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Phospholipase D2 in prostate cancer: protein expression
changes with Gleason score
Amanda R. Noble1, Karen Hogg2, Rakesh Suman1, Daniel M. Berney3, Sylvain Bourgoin4, Norman J. Maitland1 and Martin G. Rumsby1

BACKGROUND: Phospholipases D1 and D2 (PLD1/2) are implicated in tumorigenesis through their generation of the signalling
lipid phosphatidic acid and its downstream effects. Inhibition of PLD1 blocks prostate cell growth and colony formation. Here a role
for PLD2 in prostate cancer (PCa), the major cancer of men in the western world, is examined.
METHODS: PLD2 expression was analysed by immunohistochemistry and western blotting. The effects of PLD2 inhibition on PCa
cell viability and cell motility were measured using MTS, colony forming and wound-healing assays.
RESULTS: PLD2 protein is expressed about equally in luminal and basal prostate epithelial cells. In cells from different Gleason-
scored PCa tissue PLD2 protein expression is generally higher than in non-tumorigenic cells and increases in PCa tissue scored
Gleason 6–8. PLD2 protein is detected in the cytosol and nucleus and had a punctate appearance. In BPH tissue stromal cells as well
as basal and luminal cells express PLD2. PLD2 protein co-expresses with chromogranin A in castrate-resistant PCa tissue. PLD2
inhibition reduces PCa cell viability, colony forming ability and directional cell movement.
CONCLUSIONS: PLD2 expression correlates with increasing Gleason score to GS8. PLD2 inhibition has the potential to reduce PCa
progression.
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BACKGROUND
Many studies now implicate phospholipase D (PLD) in tumor-
igenesis since total PLD activity and the expression of its two
major isoforms PLD1 and PLD2 are elevated in many cancers
where increases can correlate with prognosis.1–8 Higher PLD
activity is also linked to survival and migration signals in human
breast cancer cells and in androgen-insensitive prostate cancer
cell lines.9,10 Selective inhibition of PLD1 or PLD2 also makes
breast cancer cells more sensitive to radiation.11 Investigations
into the role of PLD in cancer have been aided by the
development of new isoform-specific PLD1 and PLD2 inhibi-
tors,12–14 which reduce the proliferation of breast cancer cells in
mice.7,12,14

The link between PLD and tumorigenesis is through phosphatidic
acid (PtdOH), a product of PLD1 and PLD2 activity.15,16 PtdOH is an
intermediate in complex lipid synthesis17 but it is also a signalling
lipid which, on formation, binds proteins at membrane surfaces
leading to their activation.13,18–20 The involvement of PtdOH in the
recruitment and activation of mTOR (mammalian target of
rapamycin), Raf and Akt/PKB kinase has defined a role for PLD in
regulating cell survival, proliferation and tumorigenesis.19–21 PtdOH
formation also inhibits protein phosphatase 1 and upregulates the
NFκB and Wnt signalling pathways, further promoting both cancer
cell survival and metastasis.21–23

PLD2 is reportedly located at the plasma membrane under
basal conditions,24,25 complexed with receptors in lipid rafts.26,27

This is in contrast to PLD1, which is localised to perinuclear
membranes in cells25,28,29 but translocates to the plasma
membrane on cell stimulation.25,28 PLD2 is also detected in the
nucleus in a few reports.4,28,30–32 PLD2 is activated by protein
kinase C (PKC)33,34 and by receptor (e.g. EGFR, PDGFR) and non-
receptor (eg. Src, JAK3) tyrosine kinases35,36 while PLD1 is
activated by PKC, casein kinase-II and small GTPases ARF and
RHO.21,37–39 PLD2 has a higher basal activity in cells than PLD140

and functions as both a phospholipase and as a guanine
nucleotide exchange factor (GEF).41 The activity of PLD2 is
regulated by complex phosphorylation-dephosphorylation path-
ways mainly on tyrosine residues36 through interactions with S6K,
Grb2, Sos, WASp and Rac2.42

Surprisingly, the role of PLD1 and PLD2 in prostate cancer
(PCa), the commonest cancer of men in the western world, has
not been widely investigated. We have reported that PLD1
protein is preferentially expressed in basal rather than luminal
prostate epithelial cell lines and in basal rather than luminal
layer cells in normal prostate tissue in situ.43 In PCa where basal
cells gradually become depleted,44 PLD1 protein expression is
detected in the expanding population of luminal cells. PLD1
protein expression is also higher in proliferating benign prostate
hyperplasia tissue compared with normal or PCa tissue.43 PLD
activity appears not to be elevated in PCa tissue compared with
normal tissue, unlike findings with other cancers (see above).
PLD1 protein expression is, however, significantly higher in
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Gleason 7 PCa tissue compared with tissue scored Gleason 9.43

In this report we have investigated expression and inhibition of
PLD2 in PCa using patient-derived PCa cells, prostate cell lines
and tissue microarrays.

METHODS
Prostate epithelial cell lines
The prostate epithelial cell lines used, with their growth media
requirement, diagnosis and origin were as described in Noble
et al.43 The benign hyperplasia (BPH-1) cell line45 was cultured in
RPMI medium+ 5% foetal calf serum.

Patient-derived prostate epithelial cells
Primary prostate epithelial cells were cultured from human

prostate tissue samples, which were obtained with patient
consent and full ethical approval (South Yorkshire Research
Ethics Committee, Yorkshire and the Humber, REC:07/H1304/
121) as previously stated.43 Epithelial cells were grown on
collagen 1-coated 10 cm dishes in Keratinocyte serum-free
medium (KSFM) with supplements of L–glutamine, bovine
pituitary extract, epidermal growth factor, stem cell factor,
cholera toxin, leukaemia inhibitory factor and granulocyte
macrophage colony stimulating factor at 37 °C with 5%
CO2.

46,47 Cells were initially co-cultured with irradiated (60 Gy)
mouse embryonic fibroblast (STO) cells. Further subsequent
passages were free of STOs and all cultures were used at the
lowest practical passage number after establishment in culture
(p2-p5).

Western blotting
Epithelial cell lysates were prepared using Cytobuster Protein
Extraction Reagent (71009, EMD Millipore) with protease inhibitors
(cOmplete, EDTA-free Protease Inhibitor Cocktail Tablets, Roche)
and PhosSTOP (Roche 04906837001). Cytoplasmic and nuclear
extracts were prepared using Nucbuster (EMD Millipore 71183)
following the manufacturer’s protocol. SDS-PAGE and western
blotting were as described elsewhere.48 Primary antibodies were a
rabbit anti-PLD2 antibody (PLD2-26, Denmat-Ouisse et al., 2001)
used at 1:1000 and a rabbit anti-GAPDH polyclonal (Abcam
ab9485) used at 1:10,000. The secondary antibody, a horse radish
peroxidase (HRP)-linked anti-rabbit IgG (Cell Signalling, 7074S),
was used at 1:10,000. A kaleidoscope protein ladder (Bio-Rad,
1610375) was used throughout.

PLD inhibition and cell viability
The effects of PLD2 inhibition on the viability of prostate
epithelial cell lines and patient-derived PCa cells was measured
in an MTS ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-
phenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay as described
previously.43 The dual PLD1/PLD2 inhibitor FIPI (4-Fluoro-N-(2-
(4-(5-fluoro-1H-indol-1-yl)piperidin-1-yl)ethyl)benzamide) was
from Tocris. Another dual PLD1/PLD2 inhibitor 5W0
(VU0155056; N-(2-(4-(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-
yl)piperidin-1-yl)ethyl)-2-naphthamide), the PLD1 inhibitor EVJ
(VU0364739; N-((S)-1-(4-(5-bromo-2-oxo-2,3-dihydro-1H-benzo
[d]imidazol-1-yl)piperidin-1-yl)propan-2-yl)-2-phenylcyclopropa-
necarboxamide hydrochloride) and the PLD2 inhibitor JWJ
(VU0364739; N-(2-(1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4,5]
decan-8-yl)ethyl)-2-naphtamide hydrochloride) were gifts from
the late Alex Brown, Vanderbilt University, USA.49–51

For EVJ and JWJ in combination cells were cultured with zero,
0.25 × IC50, 0.5 × IC50, 1 × IC50 and 2 × IC50 concentrations of EVJ,
JWJ and EVJ+ JWJ in DMSO. See Table 1 for cell line IC50 values.
The IC50 value used for patient-derived PCa cells was 6.4 μM for
JWJ and 13 μM for EVJ. Cell viability was measured using an
alamarBlue assay (Invitrogen Life Technologies Ltd, Paisley UK) at
24, 48 and 72 h.

Colony recovery assays
Patient-derived PCa cells were seeded in collagen 1-coated six-
well plates at 2 × 105 cells per well in complete KSFM medium. The
following day cells were treated with vehicle (DMSO) or the JWJ
PLD2 inhibitor (17.5 μM) for 4 h. Cultures were then rinsed,
trypsinised, counted and seeded at 500 cells/well of collagen
1-coated six-well plates with STO feeder cells.47 The media was
changed regularly and further STOs added when required. After
2–3 weeks colonies of >32 cells (at least five population doublings)
were scored after being visualised by staining with 1% crystal
violet in 10% ethanol in PBS.

Immunohistochemistry
PLD2 protein expression in sections of formalin-fixed paraffin-
embedded normal, BPH, PCa and CRPC (castrate-resistant prostate
cancer) tissue was examined by immunohistochemistry as
described previously.43

Cell immunofluorescence
Cells were plated in chamber slides at 10,000 cells per well in 200 μl
of media. The following day cells were fixed in 4% paraformalde-
hyde and rinsed with PBS. Cells were then permeabilised with 0.5%
Triton X-100, rinsed, blocked (10% goat serum in PBS) and treated
with primary antibody in 10% goat serum overnight at 4 °C. Next
day the cells were rinsed and the appropriate Alexafluor secondary
antibody added for 1 h at room temperature, followed by rinses.
The chambers were removed, and the slides were mounted using
Vectashield with DAPI (Vector laboratories, Peterborough, UK) and
examined using a Nikon Eclipse TE300 fluorescence microscope
(Nikon, Surrey, UK). The primary antibody was a rabbit polyclonal
anti-PLD2 antibody (PLD2-26, Denmat-Ouisse et al., 2001) used at
1:100. The secondary antibody was a goat anti-rabbit Alexafluor
568 (A11036, Thermofisher).

Tissue microarray (TMA) immunohistochemistry
TMAs were supplied by the Barts Cancer Institute and were
immunoperoxidase-stained for PLD2 using a rabbit anti-PLD2
(PLD2-26)52 at 1:100 as described previously.43 PCa TMA1 contained
41 kidney and 168 PCa tissue sections (Gleason scores 6 (n= 43), 7
(n= 97), 8 (n= 13), 9 (n= 15). The secondary antibody was a goat
anti-rabbit immunoglobulin-biotinylated (Dako E0432) used at 1:500.
Tertiary antibody Streptavidin-HRP (Dako, P0397) was used at 1:100.
Tissue staining was visualised using ImmPACT DAB EqV Reagent 1
and 2 from Vector Laboratories (Peterborough, UK). Stained sections
on each TMA were scanned using a Zeiss AxioScan.Z1 slide scanner
(ZEN 2012 software) with a Plan Apochromat ×20/0.8 objective. The
composite czi files were loaded into Tissue Gnostics, GmbH,

Table 1. Inhibitor IC50 values for JWJ on prostate epithelial cell lines
and patient-derived PCa cells compared with results for FIPIa, 5WOa

and EVJa

Cell type Inhibitor IC50 values (μM)

FIPI 5W0 EVJ JWJ

PNT2C2 28.2 60.4 17.3 8.3

PNT1A 27.1 56.8 4.7 3.8

P4E6 13.6 10.9 9.4 4.3

LNCaP 32 24.6 14.3 12

PC3 19.3 27.3 9.8 6.3

PC3M 42.9 29.8 8 6.3

Patient 1 57.6 39.8 14.8 7.4

Patient 2 30.1 13.9 12 5.4

aFIPI, 5WO and EVJ data are from Noble et al.43
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StrataQuest software (V 6.0.1.145) for analysis. The intensity of DAB
staining was quantified per pixel using the workable area (mean 0.3
mm2) of each tissue section. Tissue was detected automatically
using a combined grey image of the DAB and haematoxylin
intensities; despeckle (‘Filter median’), smoothing (‘Kernel radius’)
and threshold (‘Threshold CompareC’) operations were applied.
Total Area Measurements of the DAB signal were extracted from the
identified tissue. A scatterplot of DAB area versus DAB intensity was
used to gate on intact tissue and exclude debris. Results were
analysed in a GraphPad Prism statistical package (Graphpad
Software, California).

Effects of PLD inhibitors on prostate cancer cell migration
Cells were seeded on 12-well collagen-1-coated plates in
complete KSFM medium and scratched with a pipette tip when
90% confluent, followed by rinsing with PBS. Treatments were
then added in complete KSFM medium. Control was DMSO and
PLD1 inhibitor (EVJ, VU0359595) and PLD2 inhibitor (JWJ,
VU0364739) were used at 10 μM. For (A) photographs were taken
at the beginning and when the Control wounds had closed.
Measurements were carried out using ImageJ and are presented
as % wound closure relative to control. For (B-E) Livecyte images
were acquired every 15min for 24 h. Inhibitor effects on wound
closure were examined using Quantitative Phase Imaging (QPI)53

with the Livecyte system (Phase Focus Ltd, Sheffield, UK). This
generates high contrast images and the Cell Analysis Toolbox®
(CAT) software generates measurements of wound closure time,
cell speed and cell direction. Analysis was carried out using the
Phase Focus CAT® software.

RESULTS
PLD2 protein expression in PCa cells and cell lines
All the prostate epithelial cell lines (Fig. 1a) expressed PLD2
protein as revealed by western blotting, using a validated anti-
PLD2 antibody (PLD2-26) raised by Bourgoin and colleagues.52

PLD2 expression was most prominent in the cancer-derived
luminal LNCaP and basal PC3 cell lines. Cells cultured from five
apparently normal prostate tissue biopsies showed variable PLD2
protein expression (Fig. 1b). PLD2 was also expressed in three
primary prostate epithelial cell preparations (Fig. 1b) cultured from
patient-derived BPH tissue. PLD2 protein was also detected in PCa
cells cultured from several different Gleason-scored prostate tissue
biopsies but expression varied between cell samples (Fig. 1c, d).
PLD2 protein expression was generally higher in PCa cells derived
from Gleason-scored cancer biopsy samples than from a tissue
sample defined as non-tumorigenic (Fig.1e). In some cell samples,
notably from tissue scored Gleason 9, the PLD2 band resolved into
a distinct doublet (Fig. 1b, d, e).

PLD2 protein expression in normal, BPH and PCa tissue
In prostate tissue judged by pathology to be normal, PLD2 protein
expression was detected in both basal (black arrows) and luminal
(red arrows) cell layers (Fig. 2a). It was especially prominent in the
nuclei of both cell layers and was weakly detected in the cytosol
and at the plasma membrane (blue arrows) of luminal cells. PLD2
protein was also detected in occasional stromal cells (*). In BPH
tissue (Fig. 2b) PLD2 expression levels were increased in all cell
compartments compared with normal tissue (Fig. 2a). Basal cells
showed prominent PLD2 staining in nuclei and cytosol as did
luminal cells (black and red arrows); the plasma membrane of
luminal cells was especially well defined (blue arrows). In contrast
to normal tissue, PLD2 protein was also prominently expressed in
the cytoplasm and nuclei of many stromal cells (Fig. 2b, *).
An increase in DAB staining indicative of PLD2 expression and

measured as intensity per pixel, correlated with Gleason score up
to GS8 in tissue sections on a PCa TMA (Fig. 2c). DAB intensity in
the few GS9 sections analysed was significantly lower than the
GS8 samples on the TMA (Fig. 2c). Typical examples of TMAs
scored Gleason 6, 7, 8 and 9 are shown in Fig. 2d. PLD2 protein
was detected strongly in the cytoplasm and nuclei of both basal
and luminal cells in glands in Gleason 6 and 7 sections on the
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Fig. 1 PLD2 protein expression in: a prostate epithelial cell lines, b prostate epithelial cells cultured from patient-derived benign prostate
hyperplasia tissue and normal tissue, c cells cultured from PCa biopsies scored Gleason 6 and 7, d cells cultured from Gleason 9 PCa biopsy
tissue compared with a PC3 positive control, and e prostate cells cultured from biopsies scored Gleason 6–9 and from a single biopsy scored
normal with quantitation of the PLD2 band density compared with GAPDH. For all samples 20 μg protein was loaded and resolved by SDS-
PAGE for western blotting with detection of GAPDH as a loading control. Markers are kDa. Blots are typical of several repeats. In e PLD2 band
density was quantitated by Image J against GAPDH. See Materials and Methods for details
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TMA; some PLD2 expression was also detected in occasional cells
in the stroma (Fig. 2d). The poorly defined glands in sections
scored Gleason 8 where luminal cells predominate also showed
very prominent PLD2 protein expression. In GS9 tissue PLD2
protein was restricted to areas of small densely staining cells as
shown in more detail in Supplementary Fig. 1. Stromal cells in GS9
tissue showed little PLD2 expression. Staining of near adjacent
serial sections of CRPC tissue revealed that the foci of invading
cells expressing PLD2 co-expressed the neuroendocrine marker
chromogranin A (CRG-A) in their cytosol (Fig. 2e).

PLD2 protein localisation in cells
PLD2 protein was generally detected as punctate perinuclear dots
(white arrows) in the cytoplasm of BPH1, LNCaP and PC3 prostate
epithelial cell lines as well as in one cancer cell preparation (H702)
purified from GS7 biopsy tissue (Fig. 3a). In this one dividing PCa

cell, some PLD2 appeared to be aligned to the plasma membrane
(blue arrow). In all cell nuclei PLD2 protein was detected as
punctate dots (speckles) or larger granules (Fig. 3a, yellow arrows);
these granules were especially prominent in nuclei of PC3 cells
(Fig. 3a). PLD2 remained in the nucleus when living cells were
treated to remove all soluble proteins (results not shown). This
cytoplasmic/nuclear distribution of PLD2 in the four cell types
examined was confirmed by western blotting (Fig. 3b), which
showed PLD2 protein in both the cytoplasmic and nuclear
fractions. Cytoplasmic PLD2 resolved as two bands while nuclear
PLD2 generally resolved as a single band corresponding to the
higher molecular weight form of the cytoplasmic doublet (Fig. 3b).

Effects of EVJ and JWJ on cell migration
Simple wound closure assays with three patient-derived cell samples
in triplicate (Fig. 4a) indicated that a combination of EVJ+ JWJ was
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basal (black arrows) and luminal (red arrow) prostate epithelial cells. Staining is prominent in luminal and basal cell nuclei and weaker in
luminal cell cytosol and plasma membranes (blue arrows). PLD2 is also detected in occasional stromal cell nuclei (*). In b, PLD2 protein is
detected in BPH tissue in basal (black arrows) and luminal (red arrows) prostate epithelial cells as well as in the stroma. Staining is prominent
in luminal and basal cell nuclei, luminal cell cytosol and at luminal cell plasma membranes (blue arrows). PLD2 protein is prominent in the
nuclei and cytosol of many stromal cells (*). Scale bar: 50 μm. c PLD2 protein expression was examined in a TMA of 168 PCa tissue sections,
Gleason scores 6 (n= 43), 7 (n= 97), 8 (n= 13), 9 (n= 15). PLD2 expression increases significantly from Gleason score 6 tissue to Gleason 8
tissue, which is significantly higher than PLD2 protein expression in GS9 sections. **p < 0.01, ***p < 0.001, ****p < 0.0001. d representative
Gleason 6, 7, 8 and 9 tissue sections from the PCa TMA used to give the results in c. Note the different tissue architecture of the Gleason 6, 7
and 8 samples compared with Gleason 9 tissue where gland structure is absent. e serial sections reveal that PLD2-positive cells in CRPC tissue
co-express chromogranin A. PLD2 staining in sheets and foci of cells is largely nuclear with less prominent cytosolic staining (black arrows).
Chromogranin A staining is largely cytosolic (red arrows). Occasional stromal cell nuclei stain strongly for PLD2. See Methods for details
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more effective at inhibiting wound closure than either inhibitor
alone. The JWJ inhibitor showed good grouping of results compared
with EVJ where considerable patient variability was observed.
Further insight into the effect of these inhibitors on wound closure
was gained by QPI analysis in triplicate with cells from one biopsy
sample. This revealed that the PLD2 inhibitor JWJ delayed wound
closure more effectively than the PLD1 inhibitor EVJ (Fig. 4b), which
hardly differed from the DMSO control. A combination of EVJ+ JWJ
(10 μM each) slowed wound closure even more as also revealed by
analysis of the collective migration output (Fig. 4c). QPI also showed
that JWJ was more effective than EVJ at reducing the rate at which
single PCa cells at the leading edge moved after wounding; again,
even more effective inhibition of movement occurred when EVJ and
JWJ were applied together (Fig. 4d). QPI analysis allowed a
determination of the direction in which cells at the leading edge
of the wound were moving. In Fig. 4e each segment represents the
percentage of leading-edge cells moving in the direction shown.
DMSO-control and EVJ-treated cells were mostly all moving away
from the wound edge (0–180o axis) into the gap to close the wound
while cells treated with JWJ or JWJ+ EVJ migrated more randomly
at the leading edge. Many JWJ- or JWJ/EVJ-treated cells moved back
into the cell layer (Supplementary Video 1).

PLD inhibitor effects on cell viability and colony formation
When cell viability was assessed, the specific PLD2 inhibitor JWJ
was much more effective (Fig. 5a) than the dual PLD1/PLD2
inhibitors FIPI or 5WO and even the PLD1 inhibitor EVJ as reported
previously.43 At a concentration of 17.5 μM the viability of all PCa
cell lines was reduced to almost zero after 48 h treatment. The cell
lines PNT1A and P4E6 seemed especially sensitive to the effects of
JWJ where maximal effect occurred at a concentration of 10 μM.
JWJ also reduced the viability of patient-derived epithelial cells
(Fig. 5b) more effectively than FIPI, 5WO or EVJ. This is confirmed
by the cellular IC50 values, which were calculated using GraphPad
prism (Table 1). Data for FIPI, 5W0 and EVJ are from Noble et al.43

and are included in Table 1 and Fig. 5 for comparison. Application
of JWJ and EVJ in combination (Fig. 6) inhibited the viability
of prostate epithelial cell lines PNT2C2, LNCaP and PC3 and
patient-derived PCa cells more effectively than when used alone.
Two other PCa cell preparations gave similar results to that shown
for H745.
Exposure of patient-derived prostate cancer cells to 17.5 μM JWJ

for 4 h significantly reduced subsequent cell colony formation
(>32 cells) relative to DMSO vehicle controls (Supplementary
Fig. 2). JWJ had a significantly greater inhibitory effect on colony
formation than EVJ as the median reduction, relative to controls
by EVJ, was about 30% compared with 50% for JWJ. Data for EVJ
are from Noble et al.43 and are included in Supplementary Fig. 2
for comparison.

DISCUSSION
A unique feature of this initial study on the role of PLD2 in PCa
is the use of patient-derived cells cultured from Gleason-scored
biopsies. These have a basal phenotype46 and allow us to
approximate the in vivo state as closely as possible, compared
with using immortalised prostate cell lines. The results indicate
that (1), unlike PLD1 expression luminal and basal PCa cells
express PLD2 protein about equally, (2), PLD2 regulates PCa cell
proliferation and colony formation, (3), PLD2 is involved in
directed cell migration in PCa cells, (4), PLD2 protein expression
increases with PCa Gleason scores from 6 to 8, (5), in BPH
tissue stromal cells as well as basal and luminal cells show
upregulated PLD2 expression and (6) intriguingly, PLD2 protein
is co-expressed with chromogranin A (a neuroendocrine marker)
in CRPC tissue. Our biopsy samples come with Gleason
scores using the 2005 ISUP grading system.54 These can be
converted to the newer 2014 five grade grouping as detailed in
Berney et al.55

PLD2 protein expression in prostate cells, tissue and PCa TMAs
We tested several commercial anti-PLD2 antibodies but reprodu-
cible western blot results giving a single band (and occasionally a
doublet) of the correct molecular size were only obtained with a
validated anti-PLD2 antibody, PLD2-26 of Denmat-Ouisse et al.52

Our western blot findings that both cancer-derived basal PC3 and
luminal LNCaP cell lines show similar levels of PLD2 protein
expression agree with recent findings of Utter et al.10 This
expression pattern is, however, quite distinct from that of PLD1,
which we found to be expressed predominantly in basal prostate
epithelial cell lines and in basal layer cells in situ.43 This difference
is confirmed by our IHC results, where PLD2 protein is detected in
both basal and luminal layer cells in glands of tissue identified as
normal (Fig. 2a) or BPH (Fig. 2b). Compared with PLD2, PLD1 has
low intrinsic activity in cells and requires activation.40,56 Therefore,
in basal layer cells its activity will be regulated by stromal factors
such as FGF and TGFβ diffusing through the basal lamina.57,58

The upregulated PLD2 expression detected in stromal cells in
BPH tissue compared with normal stroma is probably due to
invading immune cells and/or activation of PLD2 expression in
smooth muscle cells and fibroblasts resulting from the
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blot of PLD2 in cytosolic and nuclear fractions purified from BPH,
LNCaP and PC3 prostate cell lines and one prostate cancer tissue
sample (H702). In a, The H702 PCa cells were purified from a prostate
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loading control. Markers are kDa. See Methods for details
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inflammatory processes characterising this condition59 (often
termed cancer-reactive stroma or cancer-associated fibroblasts,
CAF). Basal PCa epithelial cells purified from BPH and PCa biopsies
express PLD2 protein (Fig. 1b, c, d); the observed variation in
expression most probably arises from inter-patient variability. The
western blot finding that PLD2 protein expression is greater in PCa
cells purified from biopsies scored Gleason 6–9 compared with
cells from normal biopsy tissue (Fig. 1e) implies that PLD2
expression is increased in PCa, as has been reported for renal,
colon, colorectal and other human cancers.4,5,60,61 This was not
observed for PLD143 but the result for PLD2 is supported by our
IHC analysis of a PCa TMA (Fig. 2c, d) where the intensity of DAB

reaction product/pixel increases significantly in tissue sections
scored Gleason 6–8 but is lower in Gleason 9 sections. This finding
suggests that PLD2 is more actively involved in the early
development of PCa when luminal cells are proliferating in glands
rather than when gland structure has disappeared and tumour
cells are present in nests and sheets infiltrating the stroma (Fig. 2d,
Supplementary Fig. 1). In CRPC tissue invading PLD2-positive PCa
cells co-stain for chromogranin A (Fig. 2e), an indicator of the
development of aggressive androgen-independent neuroendo-
crine PCa62–64 through Akt/hnRNPK/AR/β-catenin65 and/or N-Myc-
driven66 pathways. These PLD2-positive PCa cells in CRPC also
express PLD1.43
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PLD2 localisation
Our IF results (Fig. 3) indicating that PLD2 protein is located in
both the cytosol and nuclei of prostate epithelial cell lines are
confirmed by the IHC results on sections of normal prostate tissue
(Fig. 2a) where nuclei and cytosol in both luminal and basal layer
cells are positive for peroxidase reaction product. PLD2 in the
cytosol has a punctate perinuclear distribution like that of PLD1 in
prostate basal cells,43 and similar to that reported for PLD2 in
other cells.30,52,67 These results support the prevailing view that
PLD2 (like PLD1) has a role in membrane vesicle transport to and
from the Golgi complex.68 Supporting this conclusion are findings
that PtdOH generated by PLD2 is involved with BARS protein in
COP1 vesicle fission,69 with Golgi tubule formation and Arf GAP1
recruitment70 and in continuous vesicle movement from the cell
membrane to the nucleus.71 PLD2 localisation on endosomal/
exosomal structures is well documented.72 Our IF results indicate
that PLD2 is not, however, usually located at the plasma
membrane in prostate epithelial cell lines and PCa cells under
the experimental conditions used. One rare exception is a dividing
PCa cell, in which some PLD2 may be aligned at the plasma
membrane (Fig. 3, H702, blue arrow). Generally therefore, our IF
results on PLD2 localisation agree with Freyberg and Iyer30,67 but
contrast with other reports.24,73–76 We concur with the views of
Frohman and colleagues76 that PLD2 localisation in cells most
likely varies according to cell type, activation state and perhaps
also to stage of cell division. In support, PLD2-immunoreactive
staining at the plasma membranes of luminal cells in BPH tissue
sections (Fig. 2b, blue arrows) is much more pronounced than in
luminal cells in normal tissue stained under identical conditions
(Fig. 2a, blue arrows). This suggests that in BPH some PLD2 locates
to the plasma membrane perhaps through interaction with the
EGF receptor,26 which shows increased expression in BPH.77 A
similar effect might be expected to occur in PCa tissue where the
EGF receptor is overexpressed and correlates with disease

progression.78,79 Such a translocation is observed in renal cancer
cells, which show increased PLD2 staining at the plasma
membrane compared with normal cells.4 Interestingly, the EGF
receptor is transported from the nucleus to the plasma membrane
in PtdOH-recycling vesicles.71

PLD2 in the nucleus
Our IF, IHC and western blot results all indicate that some PLD2
protein is present in the nucleus of the various prostate cells and
tissue sections studied. Cytosolic PLD2 resolves as a doublet in
some western blots (Fig. 3b). The lower band in this doublet is
unlikely to be a non-specific band of similar molecular weight to
PLD2 as found by Bruntz et al.13 using a commercial anti-PLD2
antibody since, if non-specific, it would be detected in every lane
and this is not observed. Thus, this doublet in the cytosol may
reflect differences in PLD2 phosphorylation on tyrosine or serine/
threonine residues.34,36,80,81 In support, others have reported that
tyrosine phosphorylation of PLD2 induces a band shift.82

Interestingly, nuclear PLD2 generally resolved as a single band
corresponding to the upper band of the cytosolic doublet.
Whether this higher molecular size form of PLD2 shuttles into
the nucleus from the cytosol is not clear. PLD1 has a nuclear
localisation signal in its loop region, which interacts with β-
importin18 to promote nuclear translocation. However, this loop
region, which accounts for the low basal activity of PLD1,56 is
missing in PLD2. Yet PLD2 can move into the nucleus as occurs
after brefeldin-A treatment of cells,30 for example. It is interesting
that PtdOH, the product of PLD2 activation, can assist the nuclear
import of proteins that lack a classical nuclear localisation
signal.83,84

Some of the PtdIns(4,5)P2 needed for PLD2 activity exists in
the nucleus85 where it is mostly associated with proteins as
detergent-insoluble proteolipid complexes.85,86 These complexes
appear as speckles and granules very similar in appearance to
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the spots of nucleoplasmic PLD2 we observe in PCa cells (Fig. 3a).
PtdOH formed by nuclear PLD2 activates phosphatidylinositol-4
P5-kinase87 a component of the nuclear speckles together with
pre-mRNA splicing factors. This points to a role for PtdOH (and
therefore PLD) in pre-mRNA splicing or mRNA metabolism and
export. PtdOH generated in the nucleus by PLD2 may also
regulate cell proliferation by activating nuclear mTOR88–91 and/or
nuclear ERK.92 Such results explain why we find that inhibiting
PLD2 has a marked effect on PCa cell proliferation and colony
forming ability, as discussed below. PtdOH also regulates
nuclear/cytoplasmic shuttling83 and is an intermediate in
phospholipid biosynthesis.17 Interestingly, nuclear PLD1 in
vascular smooth muscle cells is activated by cell surface G-
protein-coupled receptors via PI3K, PKCζ and/or RhoA pathways,
but not by activation of receptor tyrosine kinases.93 Whether
nuclear PLD2 and PLD143 in PCa cells is regulated similarly is as
yet unknown.

Prostate cell migration
Both methods of analysis used indicate that PLD2 has a more
significant role in controlling PCa cell migration than PLD1
(Fig. 4a–d). This agrees with findings for the PC3 prostate epithelial
cell line10 and is probably due to the fact that PLD2 is intrinsically
active in cells, while PLD1 requires activation.40 However, PLD1
apparently plays some role in PCa cell migration since wound
closure time lengthens when PLD1 and PLD2 are inhibited
together. This could be because PLD1 can control cell-substratum
interactions through a lipase-independent Src/Pyk2 pathway.94

More detailed analysis by QPI reveals that inhibiting PLD1 with EVJ
or PLD2 with JWJ significantly reduces the rate of PCa cell
movement (Fig. 4d). However, this is not the main reason why
wound closure by JWJ-treated PCa cells is delayed compared with
control and PLD1-inhibited cells. Inhibiting PLD2 appears to cause
leading-edge cells to move in a random chemokinetic manner
rather than in the directed chemotactic migration of control and

PLD1-inhibited cells across the wound (Fig. 4e). PLD2-inhibited cells
still migrate, albeit slower and randomly, so any PtdOH required to
stabilise mTOR for cell motility95–97 is probably being generated by
lysophosphatidic acid acyltransferase (LPAAT) and/or diacylglycer-
olkinase (DAGK) pathways19 and/or by a Grb2, Rac2 and WASp
pathway involving the PX and PH domains of PLD2.42,98 Control
and PLD1-inhibited cells migrate in a directed manner because
they respond normally via cell surface receptors to chemoattrac-
tant signals such as Ca2+ and nucleotides generated during
wounding.99–102 Currently we do not know why inhibiting PLD2
causes PCa cells to lose their sense of direction. PLD2 is connected
with the production of PtdIns 3,4,5-P3 (PIP3), the level of which is
regulated by phosphoinositide-3-kinase (PI3K) and the phospha-
tase and tensin homologue (PTEN)103 both of which are key players
of directional sensing in eukaryotic cells;104 PIP3 is enriched on the
potential anterior side of migrating cells. Inhibiting intrinsically
active PLD2 may reduce PtdOH levels in the plasma membrane
needed with PtdIns 3,4,5-P3 to stabilise atypical GEFs such as
dedicator of cytokinesis DOCK2 or DOCK180 as occurs in
neutrophils or epithelial cells, respectively.105,106 DOCK2 and
DOCK180 activate Rac involved in organising membrane exten-
sions in the direction of migration and absence of PtdOH results in
abnormal leading edges and defective chemotaxis.105 In neutro-
phils Rac1 is critical for gradient detection and orientation toward a
chemoattractant source while Rac2 is the main regulator of actin
assembly and migration.107 It remains to be discovered whether
DOCK proteins and Rac1 are similarly involved in the failure of
PLD2-inhibited PCa cells to show directed migration. Interestingly,
inhibiting PLD2 in breast cancer cells can block metastasis because
PtdOH is unavailable to bind the motor protein KIF5B, which
controls membrane trafficking of the MT1-matrix metalloproteinase
needed for invadopodia formation and invasion.108 Reduced levels
of PtdOH in PCa cells by inhibition of PLD2 could also interfere with
migration through integrin activation and the formation of stable
adhesions.109
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Inhibitor effects on cell proliferation
Since PLD2 regulates nuclear ERK activity in several cancer cell
lines92 it is not surprising that proliferation of prostate cell lines
and patient-derived PCa cells is effectively inhibited by JWJ
(Fig. 5a, b). However, it is somewhat surprising that inhibiting
PLD2 with JWJ reduces cell viability to zero in these cells when
compensatory pathways for the formation of PtdOH including
LPAAT and DAGK exist19 and when knocking out PLD2 in mice is
not lethal.110,111 As with PLD131 the effect of PLD2 on nuclear ERK
might involve activation of PKCα.33 Our IC50 results (Table 1)
suggest that prostate cell proliferation is more sensitive to PLD2
inhibition than to PLD1, which may be attributed to its dual role as
a GEF as well as a phospholipase.36,42 Though we used different
concentrations of inhibitors our EVJ+ JWJ combination results
agree with Utter et al.10 that the viability of luminal LNCaP cells is
more sensitive to inhibition of PLD1 and PLD2 together than the
basal PC3 cell line. The fact that a combination of EVJ+ JWJ is
more effective at inhibiting the viability of basal patient-derived
PCa cells than when inhibitors are used singly, emphasises that
PLD1 and PLD2 must work together in the maintenance of PCa
cell viability as is also observed for receptor-mediated endocy-
tosis112 and mTOR activation.113 The effectiveness of these
inhibitors is emphasised by our colony formation finding
(Supplementary Fig. 2) that even short-term inhibition of PLD2
(and PLD143) has long term effects on PCa cell viability. We have
explained previously43 why our IC50 values for PLD1/2 inhibition of
prostate cell proliferation are higher than reported by
others.12,50,114 These specific PLD1 and PLD2 inhibitors are based
on the antipsychotic agent halopemide, which has been tested in
clinical trials and is well tolerated.115,116 Our results in this report
show that these PLD1 and PLD2 inhibitors have considerable
potential for treating PCa especially if used in combination.
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