Skip to main content
. 2019 Nov 29;9(4):207. doi: 10.3390/diagnostics9040207

Table 2.

Performance of studies exploring classification of pulmonary nodules.

Classification
Author Year Deep Learning Architecture Dataset for Training Dataset for Testing Categories for Testing Sensitivity Specificity AUC Accuracy
Alakwaa, Wafaa et al. [27] 2017 CNN LUNA16 and DSB17 DSB17 Cancer vs. no cancer N/A N/A N/A 86.6
Chen, Sihang et al. [22] 2019 CNN Independent dataset Independent dataset Adenocarcinoma vs. benign N/A N/A N/A 87.5
Ciompi, Francesco et al. [28] 2015 CNN ImageNet and NELSON NELSON Peri-fissural nodules (PFN) vs. non-PFN N/A N/A 84.7 N/A
Ciompi, Francesco et al. *[29] 2017 CNN MILD DLCST Multiple categories (overall) N/A N/A N/A 79.5
Jakimovski, Goran et al. [30] 2019 CDNN LONI database LONI database Cancer vs. no cancer 99.9 98.7 N/A 99.6
Lakshmanaprabu, S.K. et al. [31] 2018 ODNN ELCAP ELCAP Abnormal vs. normal 96.2 94.2 N/A 94.5
Li, Li et al. * [17] 2018 CNN LIDC-IDRI and NLST Independent dataset Multiple categories (overall) N/A N/A N/A N/A
Liao, Fangzhou et al. [23] 2019 CNN LUNA16 and DSB17 DSB17 Cancer vs. no-cancer (scale) N/A N/A 87 81.4
Liu, Shuang et al. [32] 2017 CNN NLST and ELCAP NLST and ELCAP Malign vs. benign N/A N/A 78 N/A
Liu, Xinglong et al. * [33] 2017 CNN LIDC-IDRI ELCAP Multiple categories (overall) N/A N/A N/A 90.3
Masood, Anum et al. [21] 2018 FCNN LIDC-IDRI, RIDER, LungCT-Diagnosis, LUNA16, LISS, SPIE challenge dataset and Independent dataset Independent dataset Four stage categories (overall) 83.7 96.2 N/A 96.3
Nishio, Mizuho et al. [34] 2018 CNN Independent dataset Independent dataset Benign, primary and metastic cancer (overall) N/A N/A N/A 68
Onishi, Yuya et al. [35] 2018 DCNN Independent dataset Independent dataset Malign vs. benign N/A N/A 84.1 81.7
Polat, Huseyin et al. [36] 2019 CNN DSB17 DSB17 Cancer vs. no cancer 88.5 94.2 N/A 91.8
Qiang, Yan et al. [37] 2017 Deep SDAE-ELM Independent dataset Independent dataset Malign vs. benign 84.4 81.3 N/A 82.8
Rangaswamy et al. [38] 2019 CNN ILD ILD Malign vs. benign 98 94 N/A 96
Sori, Worku Jifara et al. [39] 2018 CNN LUNA16 and DSB17 DSB17 Cancer vs. no cancer 87.4 89.1 N/A 87.8
Suzuki, Kenji * [19] 2009 MTANN Independent dataset A Independent dataset B Malign vs. benign 96 N/A N/A N/A
Tajbakhsh, Nima et al. [20] 2017 CNN Independent dataset Independent dataset Malign vs. benign N/A N/A 77.6 N/A
MTANN Independent dataset Independent dataset Malign vs. benign N/A N/A 88.1 N/A
Wang, Shengping et al. [40] 2018 CNN Independent dataset Independent dataset PIL vs. IAC 88.5 80.1 89.2 84
Wang, Yang et al. [25] 2019 RCNN Independent dataset Independent dataset Malign vs. benign 76.5 89.1 90.6 87.3
Yuan, Jingjing et al. * [41] 2017 CNN LIDC-IDRI ELCAP Multiple categories (overall) N/A N/A N/A 93.9
Zhang, Chao et al. * [42] 2019 CNN LUNA16, DSB17 and Independent dataset(A) Independent dataset(B) Malign vs. benign 96 88 N/A 92

Studies marked with * are studies where test dataset was different from training dataset. Abbreviations: massive training artificial neural network (MTANN), convolutional neural network (CNN), deep neural network (DNN), lung image database consortium and image database resource initiative (LIDC-IDRI), the Dutch–Belgian randomized lung cancer screening trial (Dutch acronym; NELSON), multicentric Italian lung detection (MILD), laboratory of neuro imaging (LONI), early lung cancer action program (ELCAP), reference image database to evaluate therapy response (RIDER), Society of Photo-Optical Instrumentation Engineers (SPIE), lung nodule analysis 2016 (LUNA16), lung CT imaging signs (LISS), Kaggle data science bowl 2017 (DSB17), interstitial lung disease (ILD), Danish lung cancer screening trial (DLCST), automatic nodule detection 2009 (ANODE09), pre-invasive lesions (PIL), invasive adenocarcinomas (IAC).