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Abstract

Increased task-related blood oxygen level dependent (BOLD) activation is commonly observed in functional magnetic

resonance imaging (fMRI) studies of moderate/severe traumatic brain injury (msTBI), but the functional relevance of

these hyperactivations and how they are linked to more direct measures of neuronal function remain largely unknown.

Here, we investigated how working memory load (WML)-dependent BOLD activation was related to an electrophysio-

logical measure of interhemispheric transfer time (IHTT) in a sample of 18 msTBI patients and 26 demographically

matched controls from the UCLA RAPBI (Recovery after Pediatric Brain Injury) study. In the context of highly similar

fMRI task performance, a subgroup of TBI patients with slow IHTT had greater BOLD activation with higher WML than

both healthy control children and a subgroup of msTBI patients with normal IHTT. Slower IHTT treated as a continuous

variable was also associated with BOLD hyperactivation in the full TBI sample and in controls. Higher WML-dependent

BOLD activation was related to better performance on a clinical cognitive performance index, an association that was

more pronounced within the patient group with slow IHTT. Our previous work has shown that a subgroup of children with

slow IHTT after pediatric msTBI has increased risk for poor white matter organization, long-term neurodegeneration, and

poor cognitive outcome. BOLD hyperactivations after msTBI may reflect neuronal compensatory processes supporting

higher-order capacity demanding cognitive functions in the context of inefficient neuronal transfer of information. The

link between BOLD hyperactivations and slow IHTT adds to the multi-modal validation of this electrophysiological

measure as a promising biomarker.
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Introduction

Increased task-related blood oxygen level dependent (BOLD)

activation is the most common observation in functional mag-

netic resonance imaging (fMRI) studies of moderate-to-severe

traumatic brain injury (msTBI). In general, BOLD activation typically

increases with higher task load, as well as with other extrinsic fac-

tors (e.g., aging, sleep-wake disturbance, brain injury, and disease)

that are associated with increased cerebral metabolic demand.1,2 In

msTBI, BOLD hyperactivations are observed across different tasks

and may represent injury-related compensatory mechanisms reflect-

ing increased effort required to maintain task performance, inefficient

neuronal processing, and/or merely changes in neurovascular cou-

pling after injury.1,3–7 Task-elicited hyperactivations are the most

consistent finding when fMRI task performance is maintained

similarly between patients and controls, but some studies have also

shown instances of hypoactivations in pediatric msTBI.8,9

Interpretation of fMRI findings in pediatric msTBI is compli-

cated by the heterogeneous nature of msTBI pathology, small

sample sizes, and the fact that few studies have linked BOLD al-

terations to clinical variables (e.g., Glasgow Coma Scale [GCS]

score, time post-injury, and neuropsychological test measures), and

none have investigated the relationship to more direct measures of

neuronal functioning. Extant studies do not provide a clear un-

derstanding of the functional and clinical significance of BOLD

alterations after msTBI in children and adolescents. To further

increase our understanding of BOLD alterations after msTBI, the

role of these alterations should not only be further validated by

traditional neurocognitive and clinical measures, but also more

direct measures of neuronal functioning.

Our previous work identified a subgroup of msTBI patients with

slow interhemispheric transfer time (IHTT; a scalp visual event-

related potential [ERP] measure of corpus callosum function).10

TBI patients with slow IHTT had poor white matter organization,

long-term neurodegeneration, and poor cognitive outcome10–13

compared to msTBI patients with normal IHTT. Slow IHTT is

therefore a promising electrophysiological biomarker in pediatric

msTBI.14 Examining the relation between the electrophysiological

IHTT measure and BOLD alterations will provide a significant step

toward a more substantial understanding of the effect of msTBI on

brain function, including determining whether alterations in the

BOLD signal after msTBI reflect functional neuronal changes, and

not just potential changes in neurovascular coupling.

Slow IHTT is a basic measure of neuronal efficiency that is

likely to affect processing across several cognitive domains given

that it is calculated based on the visual N1 component,4 which

appears before ERPs related to domain-specific higher cognitive

operations (e.g., P3).5 Slowed processing on a behavioral level has

been suggested to partly explain BOLD hyperactivations after adult

msTBI, but whether this actually represents recruitment of latent

support mechanisms attributable to inefficient neuronal processing

remains to be determined.6,7 Computationally demanding higher-

order cognitive processes, such as working memory, are particu-

larly dependent on coordinated processing in both hemispheres

and, consequently, sensitive to altered IHTT.8 A clear advantage

of using working memory tasks in fMRI research is that task load

can be parametrically manipulated,9 while still preserving the

opportunity to adjust for between-subject task performance by

exclusively including correct trials when modeling the BOLD re-

sponse.10 This provides a powerful approach to evaluating the con-

sequences of higher cerebral demand11,12 as reflected by increased

working memory load (WML)-dependent BOLD activation.

Taken together, both increased WML and slow behavioral re-

sponse time after msTBI seem to represent increased demands on

the brain, providing a need for recruiting extra neuronal resources

to uphold task performance. After pediatric msTBI, it is likely that

the consequences of slow IHTT and poor white matter organization

become more evident with higher WML as the need to transfer and

integrate information across the brain increases. In the context of

accurate task performance, individuals with longer IHTT would

therefore be expected to show BOLD hyperactivation as a function

of higher WML.

Here we investigated spatial working memory task-related

BOLD activations after pediatric msTBI in a subsample from the

UCLA RAPBI (Recovery After Pediatric Brain Injury) study10 that

had both fMRI and IHTT data available. Both higher WML and

suboptimal neuronal transfer of information (operationalized as

slow IHTT) as indices of increased cerebral demand1,2 were ex-

pected to be associated with increased BOLD activation. Specifi-

cally, we hypothesized that pediatric msTBI patients with slow

IHTT would demonstrate a greater increase in BOLD activation as

WML increased compared to msTBI individuals with normal IHTT

and a healthy control group, possibly reflecting compensatory

mechanisms. The external validity of BOLD alterations was further

evaluated in the full msTBI sample by investigating associations

with injury-related variables and a clinical measure of neurocog-

nitive function.20

Methods

Participants

TBI patients were recruited from four different pediatric inten-
sive care units located in level 1 and 2 trauma centers in Los An-
geles County. Patients were included if they experienced a
moderate-to-severe non-penetrating TBI, with intake or post-
resuscitation GCS between 3 and 12 (or higher if there were con-
firmed abnormalities on clinical imaging), if they were between 8
and 18 years of age at the time of injury, had normal visual acuity or
corrected vision with contact lenses or eyeglasses, and had suffi-
cient English skills to understand instructions and participate in
neurocognitive testing presuming English competence.

Participants were excluded if they had previous head injury,
motor deficits precluding them from participating in the test pro-
tocols, or other significant pre-trauma history of neurological, de-
velopmental, or psychiatric disorders. Healthy control participants
were matched on age, sex, and educational level to the TBI patients
and were recruited from the community through flyers, magazines,
and school postings. With the exception of criteria for TBI injury
severity, healthy control participants met the same inclusion and
exclusion criteria as TBI patients. Finally, participants were ex-
cluded from the MRI part of the study if they were not eligible for
MRI (e.g., because of having metal implants that were not MRI
compatible). The study was approved by the University of Cali-
fornia, Los Angeles (UCLA) institutional review board and the
institutional review boards of each site from which patients were
recruited.

The study design has been described in greater detail else-
where.10 Fifty patients were included in the overall study. How-
ever, because fMRI data collection was initiated late in the project,
a total of 18 (4 female) patients had both task-fMRI and IHTT data
collected at the same time point of sufficient quality to be included
in this study. A group of 26 (11 female) demographically matched
controls, with both task-fMRI and IHTT data, was also included.
The TBI group was further divided into subgroups based on IHTT
as previously described.10 Briefly, electroencephalography was
recorded using a BIOSEMI system (BioSemi, Amsterdam, the
Netherlands; sampling rate = 512 Hz, low-pass filter = 40Hz, high-
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pass filter = 0.16 Hz, bandwidth [3 dB] = 134 Hz) while participants
performed a pattern matching task with bilateral field advantage.
Stimuli for each trial were presented randomly and pairwise in two
of four visual fields (upper and lower; right and left), creating four
bilateral and two unilateral conditions.

Participants were asked to indicate whether the two stimuli
(patterns) constituted a ‘‘match’’ or ‘‘non-match’’ by pressing a
keyboard. The responding hand (right or left) was alternated in
eight blocks of 97 trials each. ERPs time-locked to the stimulus
presentation were calculated from parietal (P3/P4) and occipital
(O1/O2) electrodes. The peak latency (in milliseconds) of the early
visual N1 (typically observed *150–200 ms post-stimulus pre-
sentation) component was determined and averaged for the right
and left hemisphere. An overall IHTT was calculated by averaging
left to right and right to left differences (IHTTs) based on data from
the unilateral conditions. Longer IHTT indicates slower transfer of
visual information between the hemispheres, which is a basic and
robust measure of neuronal efficiency, given that the N1 component
reflects early visual registration occurring before any involvement
of domain-specific higher cognitive operations, such as those re-
flected in cognitive ERPs, such as the P3.5

In the overall study, IHTT had a skewed distribution in the
msTBI patients, with around half of the group having scores within
1.5 standard deviations (SDs) of the normal range, as calculated
based on data from the healthy control group.4 The balance of the
TBI group had slow IHTT outside the normal range (>1.5 SDs
below the mean of the control group). The bimodal properties of the
data therefore supported a meaningful cutoff for defining slow
IHTT as being above 1.5 SDs of the mean of healthy controls.4 This
cutoff has been successfully used in our earlier studies showing that
TBI patients with slow IHTT had poor white matter organization,
long-term neurodegeneration, and poor cognitive outcome.4,13–15

In the current study, subjects with an IHTT score of >1.5 SDs
(‡18 ms) from the mean of the entire healthy control group that was
included in the overall study10 were allocated to the ‘‘TBI slow’’
group (n = 7, 1 female), and the remaining patients were included
in the ‘‘TBI normal’’ group (n = 11, 3 female). Demographic and
clinical data for the groups are presented in Table 1.

Clinical measure of neurocognitive function

A previously validated cognitive performance index (CPI) was
included as a clinical measure of neurocognitive function.20 This
index combined standardized scores from tests measuring verbal

memory, psychomotor skills, working memory, and inhibition/
set-switching into a single psychometrically sound summary score
representing overall cognitive efficiency.20

Analyses of demographic and clinical measures

Means, SDs, and 95% confidence intervals (CIs) of the means
were calculated (Table 1). For measures where all groups had data,
separate analyses of variance (ANOVAs) with group (TBI slow,
TBI normal, and controls) as a between-subject factor and each
dependent variable as a within-group factor were performed. Sta-
tistically significant main effects were followed up by pair-wise
between-group contrasts. For TBI-related measures, pair-wise
comparisons using an independent t-test were applied. The accep-
tance level for statistically significant results was set to p < 0.05, and
partial eta squared (gq2) was calculated as a measure of effect size.

IBM SPSS Statistics Version 24 was used for statistical analysis
of demographic, clinical, and behavioral data.

Spatial working memory task

BOLD fMRI was acquired during performance of a parametric
spatial working memory task. Before each trial, four squares ap-
peared on the screen, indicating the spatial locations where stimuli
could appear. After each trial, these squares were replaced with
triangles, indicating that the participant should start responding.
For each trial, one to five pictures (items) of fruits and vegetables
were sequentially presented for 800 ms within the four possible
different locations on the screen. Interstimulus time was 200 ms,
and intertrial time was 1500 ms (from the last response to the be-
ginning of a new sequence). Subjects were instructed to attend to
the four positions on the screen and reproduce the order of the
presentation (not what pictures were presented) by using a response
box with four buttons (Current Designs, Winona, MN) corre-
sponding to the respective spatial locations. Because several similar
objects were presented (e.g., 25 different apples), respondents were
not able to associate a unique word with each stimulus, thereby
minimizing verbal mediation as a working memory strategy.

Participants were asked to respond as quickly and accurately as
possible. All participants completed a practice session before the
actual fMRI using a mock setup before their scan to ensure un-
derstanding of task instructions.

Task demands were manipulated in a parametric manner giving
four trial types with different WML: baseline (one item), WML 3

Table 1. Demographics and Clinical Measures

Variable F-statistics Group n Mean (SD) 95% CI of means

Age F(2, 41) = 0.979, p = 0.384, Z2 = 0.046 Controls 26 15.78 (3.12) 14.64, 16.92
TBI normal 11 14.33 (2.67) 12.58, 16.09
TBI slow 7 15.28 (2.09) 13.08, 17.48

IHTT average (msec) F(2, 41) = 36.70, p < 0.001, Z2 = 0.642 Controls 26 7.58 (5.78)* 5.43, 9.73
TBI normal 11 4.50 (3.75){ 1.20, 7.81
TBI slow 7 25.50 (7.58)*{ 21.36, 29.64

Cognitive Performance Index
(standard score)

F(2, 41) = 9.109, p = 0.001, Z2 = 0.308 Controls 26 106.24 (9.77)*{ 102.17, 110.30

TBI normal 11 93.13 (11.54){ 86.88, 99.38
TBI slow 7 92.32 (10.00)* 84.49, 100.16

GCS at admission — TBI normal 11 9.00 (3.35) 6.89, 11.11
TBI slow 7 9.00 (3.21) 6.36, 11.64

Time post-injury (weeks) — TBI normal 11 38.08 (31.64) 19.51, 58.18
TBI slow 7 38.85 (29.38) 12.85, 61.32

Footnote symbols (* or {) = pair-wise statistically significant difference, p < 0.05.
IHTT, interhemispheric transfer time; TBI, traumatic brain injury; GCS, Glasgow Coma Scale; SD, standard deviation; CI, confidence interval;

ANOVA, analysis of variance; Z2, partial eta squared.
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(three items), WML 4 (four items), and WML 5 (five items). The
task consisted of a total of 128 trials divided into 32 trials of each
trial type, divided into four equally long time epochs that were
balanced with regard to WML and intratrial sequence order to avoid
potential order effects. Stimuli were presented through a head-coil
mounted mirror system and an in-house custom-built MRI com-
patible video projector (Staglin Center, UCLA). The task design
was implemented using the PsychToolbox in Matlab (The Math-
Works, Inc., Natick, MA). A log file containing behavioral data was
stored, and response time and the number of correct responses were
computed separately for each WML as measures of accuracy and
response speed.

Analysis of functional magnetic resonance imaging
behavioral data

Means and SDs for each behavioral measure were calculated
separately for the respective groups (Table 2). To investigate
within- and between-group effects of WML, separate repeated-
measures ANOVAs with group (TBI slow, TBI normal, and con-
trols) as the between-subject factor and WML (baseline, WML 3,
WML 4, and WML 5) as the within-group factor were performed.
Mauchley’s test was used to investigate the assumption of sphe-
ricity of the data, and a Greenhouse-Geisser correction was used if
this assumption was violated. Statistically significant main effects
were followed up by pair-wise between-group contrasts. Sub-
sequent polynomial trend analyses were used to further evaluate the
expected linear WML effects. The acceptance level for statistically
significant results was set to p < 0.05. Partial eta squared (gq2) was
calculated as a measure of effect size.

Scan acquisition

All scans were performed on a Siemens Trio with a 12-channel
Head Matrix Coil (Siemens AG, Erlangen, Germany). Foam pads
around the subjects’ heads were used to reduce head motion.
During the parametric spatial working memory task, T2*-weighted
BOLD fMRI was acquired utilizing an echo-planar imaging
pulse sequence (repetition time = 2400 ms, echo time = 35 ms,
field of view = 244 mm, matrix = 80 · 80, slice thickness = 3 mm,
number of slices = 40, giving an in-plane resolution of 3 · 3 mm).
A T1-weighted three-dimensional magnetization-prepared rapid
gradient-echo (MPRAGE) volume was acquired for anatomical
reference.

Analysis of magnetic resonance imaging data

All analyses were performed using the FMRIB’s Software Li-
brary (FSL) toolbox (version 5.0.7; FMRIB Centre, Oxford, UK).
Non-brain structures were removed with BET.21 The fMRI data
were motion corrected with MCFLIRT,22 smoothed (Gaussian
kernel full width at half maximum, 6 mm), grand mean normalized,

high-pass temporal filtered (50 sec), and linearly registered to na-
tive high-resolution space (T1 MPRAGE), using a 7 degrees of
freedom spatial transformation.22, 23 A transformation matrix was
created by registration of the high-resolution T1 MPRAGE to a
2-mm Montreal Neurological Institute (MNI) standard template
using 12 degrees of freedom, and fMRI data were subsequently
transformed into standard MNI space by applying the same trans-
formation matrix.

BOLD activation was modeled using a general linear model, and
the hemodynamic response function was convolved with a standard
Gamma variate. A main contrast was computed to model the linear
increase of BOLD activation as a function of WML (baseline,
WML 3, WML 4, and WML 5). It is important for the validity of
fMRI studies comparing patient and healthy control groups that
task performance in the included contrasts is highly similar.19

Therefore, only trials with correct performance were included.
First, all fMRI contrasts were computed for each participant using a
fixed-effects model. Then, mixed-effects models with automatic
outlier deweighting were used to create statistical parametric maps
(SPMs) and to investigate group differences and within-group as-
sociations. The main analysis focused on investigating differences
between the predefined IHTT groups: TBI slow, TBI normal, and
healthy controls.

To substantiate our findings, we evaluated the clinical and
functional relevance of the BOLD activations by performing
within-group analyses for the full TBI sample, evaluating as-
sociations with age, IHTT (as a continuous variable), the CPI,
injury severity (GCS score at admission), and time post-injury
(number of weeks). In the control group, we evaluated associa-
tions with age, IHTT, and the clinical neurocognitive perfor-
mance index.

All SPMs were corrected for multiple comparisons by applying a
cluster threshold of Z > 2.3 and a cluster significance threshold of
p < 0.05. Peak Z-values with up to five local maxima and the size
of clusters (number of voxels) in standard 2 · 2 · 2 mm MNI space
were extracted. For anatomical denotation, visual inspection and
the Harvard Oxford cortical and subcortical structural brain atlases
as incorporated in FSL were applied.

Results

Demographic and clinical data

Results are presented in Table 1. There were no statistically

significant differences in age between the TBI slow, TBI normal,

and control groups. As expected, the TBI slow group had slower

IHTT than both the TBI normal group and controls, but there

was no statistically significant difference in IHTT between the

TBI normal group and controls. Both TBI groups performed worse

than controls on the clinical neurocognitive performance index,

but did not differ significantly from each other. There was also no

Table 2. Working Memory fMRI Task Performance

Variable Group n
Baseline WML 3 WML 4 WML 5

mean (SD) mean (SD) mean (SD) mean (SD)

Accuracy (correct responses) Controls 26 31.19 (1.88) 26.92 (4.87) 24.65 (5.75) 22.00 (7.38)
TBI normal 11 30.81 (1.47) 24.64 (5.97) 22.73 (6.08) 17.91 (7.11)
TBI slow 7 31.14 (1.21) 26.57 (4.69) 25.29 (3.15) 21.71 (4.79)

Response speed (seconds) Controls 26 0.814 (.245) 1.637 (0.378)* 2.116 (0.533)* 2.784 (1.109)
TBI normal 11 1.113 (.594) 2.156 (0.523)* 2.766 (0.730)* 3.256 (0.772)
TBI slow 7 0.764 (.065) 1.731 (0.405) 2.169 (0.406) 2.846 (0.649)

*Pair-wise statistically significant difference, p < 0.05.
fMRI, functional magnetic resonance imaging; WML, working memory load; SD, standard deviation; TBI, traumatic brain injury; IHTT,

interhemispheric transfer time.
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statistically significant difference between the TBI groups for in-

jury severity, nor time post-injury.

Behavioral functional magnetic resonance
imaging data

Means, SDs, and pair-wise comparisons for accuracy and re-

sponse speed are presented in Table 2, and results are also plotted in

Figure 1. There were no statistically significant WML · group in-

teractions for any of the behavioral measures. There were, however,

statistically significant main effects of WML, revealing a linear

decrease in performance as measured by response speed and ac-

curacy with higher WML. The only statistically significant effect of

group was found for response speed at WML 3 and 4, where the

TBI normal group had slower response times than controls.

Blood oxygen level dependent functional magnetic
resonance imaging data

The TBI slow group exhibited BOLD hyperactivation as com-

pared to both the TBI normal group and controls in widespread

brain areas encompassing frontal, parietal, and occipital regions

(Table 3; Fig. 2). There were no regions where the TBI normal

group or controls had statistically significantly higher BOLD ac-

tivation than the TBI slow group. The TBI normal group exhibited

BOLD hypoactivation compared to controls, predominantly in

posterior brain regions (Table 3; Fig. 2). There were no regions

where the TBI normal group had statistically significantly higher

BOLD activation than controls.

In the full TBI sample, slower IHTT (treated as a continuous

variable) was associated with increased BOLD activation in

widespread brain regions (Table 4; Fig. 3). Less severe injury

(as measured by GCS at admission) was also associated with in-

creased BOLD activation (Table 4; Fig. 3). The associations be-

tween BOLD activation and age, time post-injury, or the clinical

neurocognitive performance index in the TBI group were not sta-

tistically significant. In controls, older age was associated with

increased BOLD activation in predominantly right posterior brain

regions (Table 4; Fig. 4). Also, in controls, better neurocognitive

function as measured by the CPI was associated with increased

BOLD activation in left temporo-occipital regions (Table 4; Fig. 4).

Slower IHTT in controls was associated with increased BOLD

activation bilaterally in occipitoparietal regions (Table 4; Fig. 4).

Discussion

This study demonstrated that BOLD hyperactivation in children

with msTBI is associated with an electrophysiological ERP mea-

sure of IHTT. A subgroup of msTBI children with slow IHTT had

greater BOLD activation with higher WML than both healthy

control children and a subgroup of msTBI children with normal

IHTT. The same effect was also demonstrated in the full TBI

sample, where slower IHTT modeled as a continuous variable was

associated with widespread BOLD hyperactivations. BOLD hy-

peractivations are commonly observed after msTBI, and here we

provide the first compelling evidence on how such activations are

linked to a more direct measure of neuronal function.

Increased BOLD activations are hypothesized to represent

increased metabolic demands in the brain. These can arise from

increased task load (e.g., WML), but also from suboptimal neuronal

transfer of information,1,2 which in our study was operationalized

as reduced IHTT. Our main contrast of interest was the linear in-

crease in activation with higher WML in a parametric fMRI design.

Behavioral results confirmed the expected WML-dependent linear

decrease in accuracy and increase in response latency. In the fMRI

analyses, all groups also demonstrated the expected effect, with

more pronounced BOLD activations with greater WML.

BOLD hyperactivation in TBI individuals with slower IHTT

may indicate that they had to recruit more neuronal resources to

maintain task performance comparable to that of controls, as the

working memory load increased. This likely reflects the presence of

compensatory mechanisms; processes that in this study may have

mitigated the effect of brain injury on cognitive performance during

fMRI. A link between slower IHTT and increased BOLD activation

FIG. 1. Working memory fMRI task performance. *Pair-wise statistically significant difference between the TBI normal group and
controls, p < 0.05. CI, confidence interval; fMRI, functional magnetic resonance imaging; TBI, traumatic brain injury; WML, working
memory load.
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Table 3. Between-Group Differences in BOLD Activation

Anatomical region R/L Size in number of voxels Z

Coordinates for peak activation (MNI)

X Y Z

TBI slow > control
Frontal pole R 6603 6.01 34 38 30

Frontal pole R lm 5.75 32 38 34
Supramarginal gryus, anterior division R lm 5.48 58 –24 50
Inferior frontal gyrus, pars triangularis R lm 5.46 58 26 –4
Frontal pole R lm 5.40 36 38 34
Middle frontal gyrus R lm 5.39 32 34 36

Lateral occipital cortex, superior division L 1644 5.67 –18 –70 58
Lateral occipital cortex, superior division L lm 5.11 –16 –78 50
Superior parietal lobule L lm 4.76 –22 –46 58
Superior parietal lobule L lm 4.65 –22 –48 62
Superior parietal lobule L lm 4.55 –28 –46 58
Lateral occipital cortex, superior division L lm 4.50 –10 –66 60

Frontal pole L 978 4.66 –36 46 32
Insular cortex L lm 4.43 –30 18 6
Middle frontal gyrus L lm 4.29 –42 38 30
Middle frontal gyrus L lm 4.09 –32 34 36
Middle frontal gyrus L lm 4.05 –30 24 36
Frontal pole L lm 3.83 –40 44 20

Superior frontal gyrus R 930 4.37 20 2 52
Cingulate gyrus, anterior division L lm 3.89 –4 8 40
Supplementary motor cortex R lm 3.83 6 -8 54
Supplementary motor cortex L lm 3.69 –10 0 50
Supplementary motor cortex R/L lm 3.68 0 4 52
Supplementary motor cortex R lm 3.62 6 –2 54

TBI slow > TBI normal
Lateral occipital cortex, superior division L 17,424 6.50 –22 –68 58

Lateral occipital cortex, superior division L lm 5.81 –18 –70 60
Lateral occipital cortex, superior division L lm 5.49 –12 –68 60
Precuneus cortex L lm 5.35 –6 –68 54
Postcentral gyrus R lm 5.30 12 –46 72
Superior parietal lobule L lm 5.27 –22 –46 58

Frontal orbital cortex L 5891 5.63 –24 18 –10
Precentral gyrus L lm 4.93 –56 4 4
Middle frontal gyrus L lm 4.59 –36 24 26
Insular cortex L lm 4.49 –30 16 2
Precentral gyrus L lm 4.47 –54 4 34
Insular cortex L lm 4.46 –32 16 6

Lateral occipital cortex, superior division L 3513 4.58 –28 –76 22
Intracalcarine cortex L lm 4.42 –6 –86 6
Lateral occipital cortex, superior division L lm 4.12 –32 –78 18
Occipital pole L lm 3.99 –8 –96 4
Intracalcarine cortex R lm 3.97 14 –80 6
Cerebellum (left VI) L lm 3.93 –24 –52 –34

Controls > TBI normal
Occipital fusiform gyrus R 4709 5.09 22 –76 –22

Cuneal cortex R lm 4.72 10 –80 32
Cuneal cortex R lm 4.68 10 –76 32
Occipital fusiform gyrus R lm 4.47 26 –76 –18
Lateral occipital cortex, superior division R lm 4.45 20 –62 54
Lateral occipital cortex, superior division L lm 2.26 –30 –66 20

Postcentral gyrus L 1285 4.13 –62 –22 32
Parietal operculum cortex L lm 3.99 –50 –26 14
Planum temporale L lm 3.95 –44 –34 14
Supramarginal gyrus, anterior division L lm 3.88 –46 –36 42
Superior parietal lobule L lm 3.83 –36 –42 64
Supramarginal gyrus, anterior division L lm 3.81 –50 –38 42

(continued)
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was also confirmed within the healthy control group. Importantly,

there were no group · WML interaction effects for online fMRI

task performance, given that this could potentially compromise the

interpretation of BOLD group comparisons.19 To further minimize

any effects of more subtle performance differences, we only in-

cluded correct trials in our analyses. Given that there were no de-

mographic or clinical differences between the slow and normal

IHTT groups, the BOLD hyperactivations in the msTBI children

with slow IHTT is not likely to be explained by poor effort, de-

mographics, or injury-related differences.

Neurovascular coupling can be affected after brain injury, po-

tentially even in the chronic phase,4,7 which has provided some

uncertainty about the interpretation of the functional role of BOLD

alterations after msTBI. Here, we took an alternative approach to

determining the role of BOLD alterations in msTBI by evaluating

their link to IHTT—a basic electrophysiological measure of neu-

ronal function. No previous studies have investigated associations

between BOLD fMRI and electrophysiological data in msTBI. In

a study combining data from adults with mild TBI and matched

healthy controls, decreased amplitude in the event-related N350

component derived from a working memory task was associated

with smaller BOLD signal changes in a corresponding fMRI task.1

However, this association could not be reproduced separately in the

mild TBI group, leaving it an open question whether this associa-

tion was linked to the brain injury or not. Longer IHTT is associated

with slower transfer of visual information across posterior vi-

sual brain regions, particularly relying on pathways in the poste-

rior corpus callosum.25 Higher-order cognitive processes such as

working memory—and in particular those that are computationally

demanding (e.g., higher WML)—rely on coordinated processing

nodes in both hemispheres.18 A possible explanation of our findings

is that impaired IHTT after msTBI may reflect disrupted long-range

interhemispheric collaboration, which, in turn, causes increased

reliance on local or core networks. Support for this has been found

in studies observing decreased global connectivity in the context of

increased local connectivity after msTBI.26,27 Moreover, in adult

TBI, hyperconnectivity seems to occur in what is typically ob-

served to be the most highly connected core regions in the brain,

also referred to as the ‘‘rich club.’’28 The rich club is a high-cost,

high-capacity feature of brain connectivity central for global brain

communication that encompass brain regions such as the anteri-

or/posterior cingulate cortex, superior frontal cortex, the insula, and

precuneus,29 some of which were implicated in the current study.

Interestingly, our preliminary analyses of structural connectivity

in an overlapping sample show that slow IHTT is, in fact, linked to

rich club hyperconnectivity at the expense of reduced peripheral

integrity.30 An alternative, but non-mutually exclusive, mechanism

is that the BOLD alterations observed in the current study are

caused by a more global effect of white matter injury, beyond the

corpus callosum. Reduced corpus callosum integrity after msTBI is

typically indicative of more widespread white matter disorganiza-

tion attributable to traumatic axonal injury caused by accelera-

tion/deceleration and rotational forces.31

Despite examples of studies in pediatric msTBI examining rel-

evant cognitive constructs (e.g., working memory) through the

design of the fMRI task, few have investigated links to external

clinical measures of neurocognitive function. Previous studies in-

cluding individuals with pediatric msTBI have indicated both

positive and negative relationships between BOLD activations and

external measures of neurocognitive function.2,3 However, these

results cannot be directly attributed to msTBI, given that orthopedic

controls2 or patients with other types of acquired brain injuries3

were also included in the analyses. Cognitive dysfunction is com-

mon after pediatric msTBI,20,33 and was also confirmed in our

subsample, because both TBI groups performed worse than con-

trols on a clinical CPI. In controls, better performance on the CPI

was associated with more pronounced BOLD activation in

temporo-occipital regions. However, we failed to confirm a direct

link between BOLD activation and the clinical neurocognitive

performance index for the TBI group as a whole.

Brain reorganization and compensatory mechanisms are ex-

pected to develop over time as spontaneous recovery and

experience-dependent new learning occurs.1,34 Relatively large

variability in time post-injury for the subset of patients included in

the fMRI analyses could therefore potentially have affected the

BOLD-function results. This is unlikely, however, given that we

found no significant association between time post-injury and

BOLD activation. Differences in task demands between the fMRI

task and the CPI (which is a broader measure of cognitive function)

may also have obscured the BOLD-function relationship, given that

compensatory mechanisms after msTBI may be more relevant for

some tasks than others. Performance was highly similar across all

Table 3. (Continued)

Anatomical region R/L Size in number of voxels Z

Coordinates for peak activation (MNI)

X Y Z

Superior parietal lobule L 949 4.52 –28 –54 48
Lateral occipital cortex, superior division L lm 4.00 –28 –58 60
Superior parietal lobule L lm 3.90 –20 –52 50
Superior parietal lobule L lm 3.88 –30 –46 44
Superior parietal lobule L lm 3.84 –24 –56 50
Superior parietal lobule L lm 3.81 –30 –54 56

Controls > TBI slow — — — — — —
TBI normal > controls — — — — — —
TBI normal > TBI slow — — — — — —

Results were achieved using a mixed-effects model corrected for multiple comparisons using a cluster threshold of Z > 2.3 and a corrected cluster
significance threshold of p < 0.05. Main peaks and up to five local maxima (lm) within each cluster are reported. Naming of anatomical regions was based
on the Harvard Oxford cortical and subcortical structural atlases as implemented in the FSL software. Note that some clusters are relatively large and
therefore span over several brain regions (see Fig. 1 for more details).

BOLD, blood oxygen level dependent; TBI traumatic brain injury; MNI, Montreal Neurological Institute.
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groups in the spatial working memory task, and we only included

correct responses in the fMRI analyses. Although important for the

interpretation of BOLD activations,19 similar task performance

may also indicate that the task difficulty was lower in the fMRI task

than for the tasks combined in the CPI.

TBI children with slow and normal IHTT did not differ on the

CPI, but both groups performed more poorly than healthy controls.

Because the two msTBI groups had similar performance (and did

not differ on any other clinical and demographic variables), but

were separable based on their levels of activation, we extended our

analyses to include ad hoc investigation of within-group associa-

tions between BOLD activations and the CPI (Fig. 5). Better cog-

nitive performance as measured by the CPI was associated with

pronounced widespread BOLD activation in the slow IHTT msTBI

children. In msTBI children with normal IHTT, this relationship

was limited to activation in a small region in the post-central gyrus.

FIG. 2. Between-group differences in BOLD activation. Statistical parametric maps were achieved using a mixed-effects model
corrected for multiple comparisons using a cluster threshold of Z > 2.3 and a corrected cluster significance threshold of p < 0.05. Only
statistically significant results are shown. There were no regions where the TBI normal group or controls had statistically significant
higher BOLD activation than the TBI slow group. There were no regions where the TBI normal group had statistically significant higher
BOLD activation than controls. BOLD, blood oxygen level dependent; TBI, traumatic brain injury.
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Table 4. Within-Group Associations

Anatomical region R/L Size in number of voxels Z

Coordinates for peak activation (MNI)

X Y Z

TBI (n = 18)
Age — — — — — —
Cognitive performance index (CPI) — — — — — —
Interhemispheric transfer time (IHTT)
Supplementary motor cortex L 13,621 5.74 –2 4 50

Superior parietal lobule L 5.05 –26 –52 52
Superior parietal lobule R 4.95 40 –44 54
Supramarginal gyrus, posterior division R 4.92 46 –44 58
Supplementary motor cortex L 4.87 –2 0 56
Lateral occipital cortex, superior division L 4.84 –16 –70 58

Frontal pole L 1673 4.42 –26 48 10
Middle frontal gyrus L 4.11 –36 30 30
Middle frontal gyrus L 4.11 –34 24 26
Middle frontal gyrus L 3.67 –40 34 28
Middle frontal gyrus L 3.66 –30 34 38
Frontal orbital cortex L 3.63 –24 18 –10

Injury severity (GCS at admission)
Precentral gyrus L 12,077 5.42 –54 –4 46

Middle frontal gyrus L 5.29 –50 28 38
Frontal pole R 5.07 28 36 28
Frontal pole L 5.04 –32 52 18
Precentral gyrus L 5.01 –52 6 40

Middle frontal gyrus R 1933 5.37 50 8 42
Precentral gyrus R 5.26 58 6 38
Postcentral gyrus R 4.58 64 –14 40
Middle frontal gyrus R 4.40 46 8 48
Supramarginal gyrus, posterior division R 4.06 52 –36 56
Postcentral gyrus R 3.93 60 –16 44

Time post-injury — — — — — —
Controls (n = 26)
Age
Superior parietal lobule R 1288 4.49 44 –38 60

Postcentral gyrus R 3.94 44 –36 54
Postcentral gyrus R 3.92 52 –28 52
Precentral gyrus R 3.73 32 –18 68
Superior parietal lobule R 3.70 40 –40 56
Postcentral gyrus R 3.62 42 –32 52

IHTT
Lateral occipital cortex, superior division L 4.66 –8 –80 46

Precuneous cortex R 4.53 6 –74 52
Lateral occipital cortex, superior division R 4.48 14 –80 52
Lateral occipital cortex, superior division R 4.39 18 –80 50
Precuneous cortex L 4.25 –8 –76 46
Precuneous cortex L 4.16 –6 –80 52

CPI
Occipital fusiform gyrus L 869 3.68 –26 –90 –12

Occipital pole L 3.58 –22 –94 –14
Occipital fusiform gyrus L 3.53 –24 –90 –18
Inferior temporal gyrus, temporooccipital part L 3.48 –52 –54 –28
Temporal occipital fusiform cortex L 3.48 –36 –56 –22
Cerebellum, left crus I L 3.48 –28 –84 –32

Superior temporal gyrus, posterior division L 728 4.52 –54 –40 6
Supramarginal gyrus, posterior division L 3.88 –48 –46 22
Planum temporale L 3.69 –42 –40 18
Middle temporal gyrus, posterior division L 3.56 –60 –38 –6
Middle temporal gyrus, posterior division L 3.55 –56 –40 –6
Parietal operculum cortex L 3.54 –44 –44 24

Results were achieved using a mixed-effects model corrected for multiple comparisons using a cluster threshold of Z > 2.3 and a corrected cluster
significance threshold of p < 0.05. Main peaks and up to five local maxima (lm) within each cluster are reported. Naming of anatomical regions was based
on the Harvard Oxford cortical and subcortical structural atlases as implemented in the FSL software. Note that some clusters are relatively large and
therefore span over several brain regions (see Figs. 3 and 4 for more details).

TBI traumatic brain injury; GCS, Glasgow Coma Scale; MNI, Montreal Neurological Institute.
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Positive BOLD-function associations therefore seem stronger

within the slow-IHTT children, which provides indirect evidence

that hyperactivations observed in the between-group analyses may

be compensatory.

The observed BOLD hyperactivations in msTBI children with

slow IHTT could not be explained by having sustained a brain

injury by itself, nor by injury severity (i.e., GCS). More severe

injury as measured by GCS score in the whole TBI sample was

associated with BOLD hypoactivations, and TBI patients with

normal IHTT exhibited lower WML-dependent BOLD activation

compared to healthy controls. TBI children with normal IHTT had

statistically significant slower response times at WML 3 and 4

during the fMRI task than healthy controls. Moreover, although not

statistically significant, the TBI normal group also showed a trend

of slower response times compared to the TBI slow group. This is

somewhat counterintuitive, given that one would expect those with

slow IHTT to have the slowest response times, especially given that

faster IHTT is considered a proxy for better white matter integri-

ty/organization, which may facilitate processing speed.

However, interpretation of differences in response time in the

context of similar accuracy on a spatial working memory task is not

straightforward. Increased response time also means that the sub-

ject must maintain information in their working memory longer

(i.e., increased task difficulty) than if they are able to respond faster.

Interestingly, earlier research has shown that increased BOLD ac-

tivation after adult msTBI can be partially attributed to a transient

normal response that is also observed in healthy participants at-

tributable to slowed information processing.6 BOLD hyperactiva-

tions have therefore been suggested to be partly explained by

increased on-task ‘‘cycle-time,’’ which is typically reflected in

increased behavioral response time.6,7 If this was the case in our

study, the TBI normal group would be expected to show hyper-

activations rather than hypoactivations. It is therefore unlikely that

the seemingly compensatory hyperactivations in the slow TBI

group are driven by subtle behavioral differences in response time

between the groups. However, given that the electrophysiological

IHTT measure is a more direct reflection of the basic processing

capacity in the brain, BOLD hyperactivation as observed in the

TBI slow group may still reflect increased on-task ‘‘neuronal cycle

time,’’ possibly representing recruitment of latent support mechanisms

that are activated given that the task is more slowly processed on a

neuronal level.6,7

FIG. 3. Within-group associations in the full TBI sample. Statistical parametric maps were achieved using a mixed-effects model
corrected for multiple comparisons using a cluster threshold of Z > 2.3 and a corrected cluster significance threshold of p < 0.05. Only
statistically significant results are shown. There was no statistically significant association between BOLD activation and age, time post-
injury, nor the clinical neurocognitive performance index in the TBI group. BOLD, blood oxygen level dependent; GCS, Glasgow Coma
Scale; IHTT, interhemispheric transfer time; TBI, traumatic brain injury.
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Our results provide important new directions to interpreting

BOLD alterations after pediatric msTBI, but also reflect the highly

heterogeneous nature of msTBI, and implies the existence of sev-

eral potentially non-mutually exclusive mechanisms affecting the

BOLD signal (e.g., injury severity, compensatory neuronal pro-

cesses, or inefficient neuronal processing). Despite including a

larger total sample size than most previous fMRI studies of pedi-

atric msTBI, subgroup analysis in our study is still limited by a

modest sample size. Our primary aim was to investigate hypotheses

regarding the previously identified slow IHTT subgroup, but the

statistical power to evaluate more subtle multivariate and possibly

non-linear relationships was limited. It is also possible that some of

the null findings in our study are type 2 errors, as in similarly

powered fMRI studies.35

BOLD fMRI studies of pediatric msTBI have now been con-

ducted for just over a decade,6 but are still few, and have included

FIG. 4. Within-group associations in controls. Statistical parametric maps were achieved using a mixed-effects model corrected for
multiple comparisons using a cluster threshold of Z > 2.3 and a corrected cluster significance threshold of p < 0.05. Only statistically
significant results are shown.
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sample sizes ranging from 5 to 20 (median, 9) participants.8 Larger

individual studies are needed, but multi-site collaborative initia-

tives combining data sets in meta-analyses should also be encour-

aged to gain critical new knowledge of functional brain adaptations

after pediatric msTBI.

In conclusion, children and adolescents with slow IHTT after

msTBI exhibit functional brain adaptations expressed as WML-

dependent BOLD hyperactivations. Our previous studies in pedi-

atric msTBI have also shown that slow IHTT is associated with

widespread white matter disorganization in the post-acute phase,13

as well as prolonged neurodegeneration into the chronic phase.11,12

The combination of poor white matter organization,13 local struc-

tural hyperconnectivity,30 and slow IHTT10 in a subset of children

with msTBI may result in the need to recruit a broader network of

neurons (i.e., increased BOLD activation) to support cognitive

processes that require spatially distributed higher-order, capacity-

demanding cognitive activities because of inefficiencies in re-

cruiting more distal processing modules.

Our future analyses will use resting-state fMRI to directly

evaluate the impact of poor white matter organization and reduced

IHTT on both local and global functional connectivity. Our current

results represent a significant step toward a more substantial un-

derstanding of the effect of msTBI on the BOLD signal, and the link

between hyperactivations and slow IHTT adds to the multi-modal

validation of this electrophysiological measure as a promising

biomarker.14
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