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ABSTRACT: The Kolmogorov−Smirnov (K−S) tests based on
the assumptions of determined observations in the sample have
been popularly applied for the analysis of the data. The existing
K−S tests for one sample and two samples cannot be applied
when the data contains neutrosophic observations measured from
the complex system or under uncertainty. In this paper, we
propose the generalization of the existing K−S tests under the
neutrosophic statistics. The proposed tests are known as
neutrosophic Kolmogorov−Smirnov (NK−S) tests. We present
the necessary measures and procedures to perform the proposed
tests. An example and advantages of the proposed NK−S tests are
given in the paper.

1. INTRODUCTION

The statistical methods/techniques have been commonly used
in all fields for the analysis of the data, estimation, and
forecasting purposes. The data obtained from the system
always follows some statistical distribution, which is unknown
in advance. Usually, it is assumed that the data follows the
normal distribution. However, in practice, it is not always
necessary that the data in hand follows the normal distribution.
Therefore, statisticians designed several tests to test some
hypotheses about the distribution of the data under
investigation; see ref 1. As mentioned by Massey,1 “Attempts
have been made to find test statistics whose sampling
distribution does not depend upon either the explicit form of
or the value of certain parameters in, the distribution of the
population. Such tests have been called non-parametric or
distribution-free tests.” The Kolmogorov−Smirnov (K−S) test
is an alternative non-parametric test, which uses the cumulative
distribution to decide about the specific distribution of the
data. The K−S test is found to be efficient for goodness of fit
purposes. Many authors worked on the K−S test; see, for
example, refs 1−8.
The K−S test under classical statistics is applied when all

observations in the data are determined, precise, and sure.
However, in real situations, it may happen that the data cannot
be represented by statistical terms or the data may be in an
interval or imprecise data. For example, the ecology data, soil
data, ocean data, and censored data may be fuzzy data rather
than exact data. Therefore, several authors developed the K−S
test for the analysis of fuzzy data; see, for example, refs 9−16.
The fuzzy logic is a special case of neutrosophic logic. The

neutrosophic logic is considered the measure of indeterminacy
in addition to the fuzzy logic; see ref 17. More applications of
the neutrosophic logic can be seen in refs 18−23. The
neutrosophic statistics was developed by Smarandache24 using

the neutrosophic logic. The neutrosophic statistics is an
extension of classical statistics, which considers the measure of
indeterminacy. The neutrosophic statistics is applied when the
observations in the data are neutrosophic numbers. Chen et
al.25,26 discussed the advantages of methods based on
neutrosophic numbers. Previous work27,28 introduced several
basic concepts for the neutrosophic statistics. Recently, another
previous work29 proposed the neutrosophic ANOVA test.
The existing K−S test under classical statistics and a fuzzy

approach cannot be applied when the measure of indetermi-
nacy is needed. By exploring the literature on classical statistics
and the fuzzy approach, we did not find any work on the K−S
test under the neutrosophic statistics. In this paper, we propose
neutrosophic Kolmogorov−Smirnov (NK−S) tests for a single
sample and two samples. It is expected that the proposed NK−
S tests will effectively analyze the imprecise, vague, and
uncertain data compared to the existing K−S test under
classical statistics.

2. RESULTS
For a radioactive source model, radioactive engineering is
interested in testing the assumption that the count rate per
second follows a neutrosophic Poisson distribution. The count
rate per second has the neutrosophic mean [5,7] counts per
second. To test the assumption, radioactive engineering
collected a large number of count data. The neutrosophic
Poisson distribution from ref 18 is given by
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where Cu(XiN) is the neutrosophic

commutative values, λNϵ[5,7] and nNϵ[78,92].
The neutrosophic count data and neutrosophic statistics are

shown in Table 1. Suppose the level of significance for this test
is 0.01. The critical neutrosophic value from ref 32 is
D 1.63/ 78 , 1.63/ 92 0.1845,0.16990.01,14 = [ ] = [ ]. Accord-
ing to eq 4, the statistic in the indeterminacy interval can be
written as 0.1594 + 0.4032I; INϵ[0,0.6046]. The neutrosophic
statistic from Table 1 is DNϵ[0.4032,0.1594]. Note here that
the lower value of the indeterminacy interval denotes the
determined part. By comparing the values of DN with D0.01,14,
we note that the determinate part follows the Poisson
distribution, but the indeterminate part of the data does not
follow the Poisson distribution.

3. DISCUSSION

In this section, we compare the performance of the proposed
NK−S test over the K−S test under classical statistics.
According to refs 25 and 26, a method that provides the
results in the indeterminacy interval when the data have the
neutrosophic numbers is said to be more adequate and
effective than the method that provides the results in the
determined form. To compare the proposed NK−S test with
the existing NK test, we will use the same data that are given in
Table 1. Note here that the data given in Table 1 reduces to
the determined part under classical statistics if no observations
of uncertainty are recorded. For example, for sample 1, the first
value, which is 1, represents the indeterminate part of the
indeterminacy interval. The second value of this sample
represents the determinate part of the interval. From Table 1,
we note that the proposed test provides the results in the
indeterminacy interval rather than the determined values.
Using eq 4, the values of the statistic in the indeterminacy form
can be written as 0.1594 + 0.4032I; INϵ[0,0.6046]. Note here
that the proposed test provides a good measure of
indeterminacy. At a level of significance 0.01, the probability
that the null hypothesis will be accepted is 0.99, the probability
of rejecting the null hypothesis when it is true is 0.01, and the
probability of indeterminacy is 0.60. For example, in the
statistic DNϵ[0.4032,0.1594], the value DL = 0.1594 presents
the determined part under the classical statistics, and the value
DU = 0.4032 shows the indeterminate part under the
uncertainty. By comparing both tests, we note that DL <
0.1845, which shows that the existing NK test indicates that

the sample belongs to the Poisson distribution. However, the
indeterminate part shows that under uncertainty, the sample
does not come from the Poisson distribution. From this
comparison, we conclude that the values of the statistic DN can
be from 0.1594 to 0.4032 under uncertainty. Hence, the theory
of the proposed NK−S test concurs with the theories of refs 25
and 26.

4. CONCLUDING REMARKS
In this paper, we presented the modifications of the
Kolmogorov−Smirnov (K−S) test under the neutrosophic
statistics. We proposed the neutrosophic Kolmogorov−
Smirnov (NK−S) tests, which are the generalization of the
K−S tests. The proposed NK−S test under the neutrosophic
statistical interval method is more adequate, informative, and
effective to be applied when the data have neutrosophic
numbers. The proposed test provides the results in the
indeterminacy interval, which is desirable under uncertainty or
when the data is measured from the complex system. We
presented an example and found that the proposed test is
better than the existing K−S test. We recommend applying the
proposed NK−S tests for the analysis of the data in biomedical
sciences, big data analysis, engineering, and statistics. More
properties using the simulation data and/or the development
of software for the analysis of the proposed NK−S tests can be
considered for future research.

5. COMPUTATIONAL METHODS
Assume that XN = aN + bNIN be a neutrosophic number (NN)
where aN is the determinate part and bNIN; INϵ[IL, IU] is the
indeterminate part of the NN. Let XN = X + INX; XNϵ[XL, XU]
be a random variable based on the NN where XL and XU are
lower and upper values of the indeterminacy interval. Note
here that the NN and XNϵ[XL, XU] reduce to a number and a
variable under classical statistics if IL = 0 or XL = XU,
respectively. The neutrosophic variable XNϵ[XL, XU] presented
the NNs in a sample selected from the population having
imprecise, uncertain, and indeterminate values or parameters.
More details about neutrosophic statistics can be seen in ref
17. The main aim is to propose the K−S tests under the
neutrosophic statistics to determine the specific distribution of
the data in the presence of neutrosophy.

5.1. Neutrosophic Kolmogorov−Smirnov Tests. The
Kolmogorov−Smirnov (K−S) test was originally derived by
Kolmogorov30 and Smirnov31 and has been used in non-

Table 1. Necessary Computations for the NK−S Test

no. XiN Cu(XiN) SnN(xnN) F0N(xn) DN

1 [1,4] [1,4] [0.0128,0.0435] [0.0404,0.1730] [0.0276,0.1295]
2 [1,4] [2,8] [0.0256,0.0870] [0.0404,0.1730] [0.0148,0.0860]
3 [3,5] [5,13] [0.0641,0.1413] [0.2650,0.3007] [0.2009,0.1594]
4 [3,5] [8,18] [0.1026,0.1957] [0.2650,0.3007] [0.1625,0.1051]
5 [4,5] [12,23] [0.1538,0.2500] [0.4405,0.3007] [0.2866,0.0507]
6 [5,6] [17,29] [0.2179,0.3152] [0.6160,0.4497] [0.3980,0.1345]
7 [5,6] [22,35] [0.2821,0.3804] [0.6160,0.4497] [0.3339,0.0693]
8 [6,6] [28,41] [0.3590,0.4457] [0.7622,0.4497] [0.4032,0.0041]
9 [6,6] [34,47] [0.4359,0.5109] [0.7622,0.4497] [0.3263,0.0612]
10 [6,7] [40,54] [0.5128,0.5870] [0.7622,0.5987] [0.2494,0.0118]
11 [8,8] [48,62] [0.6154,0.6739] [0.9319,0.7291] [0.3165,0.0552]
12 [8,9] [56,71] [0.7179,0.7717] [0.9319,0.8305] [0.2141,0.0588]
13 [10,9] [66,80] [0.8462,0.8696] [0.9863,0.8305] [0.1402,0.0391]
14 [12,12] [78,92] [1.0000,1.0000] [0.9980,0.9730] [0.0020,0.0270]
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parametric testing of the hypothesis. In classical statistics, the
K−S test has been commonly used to test whether the sample
under study belongs to a specific distribution or not. In other
words, the K−S test is applied to decide whether the observed
distribution significantly differs from the specified population
distribution.32 The existing K−S test is applied under the
assumption that all observations/parameters in the observed
sample and in the population are determined and precise. The
data that came from complex systems such as the ocean, the
human brain data, and power grid or under uncertainty may
not have all determined observations. In these situations, the
K−S test under classical statistics cannot be applied for testing
whether the data belong to a specific distribution. We modify
the existing K−S test under classical statistics using the
neutrosophic statistics. The proposed neutrosophic Kolmogor-
ov−Smirnov (NK−S) test is the generalization of the existing
K−S test proposed by Kolmogorov30 and Smirnov.31 The
proposed NK−S test will be applicable under the following
assumptions:

1. The data consists of uncertain, imprecise, and
indeterminate values.

2. The two neutrosophic samples should be mutually
independent.

The K−S test can be applied independent of the cumulative
distribution function. Woodruff et al.33 used it for the Weibull
distribution. Papadopolous and Qiao34 and Frey35 presented
the K−S test for the Poisson distribution.
Suppose that X1N, X2N, ..., XnN be a neutrosophic random

sample from a neutrosophic population having a neutrosophic
cumulative frequency distribution function, say F0N(xn). By
following ref 1, the null hypothesis that the neutrosophic
sample came from the specified neutrosophic distribution is
rejected if the neutrosophic cumulative frequency distribution
function is not close to the specified neutrosophic distribution
function. Suppose now that F0N(xn); F0N(xnN)ϵ[F0L(xnL),
F0N(xnU)] and SnN(xnN); SnN(xnN)ϵ[SnL(xnL), SnU(xnU)] be the
neutrosophic population cumulative distribution function and
the observed neutrosophic sample distribution function,
respectively. Then, the neutrosophic maximum difference
statistic based on F0N(xn); F0N(xnN)ϵ[F0L(xnL), F0N(xnU)] and
SnN(xnN)ϵ[SnL(xnL), SnU(xnU)] is given by

D F x S x D D D F x

F x F x S x S x S x
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The proposed test in the indeterminacy interval can be
written as

D A B I I I I D D D; , ; ,N N N N N NL U L U= + ϵ[ ] ϵ[ ] (2)

Note here that AN and BNIN are the determined and
indeterminate parts of the test. The proposed test reduces to
the tests in refs 30 and 31 if no indeterminacy is found in the
data. Also, note here that the proposed NK−S test reduces to
the tests in refs 30 and 31 when DL = DU. The neutrosophic
null hypothesis that the sample came from the neutrosophic
specified population is accepted if DNϵ[DL, DU] > DαN where
DαNϵ[DαL, DαU] is a neutrosophic critical value and can be
selected from ref 32.
5.2. NK−S Test for Comparing Two Populations.

Kolmogorov30 and Smirnov31 also extended the K−S test for
comparing two populations. Like the K−S test for a single
population, this test is also based on the assumption that the

observations/parameters of two populations should be
determined and precise. In this section, we present the NK−
S test for comparing two neutrosophic populations. Let X1N,
X2N, ..., Xn1N and Y1N, Y2N, ..., Yn2N be two neutrosophic
independent samples of sizes n1Nϵ[n1L, n1U] and n2Nϵ[n1L, n1U]
from a specified population, respectively. Let Sn1N(xn1N)ϵ-

[SnL(xn1L), SnU(xn1U)] and Sn2N(yn2N)ϵ[SnL(yn2L), SnU(yn2U)] be
neutrosophic sample cumulative distribution functions. Then,
the neutrosophic maximum difference statistic based on
Sn1N

(xn1N)ϵ[SnL(xn1L), SnU(xn1U)] and Sn2N(yn2N)ϵ[SnL(yn2L),

SnU(yn2U)] is given by

D S y S x D D D S x

S x S x S y

S y S y

( ) ( ) ; , ; ( )

( ), ( ) , ( )

( ), ( )

N n n n n N n n

n n n n n n

n n n n

L U

L U

L U

N N N N N N

N N

2 2 1 1 1 1

1L 1U 2 2

2L 2U

= | − | ϵ[ ]

ϵ[ ]

ϵ[ ] (3)

The proposed test for two populations in the form of
indeterminacy can be written as

D C E I I I I D D D; , ; ,N N N N N NL U L U= + ϵ[ ] ϵ[ ] (4)

Note here that CN and ENIN are the determined and
indeterminate parts of the test. The proposed test reduces to
the tests in refs 30 and 31 if no indeterminacy is found in the
data. Note also here that the proposed NK−S test reduces to
the tests in refs 30 and 31 when SnL(xn1L) = SnU(xn1U) and

SnL(yn2L) = SnU(yn2U). The neutrosophic null hypothesis that two
samples came from the same neutrosophic specified population
is accepted if DNϵ[DL, DU] > DαN where DαNϵ[DαL, DαU] is a
neutrosophic critical value.
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