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Key Points

• c-KIT activating muta-
tions cause resistance
to PARP inhibitor in
AML1-ETO–positive
leukemias.

• c-KIT inhibitor avapriti-
nib downregulates
BRCA1/2 and DNA-PK
catalytic subunit to
restore the sensitivity
to PARP inhibitor.

Introduction

Numerous reports indicate that acute myeloid leukemia (AML) cells accumulate high levels of sponta-
neous and genotoxic agent–induced DNA lesions, but they are able to survive because of enhanced/
altered DNA repair activities.1-5 Because DNA damage may constrain survival and proliferation of
leukemia cells, transformed cells need to be protected from the lethal effects of DNA damage, such
as DNA double-strand breaks (DSBs).6 Thus, leukemia cells may be highly dependent on specific
DSB repair mechanisms, and targeting these pathways could sensitize them to DNA-damaging
agents.7

DSBs, the most lethal DNA lesions, are repaired by 2 major mechanisms: homologous recombination
(HR; major proteins: BRCA1, BRCA2, PALB2, RAD51B, RAD51C, RAD51D, XRCC2, XRCC3,
RAD54, and RAD51) and DNA-dependent protein kinase (DNA-PK)–mediated nonhomologous end-
joining (D-NHEJ; major proteins: DNA-PK catalytic subunit, Ku70, Ku80, NHEJ1, Artemis, LIG4, and
XRCC4).8 PARP1-dependent alternative NHEJ (Alt-NHEJ; major proteins: PARP1 and LIG3) serves as
a back-up pathway.9,10

Chromosomal translocations involving the core binding factor (CBF) family members, such as AML1-
ETO (RUNX1-RUNX1T1) and CBFB-MYH11, are among the most frequent cytogenetic aberrations
found in AML.11 We and other investigators have shown that AML1-ETO–positive cells display
BRCA1/2 deficiency, which diminishes HR activity and predisposes leukemia cells to synthetic
lethality triggered by DNA repair inhibitors, such as the PARP inhibitor (PARPi) olaparib.12,13

These data suggested that PARPi’s, which are approved by the US Food and Drug Administration
for the treatment of BRCA1/2-mutated breast and ovarian cancers,14 can be used to treat AML1-
ETO–positive AMLs.

Additional mutations (eg, in c-KIT and NRAS) often accompany AML1-ETO1 and CBFB-MYH111

AMLs.15,16 c-KIT mutations (c-KITmuts) in AMLs harboring AML1-ETO or CBFB-MYH11 are
associated with poor disease outcome,17 warranting novel therapeutic approaches. In this study, we
tested whether c-KITmuts can modulate the response of AML1-ETO– or CBFB-MYH11–positive
AML cells to PARPi.

Methods

Primary AML cells and cell lines

Genetic aberrations in diagnostic primary AML samples collected for the Eastern Cooperative Oncology
Group and the American College of Radiology Imaging Network (ECOG-ACRIN) E1900 clinical trial18

are described in supplemental Table 1. Samples of normal hematopoietic cells were purchased from
STEMCELL Technologies (Vancouver, BC, Canada). Lin2CD341 cells were obtained from mono-
nuclear fractions by magnetic sorting using EasySep negative selection human progenitor
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cell enrichment cocktail, followed by human CD34 positive
selection cocktail (STEMCELL Technologies), as described
previously.12 The Kasumi-1 AML cell line harboring AML1-ETO 1
c-KIT(N822K) was purchased from the American Type Culture
Collection.

Clonogenic assay

Cells (104 per 0.1 mL) were treated with the PARPi olaparib, the
c-KIT inhibitor (c-KITi) avapritinib, and/or doxorubicin (all from
Selleckchem) for 72 hours, followed by plating in methylcellulose,
as described previously.12 Colonies were counted after 7 to
10 days.

Western blot

Kasumi-1 cells were left untreated or were treated with the c-KITi
avapritinib (5 mM) for 48 hours. Total cell lysates and nuclear lysates
were examined by western blot, as described previously.12

DSB repair

HR, D-NHEJ, and Alt-NHEJ were measured in Kasumi-1 cells that
were treated or not with the c-KITi avapritinib (5 mM) for 72 hours
using DR-GFP (HR), EJ2-GFP (D-NHEJ), and EJ5-GFP (Alt-NHEJ)
reporter cassettes, as described previously.12

Results and discussion

To test whether a c-KITmut (D816V or DY4181D419; supple-
mental Table 1) modulates the sensitivity of individual AMLs
harboring AML1-ETO to PARPi, Lin2CD341 cells were incubated
with increasing concentrations of the PARPi olaparib or the
cytotoxic drug doxorubicin, followed by clonogenic testing.
Results clearly show that the presence of c-KITmut is accompa-
nied by reduced sensitivity to olaparib but not to doxorubicin
(Figure 1). This observation is supported by another report
that c-KIT(N822K) rescued BRCA2 expression and HR activity
in AML1-ETO–positive cells.19 In addition, although CBFB-
MYH11–positive Lin2CD341 cells appeared less sensitive to
olaparib compared with their AML1-ETO counterparts, c-KITmut
further diminished their sensitivity to the drug, whereas mutated
NRAS exerted the opposite effect, without affecting their
response to doxorubicin (supplemental Figure 1). Altogether,
these results suggest that c-KITmut was associated with re-
sistance to the PARPi olaparib without affecting the sensitivity to
doxorubicin.

To determine whether constitutive activation of c-KITmut tyrosine
kinase was responsible for olaparib resistance, avapritinib was used
to inhibit the mutated kinase in AML1-ETO1 c-KIT(N822K)–positive
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Figure 1. c-KITmut is associated with resistance to the PARPi olaparib, but not to doxorubicin, in AML1-ETO–positive AMLs. Clonogenic potential of Lin2CD341

cells from AML patients harboring AML1-ETO (AE) or AML1-ETO 1 c-KITmut (AEK) and treated with the indicated concentrations of olaparib or doxorubicin. (A) Mean number

of colonies from individual samples tested in triplicates. (B) Mean percentage 6 standard deviation of colonies compared with untreated counterparts from the samples

harboring the same mutations.

10 DECEMBER 2019 x VOLUME 3, NUMBER 23 MUTATED c-KIT KINASE CAUSES RESISTANCE TO PARPi 4051



Kasumi-1 cells (Figure 2A, left panel).20 Inhibition of c-KIT(N822K)
kinase by avapritinib (Figure 2A, left panel) was associated with
downregulation of BRCA1 and BRCA2 (HR pathway) and the
DNA-PK catalytic subunit (D-NHEJ pathway), but not PARP1 (Alt-
NHEJ pathway) (Figure 2A, right panel). In concordance, avapritinib
inhibited HR and D-NHEJ activity, but not Alt-NHEJ activity, in
Kasumi-1 cells (Figure 2B) and restored their sensitivity to olaparib
(Figure 2C). Moreover, avapritinib enhanced the sensitivity of pri-
mary AML1-ETO1 c-KITmut–positive Lin2CD341 cells to olaparib
(Figure 2D, left panel) but did not affect the sensitivity of

AML-ETO–positive cells bearing wild-type cKIT (Figure 2D, middle
panel). In addition, avapritinib 1 olaparib exerted only a modest
effect against Lin2CD341 cells from healthy donors (Figure 2D,
right panel). Although it has been reported that avapritinib inhibits
mutated cKIT and PDGFRA oncogenic kinases,20 our results
strongly support the role of cKITmut in modulation of the sensitivity
of AML cells to PARPi.

In agreement with our observation presented here, oncogenic
tyrosine kinase inhibitor–induced dual deficiency in HR and
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Figure 2. Inhibition of c-KITmut kinase causes DSB repair defects and restores sensitivity of AML1-ETO–positive AML cells to the PARPi olaparib. (A)

Tyrosine-phosphorylated proteins (pY) and indicated DSB repair proteins were detected by western blot in total cell lysates (left panel) and nuclear cell lysates (right panel)

from Kasumi-1 cells treated (designated by “A”) or not (-) with avapritinib. Actin and lamin served as loading controls. (B) HR, D-NHEJ, and Alt-NHEJ activities in Kasumi-1 cells

treated (designated by “A”) or not (-) with avapritinib. Results represent mean percentage 6 standard deviation (SD) of GFP1 cells in DsRed1 population from 3 experiments.

*P , .001, Student t test. (C) Kasumi-1 cells were left untreated (-) or treated with 5-mM avapritinib (designated by “A”), 5-mM olaparib (O), or avapritinib 1 olaparib (AO).

Mean 6 SD number of colonies from 3 experiments. *P , .05, Mann-Whitney rank sum test. (D) Clonogenic potential of Lin2CD341 cells from 3 AML patients harboring

AML1-ETO 1 c-KITmut (AEK), 3 AML1-ETO (AE)–positive AMLs, and from 3 healthy donors (N) treated with the indicated concentrations of olaparib (O) or 5-mM

avapritinib 1 olaparib (AO). Mean percentage 6 SD of colonies compared with untreated counterparts.
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D-NHEJ was also associated with highly effective elimination of
FLT3(ITD)-positive AML cells and JAK2(V617F)-positive myelo-
proliferative neoplasm cells by PARPi.21,22 In conclusion, AML1-
ETO–positive AML cells harboring c-KITmut (N822K, D816V,
and DY4181D419) were resistant to the PARPi olaparib but
not to doxorubicin. Inhibition of c-KITmut kinase activity by
avapritinib inhibited HR and D-NHEJ and restored the sensitivity
of AML cells to olaparib. We postulate that PARPi combined
with c-KITi can be effective against c-KITmut–positive AMLs,
especially those harboring AML1-ETO. Moreover, PARPi may be
useful for eliminating CBFB-MYH11 1 mutated NRAS–positive
AMLs.
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