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TRIP13 promotes the cell proliferation, migration and
invasion of glioblastoma through the FBXW7/c-MYC axis
Guanghui Zhang1,2,3,4, Qingzong Zhu1,2,3,4, Gang Fu5, Jianbing Hou1,2,3,4, Xiaosong Hu1,2,3,4, Jiangjun Cao1,2,3,4, Wen Peng1,2,3,4,
Xiaowen Wang1,2,3,4, Fei Chen6 and Hongjuan Cui1,2,3,4

BACKGROUND: Thyroid hormone receptor interactor 13 (TRIP13) is an AAA+ ATPase that plays an important role in the mitotic
checkpoint. TRIP13 is highly expressed in various human tumours and promotes tumorigenesis. However, the biological effect of
TRIP13 in GBM cells remains unclear.
METHODS:We generated GBM cell models with overexpressed or silenced TRIP13 via lentivirus-mediated overexpression and RNAi
methods. The biological role of TRIP13 in the proliferation, migration and invasion of GBM cells has been further explored.
RESULTS: Our research indicated that TRIP13 was highly expressed in GBM tissues and cells. We found that the proliferation,
migration and invasion abilities were inhibited in TRIP13-knockdown GBM cells. These results indicated that TRIP13 plays an
important role in the tumorigenesis of GBM. Moreover, we found that TRIP13 first stabilised c-MYC by inhibiting the transcription of
FBXW7, which is an E3 ubiquitin ligase of c-MYC, by directly binding to the promoter region of FBXW7. Therefore, our study
indicated that the TRIP13/FBXW7/c-MYC pathway might provide a prospective therapeutic target in the treatment of GBM.
CONCLUSIONS: These results indicated that TRIP13 plays an oncogenic role in GBM. The TRIP13/FBXW7/c-MYC pathway might act
as a prospective therapeutic target for GBM patients.
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BACKGROUND
Glioblastoma (GBM) is the most fatal and aggressive primary brain
tumour, accounting for ~50% of all brain tumours.1 Glioblastoma,
grade IV astrocytoma, is characterised by rapid proliferation and
increased vascular and thrombosis formation,2 and it is accompanied
by an extraordinarily poor prognosis. At present, the average survival
time of GBM patients is ~15 months, and the level of treatment for
patients is limited to achieving remission.3,4 Although treatments for
GBM have made great progress in genetics and biomedicine, the
survival rate of patients is still relatively low.5 Therefore, further
exploration of pathogenesis and searching for new therapeutic
targets is urgently needed for the treatment of GBM.
Thyroid hormone receptor-interacting factor 13 (TRIP13) exhi-

bits conserved expression in many species, since it is an ATPase
family member and functions in a variety of cellular-active protein
families.6 TRIP13 was first identified as a protein interacting with
the human papillomavirus E1 protein.7 Recent reports show that
TRIP13 plays a significant role in meiotic recombination and DNA
repair in plants, worms and mice,8–12 and it was also reported to
be a newly discovered component of the spindle assembly
checkpoint (SAC) pathway,13–16 which plays an important role in
the distribution of chromosomes.17 High expression of TRIP13 has
been found in various human cancers, including ovarian cancer,

prostate cancer, colorectal cancer, hepatocellular carcinoma, lung
adenocarcinoma and head and neck cancer. Abnormal expression
of TRIP13 might be related to the development and occurrence of
tumours, and the overexpression of TRIP13 can promote the
connection of non-homologous terminals and increase the
resistance to chemotherapeutic drugs.18 However, the molecular
mechanism and biological consequences of TRIP13 in GBM cells
are not clear.
C-MYC was initially identified as a cell homologue of a retroviral

oncogene,19,20 and it is activated in 50% of human cancers;21

further, it can promote the proliferation of cancer cells by
regulating 10–15% of the genes in the human genome.22 Reports
show that c-MYC is overexpressed in many human cancers and
can also regulate cell cycle and cell metabolic processes.23

Abnormal expression of c-MYC will lead to tumorigenesis.
Therefore, the stability of the c-MYC protein is strictly controlled
by FBXW7, which is an E3 ubiquitin ligase involved in ubiquitina-
tion and degradation of various carcinogenic substrates that
contain F-box and WD40 repeat domains.24 Many studies have
shown that abnormal expression of FBXW7 is the main cause of
tumorigenesis.25–27 Inactivation of FBXW7 expression will enhance
the proliferation and migration of tumours.28 Clinical data show
that decreased expression of FBXW7 leads to poor prognosis in
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patients with gastric cancer,29 colorectal cancer30 and cholangio-
carcinoma cancer.31 Deregulation of FBXW7 expression is reported
to give rise to upregulation of c-MYC expression and to correlate
with a poor prognosis in cancer patients.29

In this study, our experimental results showed that TRIP13
promoted cell proliferation, migration and invasion by regulating
c-MYC stability in GBM cells. Mechanistically, we first found that
the downstream target of TRIP13 is FBXW7, which is an E3
ubiquitin ligase involved in the ubiquitination of c-MYC. TRIP13
could inhibit FBXW7 expression to regulate c-MYC levels. Taken
together, these data demonstrated that TRIP13 promoted GBM
cell tumorigenesis, migration and invasion through the TRIP13/
FBXW7/c-MYC axis, and they identify a promising therapeutic
target in the treatment of GBM.

MATERIALS AND METHODS
Reagents and antibodies and clinical tissue samples
MG132 and CHX were obtained from Sigma (Shanghai, China).
Anti-TRIP13, anti-c-MYC, anti-FBXW7, anti-MMP7 and anti-HA were
purchased from Proteintech (Wuhan, China). Mouse monoclonal
anti-GAPDH was obtained from Beyotime (Shanghai, China). Anti-
P21, anti-CDK4 anti-CCND1, anti-β-catenin, anti-E-cadherin, anti-N-
cadherin and anti-Flag were obtained from Cell Signaling
Technology (Shanghai, China). Anti-Ki67 and propidium iodide
(PI) were purchased from BD Biosciences. The clinical tissue
samples were purchased from Chaoying Biotechnology Co., Ltd.
(Xian, China) and they were originally obtained from Tongxu
County People’s Hospital of Henan Province.

Transfection and infection experiments and plasmids
Small-hairpin shRNAs for TRIP13 and FBXW7 and a negative
control shRNA (shGFP) were obtained from Gene Pharma Co. Ltd.
(Shanghai, China) and were inserted into the pLKO.1 vector. The
ubiquitination plasmid that contained a HA tag was purchased
from Addgene (Beijing, China). The recombinant plasmid contain-
ing the human TRIP13 full-length cDNA cloned into the PCDH-
CMV-MCS-EF1-Hygro vector was purchased from Youbao Com-
pany (Changsha, China). For transfection and infection experi-
ments, the target plasmid and packaging plasmid were
transfected into 293FT cells by using the transfection reagent
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). Lentiviruses
were collected 48 h later and were used to infect GBM cells twice,
12 h per infection. The infected cells were screened by treatment
for 36 h with puromycin and hygromycin B, and the surviving cells
were frozen and stored in liquid nitrogen for subsequent
experiments. All the primers of shRNA sequences are given in
Table 1.

Immunohistochemistry staining
Paraffin-embedded tumours were cut into slices with a thickness
of 5 mm, and then the paraffin sections were dewaxed and
hydrated. Then, paraffin slices were put into citrate buffer (pH 6.0)
and heated in a microwave oven to 95 °C for 20min to facilitate
antigen retrieval. Then, endogenous peroxidase activity was
quenched, which was followed by blocking with normal goat
serum. Then, the TRIP13, Ki67, c-MYC and FBXW7 antibodies were
diluted with PBS (1:200), and the antibodies were added to the

paraffin sections and incubated overnight at 4 °C. Then, a
horseradish peroxidase-linked secondary antibody was added
and incubated with the sections, which was followed by the
addition of a DBA reagent. The results were observed under a
microscope before counterstaining with haematoxylin.

Quantitative and reverse transcriptional PCR
The total RNA of cells was extracted by using TRIzoL reagent. Then,
2 µg of RNA was reverse transcribed into cDNA. The normalised
expression control was based on the glyceraldehyde-3-phosphate
dehydrogenase value. Finally, the expression of the mRNA was
determined as the CT value. All quantitative primers are given in
Table 2.

Cell proliferation detection
To examine the proliferation ability of cells, 1×103 cells were
cultured in 96-well plates for 6 days. An MTT assay was used to
detect cell viability and growth curves. All experiments were
independently performed three times.

BrdU staining
In total, 2 × 104 cells were cultured in 24-well plates for BrdU
staining experiments. The cells were incubated for 35 min with 10
µg/ml BrdU. The cells were fixed with 4% paraformaldehyde (PFA)
for 20min. Cells were treated with 1 mol/L HCL and blocked with
5% goat serum and 0.3% BSA for 2 h. Then, the cells were
incubated with a primary antibody against BrdU (Abcam, Cam-
bridge, MA, USA) overnight at 4 °C. Then, an Alexa Fluor®

594 secondary antibody (H+ L; Invitrogen) was incubated with
the cells at room temperature for 2 h, and nuclear staining was
then performed by incubating with DAPI (300 nM). Finally, the
BrdU incorporation rate was calculated from at least ten randomly
chosen microscopic fields.

Flow cytometry
For the analysis of the cell cycle, the cells were collected and fixed
with 70% ethanol overnight at 4 °C. The cells were incubated with
potassium iodide (PI) for 30min. Next, the cells were analysed by

Table 1. Primers of shRNA

shTRIP13-forward (5′−3′) CCGGGCTACTCAACAGACATAATATCTCGAGATATTATGTCTGTTGAGTAGCTTTTTG

shTRIP13-reverse (5′−3′) AATTCAAAAAGCTACTCAACAGACATAATATCTCGAGATATTATGTCTGTTGAGTAGC

shFBXW7-forward (5′−3′) CCGGCCAGAGAAATTGCTTGCTTTACTCGAGTAAAGCAAGCAATTTCTCTGGTTTTTG

shFBXW7-reverse (5′−3′) AATTCAAAAACCAGAGAAATTGCTTGCTTTACTCGAGTAAAGCAAGCAATTTCTCTGG

Table 2. RT-PCR primers

TRIP13-forward (5′−3′) ACTGTTGCACTTCACATTTTCCA

TRIP13-reverse (5′−3′) TCGAGGAGATGGGATTTGACT

c-MYC-forward (5′−3′) AATAGAGCTGCTTCGCCTAGA

c-MYC-reverse (5′−3′) GAGGTGGTTCATACTGAGCAAG

P21-forward (5′−3′) CCAACAAACTTAACGTGCCAC

P21-reverse (5′−3′) AGGCTCAACAGTAACTGCATC

CDK4-forward (5′−3′) AAACTTGGAAATCCCGAGATTGC

CDK4-reverse (5′−3’) CGAAACCAGTTCGGTCTTTCAA

CCND1-forward (5′−3′) CAATGACCCCGCACGATTTC

CCND1-reverse (5′−3′) CATGGAGGGCGGATTGGAA

FBXW7-forward (5′−3′) ACTGGGCTTGTACCATGTTCA

FBXW7-reverse (5′−3′) TGAGGTCCCCAAAAGTTGTTG
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flow cytometry (BD Biosciences, San Jose, CA, USA). Experimental
results were analysed with Cell Quest software (BD Biosciences).

Migration, invasion and wound-healing assay
Experiments on cell migration and invasion were performed by
using Transwell Chambers (8-µm pore size, Corning, Beijing,
China). For the invasion experiment, the membranes were covered
with Matrigel (BD Biosciences). DMEM with 10% foetal bovine
serum was added under the chamber, and cells in serum-free
DMEM were added to the upper chamber. After 48 h of culture,
the cells were fixed with 4% paraformaldehyde for 20 min and
then stained with crystal violet. The mean numbers of cells were
calculated from at least six randomly chosen microscopic images.
For the cell wound-healing assay, cells were cultured in a six-well
plate, and wounds were made with a 10-µl pipette tip. Finally, the
healing process of cells was observed by microscopy.

Western blot assay
Cells were lysed with RIPA lysis buffer to obtain protein. The
protein was separated on 12% gels by sodium sulfate poly-
acrylamide gel electrophoresis and was then transferred to a
polyvinylidene difluoride membrane. The membrane was blocked
with 5% BSA at room temperature for 2 h. The polyvinylidene
fluoride membrane was incubated with a diluted primary antibody
overnight at 4 °C. Then, the polyvinylidene fluoride membrane
was incubated with the secondary antibody (peroxidase-labelled
anti-mouse and anti-rabbit antibodies) at room temperature for 2
h. Finally, the results were analysed with the ECL Prime Western
blotting (WB) detection system (GE Healthcare).

Soft agar assay
A 0.6% agarose medium with a low melting point was added to
the bottom of a six-well plate, and then 0.3% agarose medium
with 1000 cells was laid on the top. After 15–20 days, the results
were photographed and recorded by optical microscopy.

Ubiquitination and turnover assay
For ubiquitination assays, shGFP, TRIP13 and HA plasmids were
transfected into 293FT cells by using the transfection reagent
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). After 48 h of
transfection, 50 µg/ml proteasome inhibitor MG132 was added to
the cells and incubated for 7 h. Cells were collected and lysed with
RIPA lysis buffer for western blot and IP assays. For the turnover
assay, the infected cells were screened for 36 h with puromycin
and hygromycin B, and the surviving cells were treated with CHX
at a concentration of 50 µg/ml. Then, cells were collected, lysed
and analysed by western blot.

Animal experimental procedures and tumour xenograft
experiment
Animal experiments were approved by the Committee for Animal
Protection and Utilization of Southwest University. All experiments
were conducted in accordance with the Guidelines for Animal
Health and Use (Ministry of Science and Technology, China, 2006).
Four-week-old female nude mice were purchased from Huafukang
Biotechnology Co., Ltd. (Beijing, China) and were placed in SPF
rooms for feeding and observation. The mice were randomly
divided into three groups. GBM cell lines (LN229) (1 × 106 cells)
stably transfected with shGFP, shTRIP13 and shTRIP13/TRIP13
were injected into subcutaneous tissue of the mouse on 18
February, 2019. To reduce the pain to the mice, a system was used
to introduce nasal anaesthesia (isoflurane) before the subcuta-
neous injections. The advantages of isoflurane anaesthesia for
animals are that they enter an anaesthetised state faster and
recover quickly. Once the anaesthesia was stopped, the animals
generally recovered within 2 min. The depth of anaesthesia was
easy to control. If an animal was found to be in poor condition
during the operation, the anaesthesia was immediately stopped,

or mice were quickly oxygenated to rescue them. Therefore,
animal safety was very good. Isoflurane did not affect metabolism
in the body and was almost completely discharged from the
alveoli by breathing, which had no effect on the experimental
results; further, these conclusions regarding isoflurane are widely
recognised internationally. The concentration of isoflurane was
MAC 1.6%. The mouse anaesthesia system was purchased from
Reyward Life Technology Co., Ltd. (Shenzhen, China). All experi-
ments were performed on a sterile workbench of an SPF room on
the first floor of the National Key Laboratory of Silkworm Genome
Biology at Southwest University. The mice were sterilised with
75% medical alcohol after subcutaneous injection. The mice
were observed every 3 days and weighed. The feeding conditions
were strictly standardised. Before the tumours were collected, the
previously described system was used to introduce nasal
anaesthesia (isoflurane) into mice to reduce their pain. Then, the
mice were killed by cervical dislocation, and the tumours were
removed. The bodies of mice were frozen at - 20 °C before
transferring the bodies to Laibite Biotech Inc. (Chongqing, China)
for incineration. The weight of the mice and the volume of the
tumours were measured every 3 days after the growth of
the tumours began. The formula for calculating the volume
of tumours was as follows: V= (length × width2)/2. Finally, the
tumours were collected and photographed for subsequent
immunohistochemical experiments.

Luciferase reporter assay
The promoter region of FBXW7 was ligated into a pGL3 vector via
polymerase chain reaction. The empty pGL3-basic vector and pRL-
TK internal control vector were instantaneously transfected into
293FT cells as a negative control. Then, the pGL3 plasmid, the pRL-
TK internal control vector (Promega) and a shTRIP13/TRIP13 vector
were co-transfected into 293FT cells by transfection with
Lipofectamine 2000. After 48 h of cell culture, luciferase reporter
assays were performed according to the manufacturer’s instruc-
tions (Promega). There were three replicate experiments in
each group.

Chromatin immunoprecipitation
A chromatin immunoprecipitation (ChiP) assay was performed by
using a ChiP assay kit (Millipore) according to the manufacturer’s
instructions. Briefly, the Flag-TRIP13 vector was transfected into
293FT cells with Lipofectamine 2000. After 48 h, 293FT cells were
cross-linked and lysed, and DNA was sheared into 200–800-bp
fragments by using sonication. Precleared chromatin was immu-
noprecipitated with a Flag antibody obtained from Cell Signaling
Technology (Shanghai, China), and after reversing the cross-
linking, DNA was isolated for quantitative real-time PCR (qRT-PCR).
The relevant primer sequences are presented in Table 3.

Table 3. ChiP experimental primers

FBXW7-1/-436-F GTGCATAGATTGCCTTCCCAG

FBXW7-1/-436-R CCATTCACAGTGCTCAATCAACTAT

FBXW7-372/-607-F GACTGGCTGTTGGAAGAAGAAAATA

FBXW7-372/-607-R ACGGCCTAAGATAAAGTCTGGAGAT

FBXW7-562/-835-F GCCACTTTGAAGAGAGTCTTCATCT

FBXW7-562/-835-R AAGCATAACAGTCACCCAACTGATT

FBXW7-804/-1029-F TGTCTTTAATCAGTTGGGTGACTGT

FBXW7-804/-1029-R ATGAGCACTATTTTCAAGTGTGTGC

FBXW7-1001/-1399-F GAGAGCACACACTTGAAAATAGTGC

FBXW7-1001/-1399-R AGTAATGTGAACACAACCAAAGCAG

FBXW7-1294/-1620-F AAGGGACCTTACAGCACAGCC

FBXW7-1294/-1620-R CTCCTCTTGGTTGACGAATACTCTC
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Patient data analysis
Patient data and gene expression datasets were obtained from R2:
microarray analysis and visualisation platform (http://hgserver1.
amc.nl/cgi-bin/r2/main.cgi). Kaplan-Meier analysis was performed,
and the resulting survival curves were generated by using
GraphPad Prism (version 6.0). All cut-off values for separating
high and low expression groups were determined by the online
R2 database algorithm.

Statistical analysis
All observations were confirmed by at least three independent
experiments. Quantitative data are expressed as the mean ±
standard deviation. Two-tailed Student’s t tests were performed
for paired samples. P < 0.05 was considered statistically significant.

RESULTS
High expression of TRIP13 is associated with poor GBM patient
prognosis
To verify that poor prognosis correlates with high expression of
TRIP13 in GBM patients, an immunohistochemistry assay was

performed to detect TRIP13 expression in normal tissues and GBM
patient samples. The results indicated that the expression of
TRIP13 was higher in GBM patient samples than in normal tissues
(Fig. 1a, b). Then, the R2 gene database was used to analyse the
relationship between TRIP13 expression and patient prognosis,
and the results showed that high expression of TRIP13 was
associated with poor prognosis in GBM patients (Fig. 1c).
Subsequently, TRIP13 mRNA and protein expression were
examined in normal astrocytes (SVGP12) and GBM cell lines by
quantitative PCR and western blot experiments. The results
demonstrated that TRIP13 was highly expressed in the U87MG
and LN229 cell lines (Fig. 1d, e). Taken together, these data
suggest that TRIP13 is significantly overexpressed in GBM and that
TRIP13 might play an oncogenic role related to the poor prognosis
of GBM patients.

TRIP13 is required for the proliferation of GBM cells
To further explore the effect of TRIP13 on the proliferation of
GBM cells, we successfully knocked down TRIP13 expression in
U87MG and LN229 cells by treating them with lentiviruses
carrying shRNA sequences (Fig. 2a). Next, we examined the
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proliferation abilities of U87MG and LN229 cells with an MTT
assay, and the results revealed that knocking down
TRIP13 significantly inhibited the growth of GBM cells (Fig. 2b).
BrdU incorporation experiments also showed that the amount of
DNA synthesis in TRIP13-knockdown cell lines was obviously
reduced compared with what was observed in control groups
(Fig. 2c). Then, flow cytometry was used to detect the effect of
TRIP13 on the cell cycle. We found that TRIP13 knockdown
induced cell cycle arrest at the G1 phase (Fig. 2d). To further
verify these results, G1 phase-related proteins were analysed by
western blot and quantitative PCR assays. The results demon-
strated that the protein and mRNA expression of CDK4 and
CCND1 was reduced in TRIP13-knockdown GBM cells and that
the expression of P21 was increased. However, the mRNA
expression of c-MYC was not significantly changed in TRIP13-
knockdown GBM cells (Fig. 2e, f). To further verify that the
influence of TRIP13 knockdown on GBM cells is not caused by a
mistarget effect, western blot assays were performed. The
results showed that restoration of TRIP13 expression could
partially rescue the expression of G1-related proteins. Then, we
performed MTT and BrdU incorporation assays by using GBM
cells, and the results showed that overexpression of TRIP13
could rescue the proliferation abilities of TRIP13-knockdown
GBM cells (Supplementary Fig. 1a, b, c). Furthermore, flow
cytometry analysis showed that overexpression of TRIP13 could

obviously rescue the cell cycle defect (Supplementary Fig. 1d).
Taken together, these results showed that TRIP13 promoted the
proliferation of GBM cells.

TRIP13 promotes the migration and invasion of GBM cells
Glioblastoma (GBM) is a highly malignant and invasive primary
brain tumour. To verify whether TRIP13 promoted the migration
and invasion of GBM cells, a Transwell assay was performed with
U87MG and LN229 cells. The results demonstrated that GBM cells
with TRIP13 knocked down migrated and invaded much more
slowly than the control cells (Fig. 3a). Subsequently, the wound-
healing assay indicated that the migratory ability of GBM cells with
TRIP13 knocked down was significantly lower than that of the
control cells (Fig. 3c). Western blot assays were further used to
verify the role of TRIP13 in the migration and invasion of GBM
cells, and the protein expression levels of β-catenin, N-cadherin
and MMP7 were significantly reduced, while the expression of E-
cadherin was increased, and these proteins are markers of
migration and invasion, respectively (Fig. 3e). To further evaluate
whether overexpression of TRIP13 could restore the migration and
invasion abilities of GBM cells with TRIP13 knocked down,
Transwell assay, wound-healing assay and western blot assay
were performed, and the results indicated that the migration and
invasion ability of GBM cells was significantly rescued (Fig. 3b, d, f).
Taken together, these experimental data indicated that
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TRIP13 plays an indispensable role in the migration and invasion
of GBM cells.

TRIP13 is required for colony formation and tumorigenesis of GBM
cells
To investigate the effect of TRIP13 on colony formation and
tumorigenesis of GBM cells in vitro and in vivo, soft agar assays
were performed, and they showed that the number and size of
clones in TRIP13-knockdown GBM cells were significantly smaller
than those of the controls (Fig. 4a, b). Xenograft experiments
indicated that the growth rate of tumours and the volume and
weight of tumours in TRIP13-knockdown GBM cells were
significantly decreased compared with those in the control groups
(Fig. 4c, d, e). Furthermore, immunohistochemical staining
suggested that the expression of TRIP13, Ki67 and c-MYC was
significantly reduced in TRIP13-knockdown tumours compared
with controls, while the expression of FBXW7 was increased
(Fig. 4f, g). Then, after overexpression of TRIP13 in TRIP13-
knockdown GBM cells, the abilities of colony formation and
tumorigenesis were partially rescued, and the expression of
TRIP13, Ki67, c-MYC and FBXW7 was also restored (Fig. 4a–g).

These data suggested that TRIP13 was indispensable for the
cloning and tumorigenesis of GBM cells.

TRIP13 regulates the stability of c-MYC by reducing c-MYC
ubiquitination
Overexpression of c-MYC promotes GBM tumorigenesis. Pre-
vious studies have shown that the expression of c-MYC protein
was downregulated in TRIP13-knockdown GBM cells. However,
the mRNA levels of c-MYC were not significantly changed in
TRIP13-knockdown cells (Fig. 2e, f). We speculated that c-MYC
might be degraded by ubiquitination. To further confirm that
TRIP13 regulates the ubiquitination of c-MYC, TRIP13-
knockdown GBM cells were treated with MG132, and the
results indicated that the protein expression of c-MYC
was obviously rescued (Fig. 5a). Moreover, the de novo
protein synthesis inhibitor cycloheximide (CHX) was used to
examine the turnover rate of c-MYC, and we found that the
degradation of c-MYC was decreased in TRIP13-overexpression
groups (Fig. 5b). To further examine the ubiquitination effect of
TRIP13 on c-MYC, a ubiquitination assay was performed
in vitro, and it indicated that overexpression of TRIP13

Fig. 3 TRIP13 promotes the migration and invasion of GBM cells. a Migration and invasion assays were performed with TRIP13-knockdown
U87MG and LN229 cells. b Wound-healing assay was performed with TRIP13-knockdown U87MG and LN229 cells. c Western blot analysis was
performed to detect the expression of metastasis-related proteins in TRIP13-knockdown cells. d, e Migration, invasion and wound-healing
experiments were performed after TRIP13 was rescued in TRIP13-knockdown U87MG and LN229 cells and negative controls. f Western blot
analysis was performed to detect the expression of metastasis-related proteins after overexpression of TRIP13 in TRIP13-knockdown cells. All
data are shown as the mean ± SD, *P < 0.05, **P < 0.01, ***P < 0.001
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could significantly decrease the ubiquitination level of c-MYC
(Fig. 5c). In general, these results suggested that TRIP13
regulated the stability of c-MYC by decreasing the ubiquitina-
tion levels of c-MYC.

TRIP13 regulates the ubiquitination of c-MYC through
transcriptional inhibition of FBXW7
FBXW7 is a well-known E3 ubiquitin ligase of c-MYC. However,
TRIP13 is not an E3 ubiquitin ligase. We speculated that TRIP13
might reduce the level of c-MYC ubiquitination by regulating
FBXW7. To further confirm our hypothesis, quantitative PCR and
western blot assays were used to show that the expression of
FBXW7 was significantly increased in TRIP13-knockdown GBM
cells (Fig. 6a, b). Then, a dual-luciferase reporter assay was
performed to determine the effect of TRIP13 on the FBXW7
promoter region. The results indicated that the promoter activity
of FBXW7 was obviously enhanced in TRIP13-knockdown cells,
and it was weakened in TRIP13-overexpressing cells (Fig. 6c). To
further explore the transcriptional regulation of FBXW7 by
TRIP13, a ChiP experiment was performed and showed that
TRIP13-binding sites were enriched in the region (−1399
to −1001 bp) of the FBXW7 promoter (Fig. 6d). These results
suggested that TRIP13 could inhibit FBXW7 transcription by
directly binding to the promoter region of FBXW7. To further
confirm that TRIP13 regulates c-MYC ubiquitination through
FBXW7, western blot and MTT assays were performed to detect
the protein expression and proliferation of TRIP13-knockdown
GBM cells after FBXW7-knockdown treatment. The results
indicated that the protein expression of c-MYC and P21 was
partially restored, and the proliferation ability of TRIP13-
knockdown cells was rescued after FBXW7-knockdown treat-
ment (Fig. 6e, f). These results indicated that the TRIP13/FBXW7/
c-MYC pathway might play an important role in the tumorigen-
esis of GBM.

DISCUSSION
Glioblastoma (GBM) is a highly malignant and invasive cancer that
has an extremely poor prognosis. At present, the average survival
time of GBM patients is short, and the optimal treatment for GBM
patients has a limited ability to achieve remission.3,4 Therefore, it is

urgent to seek molecular and drug targets for the treatment of
GBM. TRIP13 is a thyroid hormone receptor-interacting factor, and
it has been reported that abnormal expression of TRIP13 might be
related to tumorigenesis and might lead to resistance to
chemotherapeutic drugs.18 In addition, high expression of TRIP13
has been found in various human cancers. Many reports have
indicated that TRIP13 plays a significant role in meiotic
recombination and promotes the tumorigenesis of human
cancers.8–12 However, the biological functions of TRIP13 in GBM
cells remain unclear.
Our data showed that TRIP13 was highly expressed in GBM

tissues and cells, and that the overexpression of TRIP13 was
significantly correlated with a poor prognosis for GBM patients.
Subsequently, by knocking down and rescuing the expression of
TRIP13 in GBM cells, we found that TRIP13 can promote the
proliferation, migration and invasion of GBM cells. Subcutaneous
tumorigenesis experiments in mice showed that
TRIP13 significantly promoted the growth of tumours in vivo.
Furthermore, through cell cycle analysis, we found that the cell
cycle was blocked in the G1 phase after knocking down TRIP13.
Taken together, these results suggest that TRIP13 plays an
indispensable role in the tumorigenesis of GBM.
Although TRIP13 is highly expressed in many human cancers,

the biological molecular mechanism is largely unclear. Current
reported studies show that TRIP13 can regulate several cancer-
related factors, including TGF-β1, SMAD3, NOTCH and DNA-PKcs
complex proteins.18,32,33 Our study showed that TRIP13 knock-
down decreased the protein expression of c-MYC and its
downstream molecules, CDK4 and CCND1, and the expression
of P21 was increased in TRIP13-knockdown GBM cells. However,
further studies showed that the total mRNA level of c-MYC was
not significantly changed in TRIP13-knockdown GBM cells.
Therefore, we suspected that TRIP13 might regulate the
expression of c-MYC through ubiquitination degradation.
FBXW7 is a well-known E3 ubiquitin ligase of c-MYC. Then, we
examined the expression of FBXW7 in TRIP13-knockdown GBM
cells. The results indicated that the expression of FBXW7 was
significantly increased in TRIP13-knockdown cells. Dual-
luciferase reporter assay and ChiP assay results showed that
TRIP13 can regulate the transcription of FBXW7 by binding to
the promoter region of FBXW7.
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In general, these results indicated that TRIP13 promoted the
proliferation, migration and invasion of GBM cells. Our study
indicated for the first time that TRIP13 promoted the proliferation,
migration and invasion of GBM cells via the activated FBXW7/c-
MYC pathway. These results indicated that TRIP13 might provide a
prospective therapeutic target in the treatment of GBM patients.
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