTTGATCTCCT- 
GCAGTGT-3’ and reverse, 5’-TCTCCAGAAAGCA- 
CCCTCAC-3’ (length, 20 bp).

Mass spectrometry

RASSF5 gene primers were designed to cover 
the regions with the most CpG sites. The 
genome DNA was treated with bisulfite, and a 
T7-promoter tag was attached to the reverse 

ratios of the spectra were generated using 
EpiTYPER software v1.0 (Sequenom).

Statistical methods

All data are presented as mean ± standard 
error of the mean and comparisons between 
groups were evaluated using a two-tailed 
Student’s t-test unless otherwise specified. 
Statistical analyses and graphical depiction of 
data were generated using GraphPad Prism 6.0 
(GraphPad Software, Inc., La Jolla, CA, USA) 
and SPSS 19.0 software (IBM SPSS, Armonk, 
NY, USA) for Windows. P<0.05 was considering 
to be statistically significant.

Results

RASSF5 gene transcribed region (body) meth-
ylation is elevated in HB

We collected nine pairs of HB and adjacent nor-
mal liver tissue samples and detected the 
methylation patterns of RASSF5 in 9 HB in 
these tissues. The primers covered most of the 
regions with the most CpG sites. The CpGs 
located in the promoter regions could not be 
detected, but the CpGs located in the gene 
body were typically methylated. Five sites in the 
RASSF5 body regions were suitable for analy-
sis. Using two-way hierarchical cluster analysis, 
we found that all five CpG sites had a signifi-
cantly higher degree of methylation in the HB 
tissues compared with the same sites in the 
non-tumor tissues. In addition, these sites had 
a significantly higher level of methylation of the 
RASSF5 gene between HB tissues and their 
non-tumor counterparts (0.6391±0.02630 vs. 
0.4688±0.02728, respectively; P<0.01; Figure 
1).

Table 1. Clinical and pathological characteristics of the study subjects

Case Age 
(months) Sex Diagnosis type Alpha-fetoprotein 

(ng/ml)
1 7 Male Mixed embryonal/fetal subtype 68490
2 23 Male Mixed embryonal/fetal subtype >121,000
3 11 Female Mixed embryonal/fetal subtype >121,000
4 10 Female Mixed embryonal/fetal subtype >121,000
5 20 Female Mixed embryonal/fetal subtype >121,000
6 7 Male Mixed embryonal/fetal subtype >121,000
7 30 Male Epithelial type >121,000
8 19 Male Epithelial type >121,000
9 7 Female Epithelial type >121,000

primer for the subsequent 
PCR amplification. The 
DNA samples were treated 
with shrimp alkaline phos-
phatase (SAP) in vitro tran-
scription and uracil-specif-
ic cleavage, then robotical-
ly dispensed onto silicon 
matrix preloaded chips 
(SpectroCHIP; Sequenom, 
San Diego, CA, USA). Mass 
spectra were collected wi- 
th a MassARRAY Compact 
MALDI-TOF system (Seque- 
nom), and the methylation 
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RASSF5 mRNA expression levels are reduced 
in HB

To determine whether RASSF5 is involved in 
tumorigenesis, we detected RASSF5 mRNA 
expression levels using qPCR. We found the 
expression level of RASSF5 was significantly 
downregulated in the HB tissues compared 
with the matched non-tumor liver tissues 

(0.0051±0.0013 vs. 0.0261±0.0020, respec-
tively; P<0.01; Figure 2).

Correlation between RASSF5 mRNA expres-
sion and percentage of DNA methylation

Using linear Pearson’s R correlation, we ana-
lyzed the correlations between RASSF5 mRNA 
expression and DNA methylation status of the 
CpG sites in the nine pairs of samples. Our data 
showed that RASSF5 mRNA expression was 
negatively correlated with its level of methyla-
tion (r=-0.5644; P=0.0147; Figure 3).

Discussion

DNA methylation and its effect on gene expres-
sion have been studied extensively for the  
last two decades [17]. Generally, methylation 
changes in CpG islands, CpG shores and CpG 
shelves [18], regulates several biological pro-
cesses, including X chromosome inactivation, 
genomic imprinting, gene transcription and 
chomatin modification [19-21]. Most of these 
studies focused on gene promoter methylation 
[22, 23]. Hypermethylation or hypomethylation 
of gene promoter regions can result in tran-
scriptional silencing or activation [17]. It is gen-
erally recognized that hypermethylation of sup-
pressor gene promoters or hypomethylation of 
oncogene promoters contribute to tumorigene-
sis. Although several studies have investigated 
how gene body DNA methylation impacts gene 
expression [10, 24, 25], the function of gene 
body DNA methylation still remains obscure. It 

Figure 1. Methylation levels of RASSF5 body region 
were significantly elevated in the hepatoblastoma 
tissue samples (n=9) compared with adjacent non-
tumor tissues (*P<0.01). 

Figure 2. RASSF5 mRNA expression levels were sig-
nificantly reduced in the HB tissue samples compared 
with the adjacent non-tumor tissues (*P<0.01). 

Figure 3. Correlation analysis of RASSF5 mRNA ex-
pression and the percentage of DNA methylation 
in nine hepatoblastoma primary tissues (two-tailed 
Pearson correlation: r=-0.05644; P=0.0147).
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has been suggested that gene body methyla-
tion may increase transcriptional activity by 
affecting the initiation of intragenic promoters 
or the activities of repetitive DNAs with the 
transcriptional unit [25]. Gene body DNA de- 
methylation may lead to nucleosome destabili-
zation in transcribed regions and reduced effi-
ciencies of transcription elongation or slicing 
[11]. 

In our previous genome-wide analysis of DNA 
methylation in normal and HB liver tissues, 
which we performed using an Infinium Human 
Methylation 450 Beadchip, the data showed 
distinctively less methylation in positions near 
the RASSF5 gene [15]. To confirm the associa-
tion between HB and RASSF5 methylation, in 
the present study, we performed a MALDI-TOF 
MS analysis of nine pair of tumor and adjacent 
normal liver tissues to specifically detect the 
RASSF5 methylation status. 

RASSF5, also known as NORE1 (Novel Ras 
Effector 1), is the most commonly studied 
methylated gene in cancer so far. It is localized 
at 1q32.1 and has been reported as methylat-
ed and silenced in neuroblastoma, Wilms tu- 
mor, hepatocellular carcinoma and other can-
cer [26-30]. We detected five CpG sites in the 
gene body region of RASSF5 from each sample, 
and the degree of methylation of all five sites 
was significantly higher in the HB samples than 
in the normal liver tissues. In an independent 
cohort of nine adjacent HB-non-tumor tissue 
pairs, we investigated whether there was a  
correlation between RASSF5 methylation and 
mRNA expression. The RASSF5 mRNA expres-
sion levels in the nine paired samples was 
detected by qPCR, and the results showed that 
the RASSF5 mRNA expression levels in normal 
liver tissues were significantly higher than in  
HB tissues. Furthermore, the correlation analy-
sis suggested that the methylation status of 
RASSF5 was significantly negatively correlated 
with its mRNA expression levels, which is in 
agreement with previously published data sug-
gesting that RASSF5 may be an oncogene.

To our knowledge, this is the first report of 
hypermethylation of RASSF5 in HB. Although 
we failed to detect CpGs sites in the promoter 
regions of the RASSF5 gene, we found that 
DNA hypermethylation occurred in the RASSF5 
gene body. Previous studies have suggested 
that gene body DNA methylation may be an 

intriguing additional target for therapy [11], so 
the results of the present study may help in 
understanding the role of DNA methylation in 
HB. 

In conclusion, the current study indicated that 
aberrant body methylation of RASSF5 may con-
tribute to its upregulated mRNA expression in 
HB. However, because HB is an uncommon dis-
ease of children, our sample size was limited. 
Therefore, further studies are required to fully 
understand whether aberrant methylation of 
RASSF5 is a consequence of gene expression 
or it can decrease gene expression levels. 
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