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ABSTRACT: Cytochrome P450 (CYP450) enzymes belong to a
superfamily of heme-containing proteins that are involved in the
metabolism of structurally diverse endogenous and exogenous
compounds. Various proof-of-concept studies indicate that meta-
bolic stability and intrinsic clearance of CYP450 substrates are linked
with the respective lipophilicity (log P or logD). This necessitates
the normalization of lipophilicity (log P or logD) of a given CYP450
substrate with respect to its metabolic stability (LipMetE) and
intrinsic clearance (log10CLint,u). Therefore, in this article, the
LipMetE values of already known substrates of CYP1A2, CYP2C9,
CYP2C19, CYP2D6, and CYP3A4, including some marketed drugs,
have been calculated to elucidate the relationship between
lipophilicity (logD7.4) and in vitro clearance. Moreover, various
drug efficiency metrics including lipophilic efficiency (LipE) and ligand efficiency (LE) have been evaluated, and the thresholds
of these parameters have been defined for the CYP450 substrates exhibiting normalized LipMetE. Our results indicate that for a
given range of LipMetE, greater the logD value of the substrate the more avidly it binds to a given CYP450 enzyme and shows
more intrinsic clearance (log10CLint,u). Overall, the majority of the model substrates of CYP450 isoforms and already marketed
drugs in our datasets exhibit logD7.4 values of ∼2.5 with LipMetE values in the range of 0−2.5 and LipE values of ≤3. Overall,
consideration of these parameters in ADME profiling could aid in reducing the drug failure rate in the later stages of clinical
investigations.

1. INTRODUCTION
Research and development (R&D) is the initial stage of the
development process in which the pharmaceutical companies
apply research-based knowledge and adopt various strategies to
develop new products and bring innovation to the industry.1−3

During the past decades, huge technological advancements and
access to a plethora of scientific knowledge have prognosti-
cated an all-time high R&D output.2 However, it is challenging
for the pharmaceutical companies to maintain the R&D
productivity at a justifiable level.2 Moreover, the R&D
productivity gap of the pharmaceutical industry has been
associated with poor pharmacokinetics/ADME-Tox properties,
lack of efficacy, and adverse drug−drug interactions.1

More recently, AstraZeneca implemented a revised and
more focused R&D strategy to be used in the drug discovery
and development projects, showing a shift from quantitative
(high-volume) to qualitative strategies with a deeper under-
standing. To improve the overall R&D productivity,
AstraZeneca proposed a decision-making five-“R” concept
that is based on the right target, right tissue, right safety, right
patient, and right commercial potential. At AstraZeneca,
evaluation and application of the five-“R” concept to target
validation and selectivity, hit and lead optimization,

pharmacokinetics/pharmacodynamics (PK/PD) modeling,
safety/toxicology, and efficacy have improved the success
rate at phase III from 4% in 2005−2010 to 19% in 2012−
2016.2,3

Furthermore, it has been demonstrated that understanding
of PK, PK/PD, and ADME properties of new chemical entities
is crucial for improving quality in lead and drug candidate
selection. Overall, drug metabolism has been recognized as one
of the most important factors in pharmacokinetics and hence
modulates the behavior of a drug.4 Among several human
metabolizing enzymes, cytochrome P450s are the heme-
containing enzymes that account for ∼75% of the drug
metabolism.5 Among these, the CYP1, CYP2, and CYP3
families mediate 70−80% of all phase I metabolic reactions of
clinically relevant drugs with CYP1A2, CYP2C9, CYP2C19,
CYP2D6, CYP3A4, CYP3A5, and CYP2E1 performing 90% of
the drug metabolism.5

Induction of metabolic enzymes by various chemical entities
may produce a suboptimal effect that results in high clearance
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due to a high metabolic rate, whereas enzyme inhibition by
some other chemical scaffolds might produce an effect longer
than that required to achieve the desired therapeutic effect,
thus resulting in undesired side effects.4,6 Moreover, the
cytochrome P450 family of enzymes has an inherent affinity for
lipophilic substrates due to their lipophilic nature.7,8 Yet, highly
lipophilic compounds might also possess a greater CYP
inhibition potential depending on their ionization states.9

However, in the drug discovery and design programs,
lipophilicity evaluates the permeability of a drug through the
biomembrane and, thus, affects its bioavailability.10 Therefore,
the need to probe toxicological profiles of new chemical
entities (NCEs) during early stages of investigations is highly
demanded.11

Toward this goal, various authors in the past used several
ligand-12 as well as structure-based in silico approaches13,14 and
hybrid methods15,16 for toxicological profiling of lead
candidates. These include QSAR,17,18 machine-learning
methods,19,20 pharmacophore-based methods,21,22 shape-fo-
cused approaches, molecular interaction fields (MIFs),23

reactivity-focused techniques,24 docking25,26 and molecular
dynamics (MD) simulation studies on different classes of
modulators of CYP450, ABC transporters, and the hERG K+

ion channel.27−30

Additionally, the impact of lipophilicity on membrane
permeability, bioavailability, promiscuity, drug metabolism by
CYP450s, and overall ADME-Tox properties has also been
reported by several authors in the past.9−11,31−34 Various
studies have reported a trend of increase in lipophilicity during
lead optimization protocols that results in low solubility and
poor absorption, and thus, might lead to rapid metabolic
turnover by CYP450 enzymes.35,36 The recently established
lipophilic metabolic efficiency (LipMetE) parameter ensures
adequate metabolic stability at the required lipophilicity level,
even for compounds with high lipophilic efficiency (LipE).37 It
has been observed that a compound with metabolic flaws and
consistently very low LipMetE might fail to yield a quality
clinical candidate even if high LipE against the respective
CYP450 isoform was achieved.38

To probe the therapeutic activities and metabolism-related
effects of compounds, screening of large chemical libraries
against specific antitargets including CYP450s and on-targets is
crucial during very early phases of drug discovery, mainly
during hit identification and prior to lead optimization.
Therefore, ligand optimization in the context of targets as
well as antitargets is highly demanded.39 Overall, CYP450s are
known to metabolize a diverse set of substrates depending on
the nature of their binding sites, thus representing diverse
substrate properties for each CYP isoform.40 Therefore, in the
present investigation, we utilized the LipMetE parameter to
elucidate the relationship between lipophilicity and in vitro
clearance of the CYP substrates. Additionally, hit-to-lead
efficiency metrics including lipophilic efficiency (LipE) and
ligand efficiency (LE) were calculated to probe the metabolic
attributes of CYP450 substrates.

2. RESULTS AND DISCUSSION
2.1. Lipophilic Metabolic Efficiency (LipMetE). Mon-

itoring compound lipophilicity and maintaining it at a lower
level form an integral part of drug design/discovery criteria
because highly lipophilic chemical entities are recurrently
associated with greater risks.41 It is well established that
compounds with higher lipophilicity (c log P > 3) and lower

polar surface area (TPSA < 75 Å2) pose a 6-fold greater risk
during the preclinical toxicology testing.42 Moreover, the
oxidative liability of the highly lipophilic compounds leads to
high clearance, poor bioavailability, and high dosage-depend-
ent targeted efficacy, making it amenable to severe
toxicological outcomes.43 Therefore, due to the importance
of lipophilicity as a design parameter and to establish
meaningful relationships (i.e., lipophilicity vs clearance),
many design indices take into account compound lip-
ophilicity.37

The lipophilic metabolic efficiency (LipMetE) is one
parameter that depicts the relationship between lipophilicity
and clearance (in vitro HLM) in a similar manner to LipE,
where LipE describes the relationship of lipophilicity with
potency.37 Graphing the relationship between lipophilicity
(logD7.4) and metabolic stability (log10CLint,u) can also be
used to understand the contribution of lipophilicity toward
metabolic stability through other factors (i.e., a compound’s
intrinsic chemical stability). For the clusters of related
compounds with variable lipophilicity values and the same
LipMetE values, the differences in clearance are mainly
associated with changes in lipophilicity. However, for
compounds with similar lipophilicity values traversing the
LipMetE lines, the clearance might be modulated due to other
factors (i.e., difference in the chemical stability, blockage of the
metabolic site, or the alteration in a substrate’s intrinsic affinity
for a particular CYP450 isozyme).37

Previously, it has been reported that drug-like compounds
usually show LipMetE values between −2.0 and 2.0, and
higher LipMetE values (>2.5) are indicative of greater
metabolic stability in comparison to lower LipMetE values.37

The compounds with higher LipMetEs provide a wide range of
logD7.4 values and, thus, can be used as important starting
points for the optimization/improvement of properties, such as
potency and permeability, in combination with low clear-
ance.37 Various studies advocating the LipMetE concept have
been reported in the literature. Pettersson et al. demonstrated
LipMetE values of 0.9−2.0 for a series of pyridopyrazine-1,6-
dione γ-secretase modulators (GSMs) designed for the
treatment of Alzheimer’s disease38 and a LipMetE of 1.5 for
the optimized cyclopropyl chromane-derived pyridopyrazine-
1,6-dione-type γ-secretase modulator.44 Similarly, the opti-
mization of the LipMetE parameter to achieve better ADME
profiles of a drug by 11 hydrogen-to-fluorine matched
molecular pair (MMP) transformations has been established
elsewhere, and it is shown that the OCH3-to-OCF3 trans-
formation corresponded to an increase in LipMetE from −0.5
to 2.0 in the MDR modulators.45

Optimization of LipMetE values with respect to lipophilicity
and in vitro clearance advocates a promising concept to
estimate the CYP450 substrate properties of new chemical
entities (NCEs). Therefore, here the LipMetE parameter has
been calculated to decipher the relationship between lip-
ophilicity and in vitro clearance of the CYP1A2, CYP2C9,
CYP2C19, CYP2D6, and CYP3A4 substrate datasets, as
described by Stepan et al.37 (data shown in Table S2 of the
Supporting Information), to probe the threshold values of
lipophilicity, in vitro clearance, and LipMetE for better
metabolic profiles of drug-like CYP450 substrates. Overall,
the LipMetE and logD7.4 distribution profiles of the collated
datasets display a wide range of LipMetE and logD7.4 values
(i.e., <0 to >3), as shown in Figures S1 and S2. The LipMetE,
logD7.4, and log10CLint,u values within −4.54 to 4.35, −1.19 to
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4.24, and −3.08 to 4.7 (Figure 1a, Table S2) have been
calculated for 43 CYP1A2 substrates, including 31 FDA-
approved drugs (for drug classes refer to Table S1).
Interestingly, only one compound, 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP), exhibits a LipMetE value
of 4.35, which might be correlated with its very low clearance
value (log10CLint,u −3.08, Table S2), whereas the model
substrate, 7-ethoxycoumarin, showed a LipMetE value of 2.99,
log D7.4 of 2.22, and an in vitro clearance of −0.77
(log10CLint,u) (Table S2). The remaining compounds in our
CYP1A2 substrate dataset span the LipMetE range of −4.54 to

1.86 with the marketed drugs (amitriptyline, mexiletine,
zolpidem, mirtazapine, clozapine, nortriptyline, pimozide, and
acetaminophen) exhibiting LipMetE values within 0.11−1.86
(Figure 1a). Overall, for the CYP1A2 substrates, it has been
observed that marketed drugs and model substrates with
suitable metabolic profiles (LipMetE 0−2.5) show average
LipMetE, logD7.4, and log10CLint,u values of 0.94, 2.25, and
1.28, respectively, as shown in Table 1. This is further
supported by the similar LipMetE profiles of the CYP2C9
substrates.

Figure 1. LipMetE profiling of (a) CYP1A2, (b) CYP2C9, (c) CYP2C19, (d) CYP2D6, and (e) CYP3A4 substrates. Data points labeled in red in
all LipMetE profiling plots indicate the CYP450 substrates with metabolic stability values between 0 and 4 (LipMetE).

Table 1. Table Summarizing the LipMetE, LipE, logD7.4, and log10CLint,u Ranges for the CYP1A2, CYP2C9, CYP2C19,
CYP2D6, and CYP3A4 Substrate datasets That Were Used for LipMetE Calculationsa

known drugs and model substrates data (LipMetE 0−2.5)

CYP450
LipE
range

LipMetE
range

logD7.4
range

log10CLint,u
range

no of substrates with LipMetE
between 0 and 2.5

LipE
range

average
LipE

average
LipMetE

average
logD7.4

average
log10CLint,u

CYP1A2 −1.96 to
7.24

−4.54 to
4.35

−1.19 to
4.24

−3.08 to
4.72

8 −1.96 to
3.03

0.88 0.94 2.25 1.28

CYP2C9 −1.02 to
5.01

−3.72 to
3.63

−0.98 to
5.92

−0.015 to
5.18

6 −0.83 to
2.73

1.00 0.69 2.63 1.94

CYP2C19 −4.20 to
5.13

−6.40 to
4.70

−1.29 to
5.68

−1.87 to
6.49

3 −2.18 to
0.95

−0.15 0.70 2.73 2.02

CYP2D6 −1.18 to
4.73

−6.35 to
2.93

−2.01 to
5.09

−0.53 to
6.72

11 −1.14 to
2.17

0.50 1.03 2.48 1.46

CYP3A4 −2.36 to
6.66

−6.19 to
3.85

−1.26 to
5.16

−3.08 to
7.27

23 −1.98 to
2.72

0.85 0.75 2.64 1.89

aThe average values for LipMetE, LipE, logD7.4, and log10CLint,u have been derived using drugs and model substrates from each dataset with better
metabolic profiles (LipMetE 0−2.5).
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A CYP2C9 substrate dataset of 43 compounds, including
flavonoids, marker substrates, insecticides, experimental agents,
and various FDA-approved drugs (Table S1), with Km values in
the range 0.4−2250 μM was used for the estimation of logD7.4
(−0.98 to 5.92), log10CLint,u (−0.015 to 5.18), and LipMetE
values (−3.72 to 3.63), as shown in Table S2. The already
known drugs metabolized by CYP2C9, namely, sertraline,
zolpidem, mirtazapine, meloxicam, and perphenazine along
with one model substrate 7-ethoxycoumarin, one flavonoid
derivative, one organosulfur analogue, and two pesticides
(fenthion and sulprofos) displayed positive metabolic stability
(LipMetE 0.066−1.56), as shown in Figure 1b. However, only
desogestrel exhibits a very high positive LipMetE of 3.62,
which might be linked with its high logD7.4 value (5.92)
(Figure 1b) as compared to the logD7.4 values of the rest of the
data (−0.98 to 4.88). For the metabolically stable (LipMetE
between 0 and 2.5) marketed drugs and model substrates of
CYP2C9, average LipMetE, logD7.4, and log10CLint,u values of
0.69, 2.63, and 1.94 are shown (Table 1). Overall, the LipMetE
values of CYP2C9 substrates lie within the range of LipMetE
values established previously for different drug-like com-
pounds,37,38 which further reflects the robustness of our
LipMetE calculation model.
LipMetE estimation was also performed on a dataset of 54

CYP2C19 substrates including investigational agents, hex-
obarbital enantiomers, marker substrates, withdrawn drugs,
insecticides, and 28 approved drugs (for drug classes refer to
Table S1) with Km values in the range 0.43−89 000 μM (Table
S2). The LipMetE values of the dataset range from −5.69 to
3.90 with only diazepam, flunitrazepam, and 8:2 fluorotelomer
alcohol possessing LipMetE of 3.2/3.9/4.75 and logD7.4 values
of 2.92/2.03/5.68, respectively (Table S2, Figure 1c). The
marketed drugs and model substrates metabolized by
CYP2C19 that have values within the desired LipMetE (0−
2.5) range display an average LipMetE value of 0.703 with
logD7.4 and log10CLint,u values of 2.73 and 2.02, respectively
(Table 1), which is in line with the already established
LipMetE parameters against CYP1A2 and CYP2C9.
Similar results were achieved for our dataset of CYP2D6

substrates. Briefly, CYP2D6 contributes to the metabolism of
about 20−25% of clinically relevant drugs, including β-
blockers, neuroleptics, antidepressants, and antiarrhythmics.46

For the calculation of the LipMetE parameter, the CYP2D6
substrate dataset was composed of 65 compounds, including
marker substrates, antioxidants, plant extracts, experimental
and investigational compounds, clinical candidates,47 active
drug metabolites, and a large number of FDA-approved drugs
(Table S1), presenting LipMetE values within −6.35 to 2.93,
as shown in Table S2. However, already marketed drugs
displayed LipMetE values from 0.21 to 2.92 with an average
value of 1.03 (Table 1). Overall, loperamide, dextrorphan, and
K11777 epitomize the candidates with the highest LipMetE
(2.9/2.19/2.83) and logD7.4 (3.94/1.67/3.8) values (Table S2,
Figure 1d).
For CYP3A4, LipMetE values between −6.19 and 3.85 have

also been calculated for 86 substrates, including clinical trial
compounds and 63 FDA-approved drugs (drug classes shown
in Table S1, Figure 1e, and Table S2). However, 26 CYP3A4
substrates, including 24 clinically available drugs, displayed a
greater degree of metabolic stability (LipMetE 0.024−3.85).
Theophylline exhibited a LipMetE of 3.05 mainly due to its
poor in vitro clearance (log10Clint,u −3.08) and lower logD7.4
(−0.03) as compared to logD7.4 and in vitro clearance values

of the remaining CYP3A4 substrates. Docetaxel, loperamide,
and mifepristone displayed higher LipMetE values of 3.04/
3.18/3.84 mainly due to higher logD7.4 (3.54/3.94/5.19)
values. The CYP3A4 substrate, meloxicam, exhibited a
LipMetE value of 2.5 with logD7.4 and log10CLint,u values of
1.04 and −1.51, which reflects an overall balance of the
LipMetE, logD7.4, and in vitro clearance profile (Figure 1e).
Furthermore, it is also important to establish meaningful

relationships between the calculated parameters presented in
this study. Generally, it is shown that the metabolic clearance
of lipophilic compounds increases with an increase in lipophilic
character due to the lipophilic substrate binding site of
cytochrome P450 enzymes.48 Similarly, a reduction in
lipophilicity normally leads to reduced metabolic clearance
and greater metabolic stability; yet there is considerable
variation in this correlation in various investigations. For a
series of dihydropyridine calcium channel blockers, a direct
correlation (r = 0.87) has been observed between lipophilicity
and plasma clearance.49 Similarly, Rand et al. demonstrated a
considerable trend of increased metabolic clearance with an
increase in logD7.4 values, while optimizing the pharmacoki-
netic and structural properties for a series of 16 cyclic peptides
having diverse therapeutic properties.50 Additionally, a direct
correlation has also been established between the logD7.4 and
metabolic clearance values in humans for a set of neutral
compounds with metabolic clearance values in the range 0.01−
1000 mL/min/kg and logD7.4 values between −2 and 5.51

However, a weak trend toward increase in clearance with
lipophilicity in humans has also been noted for 670
intravenously administered drugs and clinical candidates.52

Herein, a direct correlation between logD7.4 and intrinsic
clearance has been identified in the CYP3A4 substrates,
including the marketed drugs that reside in the LipMetE range
between 0 and 1 as well as for those substrates that reside in
the LipMetE range of >2, as shown in Figure 1e. This is in line
with the previous relationship established by Smith and
Waterbeemd who explicated that metabolic clearance of the
CYP3A4 substrates can be reduced by lowering the lip-
ophilicity, irrespective of the structure or reaction types
through which metabolism occurs. Moreover, they observed
a very good correlation (r2 = 0.877) between logD7.4 and
metabolic clearance values of 14 substrates of CYP3A4, mainly
drug compounds.51,53 Overall, in the present investigation, a
poor or no correlation has been observed between intrinsic
clearance (log10CLint,u) and logD7.4 of the entire dataset of
CYP450 substrates, as shown in Figure S3. However, known
drugs and model substrates of the respective CYP450 subtypes
show a direct correlation between intrinsic clearance
(log10CLint,u) and logD7.4 within a given range of LipMetE
values, as shown in Figure 2.
Previously, several investigations have also reported the

dependence of ADME properties on lipophilicity. Yoshida et
al. analyzed a dataset of 232 drugs with human pharmacoki-
netics data and revealed higher bioavailability for compounds
having logD7.4 values between 2 and 3.54 In contrast to this, a
study by Paul Gleeson reported that no clear relationship exists
between lipophilicity and oral bioavailability in rat for more
than 4400 preclinical compounds. Moreover, a weak relation-
ship between lipophilicity (c log P) and clearance has been
observed with more lipophilic compounds clearing more
rapidly, thus showing lower metabolic stability although some
dependence on the ionization state of the compounds has been
observed.9 A similar trend has been observed in our study,
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where an increase in metabolic stability (LipMetE) has been
observed with a decrease in intrinsic clearance (log10CLint,u) of
the CYP450 substrates, as shown in Figure 3. This may reflect

that high lipophilicity is associated, in part, with increased
metabolic rate by the CYP450 enzymes in liver microsomes,
although many other factors are involved in clearance
mechanisms.9

2.2. Lipophilic Efficiency (LipE). Lipophilic efficiency
(LipE) profiling of the CYP1A2, CYP2C9, CYP2C19,
CYP2D6, and CYP3A4 substrates (Figure 4a−e) has been
performed to normalize the lipophilicity with respect to the
Michaelis−Menten constant (Km) values of the datasets (Table
S2). The LipE and c log P distribution profiles of the respective
CYP450 isoforms are provided in Figures S4 and S5, and the
detailed LipE analysis of 58 CYP1A2 substrates is discussed in
Section S1 of the Supporting Information. It has been observed
that most of the drugs metabolized by CYP1A2 span the LipE
range of −0.11 to 3.84 with Km values of 0.87−3440 μM and
c log P values in the range −0.07 to 5.3 (Figure 4a, Table S2).
This observation is retained with the exception of a few highly
lipophilic marketed drugs, including amitriptyline and
pimozide, that exhibit higher c log P (4.85/6.4), positive
LipMetE (0.108/1.81) but negative LipE (−0.78/−1.96)
values, which might be due to their higher c log P values.
Overall, the difference in LipE values of the CYP1A2 substrate
dataset, mainly drugs (−0.11 to 3.84) from the LipE value
range (5−7), for an average oral drug defined by Leeson and

Springthorpe11 against a drug therapeutic target might be due
to the difference in potency (Ki, IC50) values of the drugs
against the true therapeutic target as compared to Km values
against CYP1A2. Thus, it reflects that the CYP1A2 substrates
(drugs) exhibiting LipE values between 1 and 3 and c log P
values in the range −0.07 to 5.3 may offer better metabolic
reactions and metabolic stability.
Our results for 55 CYP2C9 substrates indicate that about

27% of substrates that are principally metabolized by CYP2C9
exhibit LipE values ≥2, as shown in Figure 4b, with only three
substrates (a dietary flavonoid, lornoxicam, and sildenafil)
displaying LipE ≥3 (details in Section S1). However, the LipE
values of metabolically stable CYP2C9 substrates (LipMetE:
0.066−2) vary from −0.83 to 2.72. The CYP2C9 substrates
including meloxicam, 7-ethoxycoumarin, and kaempferide
display LipMetE/LipE values of 1.05/2.73, 0.74/1.65, and
0.69/2.39, respectively. Generally, it is observed that the
CYP2C9 substrates exhibiting LipMetE values from 0.0 to 2.5
lie within the LipE range of 0−2.7, whereas with an increase in
LipMetE values above 3, a negative LipE value has been
observed due to low intrinsic clearance. Thus, a compound
with higher LipE might indicate more affinity toward the
substrate binding sites of CYP2C9 that in turn shows more
intrinsic clearance, lower metabolic stability, and rapid
metabolism turnover, which may represent a clinically
inadequate candidate.
The LipE profiling of the CYP2C19 substrates (Section S1,

Table S2, and Figure 4c) revealed only one hexobarbital
enantiomer with a LipE value of 5.13, c log P value of −0.78,
Km value of 45 μM and a very low LipMetE value (−3.79).
Similarly, three other hexobarbital enantiomeric CYP2C19
substrates exhibit LipE values >4 and LipMetE values between
−5.69 and −4.86 (Figure 4c). Thus, this also reflects a trend of
increase in LipE with decrease in metabolic stability, which is
also observed for the substrates of CYP1A2 and CYP2C9.
However, for the CYP2C19 substrates with higher LipMetE,
lower LipE values were observed as shown for the low-affinity
substrates flunitrazepam and diazepam (Km values of 89 000/
74 000 μM) that exhibit exceptionally high LipMetE values
(3.90/3.2), but the respective LipE values turn out to be −0.72
and −1.83. Considering only metabolically stable CYP2C19
substrates, zolpidem reflects a good balance of LipMetE
(1.37), LipE (0.79), and c log P (3.03), which might display an
overall better substrate profile.
For the CYP2D6 dataset of 73 substrates only one

compound β-carboline harmaline presented a LipE of 5.14
(Figure 4d, Section S1, and Table S2). Debrisoquine exhibited
a higher LipE of 4.73 (Km: 13.4, c log P: 0.14) and a negative
LipMetE of −4.70. However, for other substrates including
chlorpheniramine and the experimental N-substituted amphet-
amine analogues ((+) MDMA) and ((-) MDMA), LipMetE
values of −1.8/−5.72/−5.47, LipE values of 3.65/4.0/3.64,
and c log P values of 0.77/1.85/1.85 have been observed. A
similar trend of increase in metabolic stability with decrease in
LipE has been observed in the case of dextrorphan and
loperamide, which show LipMetE values in the range of 2.19−
2.92 and LipE values between −1.14 and 0.89. Overall, for the
CYP2D6 substrates with better metabolic stability (LipMetE:
1−2), it was observed that the LipE values lie between 0.91
and 2.17 with the exception of imipramine, which shows a
LipMetE of 1.94 and a negative LipE (−0.15), mainly due to
its high c log P (5.04) and high affinity Km of 12.9 μM.

Figure 2. Plot showing a direct correlation between intrinsic clearance
(log10Clint,u) and logD7.4 values for the particular range of LipMetE
for the marketed drugs and model substrates metabolized by
CYP450s (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4).

Figure 3. Relationship between metabolic stability (LipMetE) and in
vitro clearance of the CYP1A2, CYP2C9, CYP2C19, CYP2D6, and
CYP3A4 substrate datasets.
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The detailed LipE analysis of the CYP3A4 substrates is
discussed in Section S1 and Table S2 of the Supporting
Information. The CYP3A4 substrate, etoposide, exhibits a LipE
of 4.08 and poor metabolic stability (LipMetE: −1.18).
Additionally, loperamide and theophylline display very high
metabolic stability (LipMetE: 3.26/3.05) and low LipE (0.54/
1.63) values. Thus, it further strengthens our observation of
increase in metabolic stability with decrease in LipE of the
CYP1A2, 2C9, 2C19, 2D6, and CYP3A4 substrates, as shown
in Figure S6. Therefore, the optimization of a compound’s
lipophilicity may guide to improve bioavailability- and
clearance-associated problems. Toward this goal, Nassar et al.
reported different strategies for enhancing metabolic stability,
which includes reduction of the overall lipophilicity of a
compound and addition or modification of metabolically labile
groups.55 However, metabolic stability problems solved by
applying structural modifications might not necessarily lead to
a compound with enhanced pharmacokinetic properties.

Therefore, optimization of lipophilicity that supports good
bioavailability, metabolic stability, clearance, and binding
affinity of a substrate with the respective enzyme (Km) might
assist in achieving the highest quality clinical candidate.

2.3. Ligand Efficiency (LE). Finally, the ligand efficiency
(LE) values for substrates with suitable metabolic stability and
clearance have been evaluated to estimate the binding free
energies of compounds within the substrate binding sites of the
respective CYP450 subtypes. Binding free energies (ΔG) and
LE ranges of the respective CYP450 substrates, including
marketed drugs, are summarized in Table 2. Overall, for our
CYP450 substrate datasets, LE values from 0.065 to 1.42
(Figure S7 and Table S2) and ΔG values from −10.45 to
−1.49 (Table S2) have been observed. Hopkins et al. reported
an LE value of 0.29 kcal/mol/HA for an average oral drug,
exhibiting an optimal fit within the binding site of the
respective therapeutic target.36 However, the metabolically
stable substrates of the respective CYP450 isoforms in our

Figure 4. LipE profiling of (a) CYP1A2, (b) CYP2C9, (c) CYP2C19, (d) CYP2D6, and (e) CYP3A4 substrates. Data points labeled in red in LipE
profiling plots indicate CYP450 substrates with metabolic stability between 0−4 (LipMetE) and optimal LipE values.

Table 2. Table Summarizing LipE, ΔG, LE, and c log P Ranges for the CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4
Substrate Datasets That Were Used for LipE and LE Profilinga

known drugs and model substrates data

CYP450
no of

substrates LipE range ΔG range LE range c log P range
no of

substrates
average
LipE

average
LE

average
c log P

CYP1A2 58 −1.96 to 7.24 −9.09 to −3.48 0.185−1.42 −2.8 to 6.4 35 1.62 0.35 2.68
CYP2C9 55 −1.02 to 5.00 −9.04 to −3.74 0.187−0.75 0.23 to 5.68 39 1.68 0.32 3.06
CYP2C19 60 −4.21 to 5.13 −10.0 to −1.49 0.064−0.50 −0.78 to 5.59 35 1.08 0.29 3.19
CYP2D6 73 −1.18 to 5.14 −11.25 to −2.86 0.12−0.63 −0.04 to 7.41 46 1.57 0.32 3.02
CYP3A4 101 −2.52 to 6.66 −10.45 to −2.26 0.1−1.28 −2.8 to 7.41 75 1.13 0.24 3.23

aThe average values of LipE, ΔG, LE, and c log P against each CYP isoform were calculated using all marketed drugs and model substrates included
in each CYP substrate dataset.
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datasets show LE values between 0.064 and 0.6 with ΔG values
from −8.23 to −1.48, which depicts their conducive fit within
the substrate binding site of CYP450.
The analysis of successful drugs that are efficiently

metabolized by CYP450 subtypes facilitated the favorable
thresholds of LipMetE, LipE, and LE for an average oral drug
with a suitable metabolic profile. Generally, for the CYP450
substrates, the LipMetE of 0−2.5, LipE of −0.50 to 3, LE
>0.25, and c log P of 1−3 might reflect important thresholds
for the suitable metabolic parameters of a new chemical entity.
The CYP450 substrates from all datasets are presented in
Figure 5 as points in the 3D space mapped according to the

respective LipE, LipMetE, LE, and c log P properties. Figure 6
shows our CYP1A2, CYP2C9, CYP2C19, CYP2D6, and
CYP3A4 datasets, where compounds fulfilling the established
thresholds are color-coded in green. However, a deviation for
the substrates of each CYP450 subtype from these thresholds
is depicted by red color. Most prominently, the study identifies
the CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4
substrates representing optimal metabolic properties. The
identified substrates with suitable metabolic attributes for the

selected CYP450 subtypes are presented in Table 3 (Figure 6).
The current study estimates the overall properties of CYP450
substrates through the calculation of efficiency metrics.
Therefore, these parameters might serve as valuable tools to
aid the selection of high-quality or drug-like clinical candidates
through the optimization of lipophilicity, which supports the
proposed metabolic stability, clearance, and binding affinity of
a substrate with the respective enzyme (Km).

3. CONCLUSIONS

Drug efficiency metrics have commonly been applied to
compounds with potency values (Ki, IC50) against one or
multiple therapeutic targets. Herein, these efficiency metrics
have been applied to the antitargets, CYP450 enzymes, to
probe the overall metabolic efficiency in terms of metabolic
stability (LipMetE), in vitro clearance, and log P/logD7.4. The
optimization of lipophilic metabolic stability (LipMetE) of a
new chemical entity (NCE) with respect to lipophilicity and in
vitro clearance may advocate a reasonable concept to estimate
the CYP450 substrate properties. Therefore, LipMetE
calculations have been performed to provide a LipMetE
threshold for the CYP450 substrates with suitable metabolism,
intrinsic clearance, and lipophilicity that may offer better
metabolic properties of new chemical entities. Here, we
propose a LipE threshold of ≤3, LipMetE of 0.0−2.5, and
c log P of 1−3 for metabolically suitable compounds. Substrate
binding sites of CYP450s are considered lipophilic in nature,
and thus, within a given range of LipMetE, an increase in
metabolic clearance has been achieved with an increase in
lipophilic character of substrates. Our results also demonstrate
that if a compound shows the already established threshold of
lipophilic efficiency (5−7) against an antitarget, such as
CYP450, it may show more affinity toward the substrate
binding site that in turn shows lower metabolic stability and
rapid metabolism turnover, which may not be suitable for
clinical investigations. Overall, our study estimated an
approximate drug metabolic stability from its logD7.4 and
intrinsic clearance values, although it is important to emphasize
that other factors might also be involved in binding affinity/
metabolic stability, such as polarity, hydrogen bond donor
and/or acceptor properties, and the number of aromatic rings
present in the molecule. Nevertheless, the consideration of the

Figure 5. CYP450 substrates represented as points in the 3D space
mapped according to the respective LipE, LipMetE, ligand efficiency
values and points color-coded according to the c log P values.

Figure 6. CYP450 substrates represented in the 2D heat map according to the thresholds derived from marketed drugs and model substrates for
c log P, LipE, LipMetE, and LE values. Green lines depict the compounds exhibiting our established threshold values of LipMetE (0−2.5), LipE
(−0.50 to 3), LE (>0.25), and c log P (1−3). Red color indicates compounds that show deviation from the optimized thresholds of LipMetE, LipE,
LE, and c log P.
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calculated parameters could facilitate the process of NCE
candidate selection during drug discovery and, thus, aid in the
overall right safety of the five-“R” concept.

4. MATERIALS AND METHODS
4.1. Database Collection. A dataset of 291 CYP450

substrates, including 43 CYP1A2, 43 CYP2C9, 54 CYP2C19,
65 CYP2D6, and 86 CYP3A4 substrates, with known Km
(0.011−89 000 μM), Vmax values (0.973−5.791 × 10+14 pmol/
min/mg), and protein concentration (Cprot (1.2 × 10−11−2
mg/mL)) was used for LipMetE calculations (Table S2). As
the LipE and LE calculations do not require Vmax and Cprot
values, more compounds exhibiting Km values were added to
the existing datasets for LipE and LE profiling. Figure S8 gives
an overall representation of the datasets, including marketed
drugs, model substrates and other substrates, used for
LipMetE, LipE, and LE calculations. The overall distribution
of Km values against each CYP450 subtype indicates that a
greater number of high-affinity substrates (Km 0−100 μM) are
present in each dataset in comparison to low-affinity substrates
(Km > 100 μM), as shown in Figure S9.
4.2. Lipophilic Metabolic Efficiency (LipMetE). Lip-

MetE is a novel parameter that takes into account the intrinsic
clearance of a compound to decipher the relationship between
compound lipophilicity and metabolic stability. Since datasets
for LipMetE profiling were extracted from various studies, unit
conversion calculations have been performed to homogenize
our datasets (Km (μM), Vmax (pmol/min/mg), and Cprot (mg/
mL)). The intrinsic clearance (CLint,app) was calculated for
each CYP450 substrate dataset using eq 1, as described by
Rane et al.56

= V KCL /int,app max m (1)

To correct the intrinsic clearance parameter for nonspecific
binding (CLint,u), the unbound fraction in microsomal
incubations (Fuinc) was calculated using eq 2 retrieved from
Halifax and Houston’s empirical model based on physico-
chemical properties.57 Finally, CLint,u was calculated for the
entire datasets using eq 3.37

=
+ × × + × −C

Fu
1

1 10 P D P Dinc
prot

0.072 log / 0.067 log / 1.1262

(2)

=CL CL /Fuint,u int,app inc (3)

LogD7.4 values were obtained from ChemSpider (http://www.
chemspider.com/), which were determined using ACD/Labs
Percepta Platforms PhysChem module.58 The lipophilic

metabolic efficiency (LipMetE) parameter was calculated as
described by Stepan et al.37 (eq 4)

= −DLipMetE log log (CL )7.4 10 int,u (4)

4.3. Lipophilic Efficiency (LipE). Lipophilicity plays an
important role in determining the ADME-Tox properties and
binding affinity of compounds to their targets. Therefore,
lipophilic efficiency (LipE) metric takes into account both
potency and lipophilicity for the evaluation of a compound’s
drug-likeness.36 Herein, this concept was applied to substrates
of the selected CYP450 subtypes (antitargets) having major
contribution in drug metabolism. LipE profiling was performed
to identify better substrates of the CYP450 family of enzymes
with best Km and lipophilicity ratio (eq 5).

= −pK c PLipE logm (5)

The Bio-Loom software package59 was used for calculating the
c log P values of the entire datasets, whereas the LipE
calculations were performed using the Excel spreadsheet.

4.4. Ligand Efficiency (LE). Ligand efficiency (LE) metric
has been originally used to decipher a ligand’s affinity toward
its target and is measured as the ratio of binding free energy
(ΔG) to the number of heavy atoms (HA).60 Binding affinity
of the CYP450 substrates has been associated with the
metabolic turnover and body clearance.61 Therefore, to
normalize binding affinities of the CYP450 substrates with
respect to heavy atom count, the LE values for the entire
substrate datasets have been computed, as explained by
Hopkins et al. and Jabeen et al.60,62 Equation 6 was used to
calculate the free energies (ΔG) for the CYP450 substrates, as
explained by Kuntz et al.63 The equation is based on the
assumption that enzyme−substrate dissociation constant (Kd)
is approximately equal to the kinetic parameter, Km. Therefore,
the Km values can be substituted for the Kd values, as described
by Lewis et al. and Bauer et al.8,64

Δ = −G RT Kln d (6)

A temperature of 310 K was used to compute the ligand
efficiencies in kcal/mol/heavy atom. LE profiling was
performed using the expression (eq 7)

= −Δ −GLE /HA(non hydrogen atom) (7)

ΔG and LE values for the substrates of each CYP450 subtype
are shown in the Supporting Information (Table S2). The
Excel spreadsheet was used to perform all LE calculations.

Table 3. CYP1A2, CYP2C9, CYP2D6, and CYP3A4 Substrates Representing Optimal Metabolic Properties

CYP
subtype substrates LipE LipMetE LE c log P

CYP1A2 galangin, kaempferide, mexiletine, and mirtazapine 1.10−2.84 0.08−0.70 0.27−0.52 2.57−2.81
CYP2C9 7-ethoxycoumarin, kaempferide, meloxicam, and mirtazapine 1.09−2.72 0.50−1.05 0.28−0.39 2.27−2.81
CYP2C19 zolpidem and 7-ethoxycoumarin 0.79−0.95 0.15−1.38 0.23−0.32 2.27−3.03
CYP2D6 7-ethoxycoumarin, dextromethorphan, promethazine, zolpidem, desipramine, R-PPF,

S-PPF, imipramine, and dextrorphan
0.21−2.19 0.03−2.17 0.14−0.39 2.27−4.47

CYP3A4 meloxicam, eplerenone, simvastatin lactone, dexamethasone, midazolam, valspodar,
atorvastatin lactone, K11777, fenthion, nefazodone, 7-ethoxycoumarin,
acetaminophen, perphenazine, laquinimod, clopidogrel, clozapine, triazolam,
erythromycin, zolpidem, tacrolimus, azelastine, etoperidone, mirtazapine,
carbamazepine, and naphthalene

0.002−2.55 0.023− 3.06 0.09−0.59 0.49−5.78
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