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Abstract

Objective

Amniotic fluid cytokines have been implicated in the mechanisms of preterm labor and

birth. Cytokines can be packaged within or on the surface of extracellular vesicles. The

main aim of this study was to test whether the protein abundance internal to and on the

surface of extracellular vesicles changes in the presence of sterile intra-amniotic inflam-

mation and proven intra-amniotic infection in women with preterm labor as compared to

the women with preterm labor without either intra-amniotic inflammation or proven intra-

amniotic infection.

Study design

Women who had an episode of preterm labor and underwent an amniocentesis for the

diagnosis of intra-amniotic infection or intra-amniotic inflammation were classified into

three groups: 1) preterm labor without either intra-amniotic inflammation or proven intra-

amniotic infection, 2) preterm labor with sterile intra-amniotic inflammation, and 3) preterm

labor with intra-amniotic infection. The concentrations of 38 proteins were determined on

the extracellular vesicle surface, within the vesicles, and in the soluble fraction of amniotic

fluid.
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Results

1) Intra-amniotic inflammation, regardless of detected microbes, was associated with an

increased abundance of amniotic fluid cytokines on the extracellular vesicle surface, within

vesicles, and in the soluble fraction. These changes were most prominent in women with

proven intra-amniotic infection. 2) Cytokine changes on the surface of extracellular vesicles

were correlated with those determined in the soluble fraction; yet the magnitude of the

increase was significantly different between these compartments. 3) The performance of

prediction models of early preterm delivery based on measurements on the extracellular

vesicle surface was equivalent to those based on the soluble fraction.

Conclusions

Differential packaging of amniotic fluid cytokines in extracellular vesicles during preterm

labor with sterile intra-amniotic inflammation or proven intra-amniotic infection is reported

herein for the first time. The current study provides insights into the biology of the intra-amni-

otic fluid ad may aid in the development of biomarkers for obstetrical disease.

Introduction

Preterm birth (spontaneous and iatrogenic) is the leading cause of perinatal morbidity and

mortality [1–6]. The keystone to improving health outcomes in women at risk of preterm birth

is a thorough understanding of pathologic processes involved, identification of biomarkers,

and implementation of therapeutic interventions. Of the risk factors identified for preterm

birth, strong evidence supports the activation of intrauterine inflammatory pathways [7–17].

Consistent with these data, intra-amniotic inflammation due to microbial invasion of the

amniotic cavity is an important cause of spontaneous preterm delivery [18–20], and the molec-

ular mechanisms that may be responsible for parturition in this scenario have been extensively

studied [18–35].

Proteins present in amniotic fluid, in particular cytokines, are key regulators of parturition,

and labor-associated changes in their concentrations, with or without infection at both term

and preterm, have been well characterized [36–62]. Until recently, regulatory activity of these

proteins was considered to be mediated via soluble autocrine [63–66], paracrine [63, 65, 67],

and endocrine [68–70] signaling pathways, by direct engagement with cell-surface receptors.

However, it is now established that such mediators are also associated with extracellular vesi-

cles (both ectosomes and exosomes) and are present both on the surface and within the lumen

of vesicles [71–74]. Extracellular vesicle-associated proteins, therefore, represent an additional,

and as yet uncharacterized, pathway that may contribute to the initiation of labor and delivery

at both term and preterm.

Extracellular vesicles have been identified in amniotic fluid [75–87] and available data

indicate that exosome concentrations may increase in labor, both at term and preterm [86].

Amnion epithelial and stem cells release extracellular vesicles in vitro [83, 84, 88–90] and,

therefore, may contribute to the amount of extracellular vesicles in amniotic fluid in vivo.

Additional sources of extracellular vesicles in amniotic fluid may include the fetal skin, urine,

and lung.

Labor and delivery are associated with significant changes in the protein complement of

amniotic fluid extracellular vesicles [86]. There is a paucity of data, however, about the role of
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amniotic fluid extracellular vesicle-associated proteins in preterm labor and delivery and

whether their presentation on extracellular vesicles changes in association with intra-uterine

inflammation (with or without proven infection).

Herein, we tested the hypothesis that preterm labor with sterile intra-amniotic inflamma-

tion and preterm labor with intra-amniotic infection are associated with an increased expres-

sion of cytokines in extracellular vesicles present in amniotic fluid, and that such changes will

differ between the different extracellular vesicle compartments (internal, surface) and the solu-

ble fraction.

Materials and methods

Clinical cohort and study design

A retrospective, cross-sectional study was conducted that included women who had an episode

of preterm labor and underwent an amniocentesis for the diagnosis of intra-amniotic infection

or intra-amniotic inflammation. Amniotic fluid that was not used for clinical tests was retained

for research purposes. These amniotic fluid samples were stored in the Bio-Repository of

Wayne State University and the Detroit Medical Center. The Bio-Repository and associated

patient data were curated using a commercially available sample inventory and resource man-

agement system (BSI Systems, Calverton, MD, USA) at the Perinatology Research Branch of

the Eunice Kennedy Shriver National Institute of Child Health and Human Development

(NICHD), National Institutes of Health, U.S. Department of Health and Human Services

(Detroit, MI, USA). The inclusion criteria for this study required an episode of preterm labor,

a singleton gestation, a transabdominal amniocentesis performed between 17 and 36 weeks of

gestation with microbiologic studies, and a live-born fetus with available data regarding neona-

tal outcomes. Patients with placenta previa were excluded from the study or if their fetus had a

chromosomal abnormality or structural anomaly.

The Institutional Review Boards of Wayne State University and/or National Institute of

Child Health and Human Development (NICHD) / National Institutes of Health / U.S.

Department of Health and Human Services (Detroit, MI, USA) approved the study. Specimens

were collected under the protocols noted herein: Establishment of a Clinical Perinatal Data-

base and a Bank of Biological Materials [WSU IRB# 082403MP2F (5R) and NICHD/NIH#

OH98-CH-N001]; Biological Markers of Disease in the Prediction of Preterm Delivery,

Preeclampsia and Intra-Uterine Growth Restriction: A Longitudinal Study (WSU

IRB#110605MP2F and NICHD/NIH# OH97-CH-N067); Microarray Expression Profiling to

Identify Stereoptypic mRNA Profiles in Human Parturition (WSU IRB# 103108MP2F and

NICHD/NIH # OH99-CH-N056); Cerebral Palsy: Clinical, Biochemical, Histological, and Bio-

physical Parameters in the Prediction of Cerebral Palsy in Patients with Preterm Labor and

Premature Rupture of Membranes (NICHD/NIH# OH97-CH-N066); The Role of Feto-Mater-

nal Inflammation as a Mechanism of Disease in the Great Obstetric Syndromes (WSU IRB#

075299M1E).

Clinical definitions

Gestational age was determined by the date of the last menstrual period and confirmed by the

first ultrasound examination or by ultrasound examination alone if the sonographic determi-

nation of gestational age was inconsistent with menstrual dating. Term labor was defined as

the presence of regular uterine contractions with a frequency of at least 1 every 10 minutes and

cervical changes occurring after 37 weeks of gestation [91]. Preterm birth was defined as deliv-

ery between 20 and 366/7 weeks of gestation. Early preterm birth was defined as delivery

between 20 and 316/7 weeks of gestation. Moderate to late preterm birth was defined as
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delivery between 32 and 366/7 weeks of gestation. Term delivery was defined as birth� 37

weeks of gestation. Intra-amniotic inflammation was diagnosed when the concentration of

interleukin 6 (IL-6) in the amniotic fluid was� 2.6 ng/ml [92, 93]. Microbial invasion of the

amniotic cavity was detected from a positive amniotic fluid culture and/or polymerase chain

reaction/electrospray ionization-mass spectrometry (PCR-ESI/MS) result [18, 19, 94–101].

Based on the results of the amniotic fluid culture, PCR-ESI/MS, and amniotic fluid IL-6 con-

centration, patients were classified into the following groups:

1. Preterm labor without either intra-amniotic inflammation or detectable microbes in the

amniotic cavity (control group, n = 88);

2. Preterm labor with intra-amniotic inflammation but without detectable microbes in the

amniotic cavity (sterile intra-amniotic inflammation [SIAI] group, n = 19); and

3. Preterm labor with detectable microbes in the amniotic cavity and intra-amniotic inflam-

mation (proven intra-amniotic infection [IAI] group, n = 33).

Amniotic fluid samples

Amniotic fluid was retrieved either by transabdominal amniocentesis under antiseptic condi-

tions using a 22-gauge needle monitored by ultrasound, or by amniocentesis during cesarean

delivery under antiseptic conditions. Amniotic fluid samples were transported in capped, ster-

ile syringes to the clinical laboratory and were cultured for aerobic and anaerobic bacteria as

well as for genital mycoplasmas, as previously detailed [35]. At the time of collection, an amni-

otic fluid white blood cell count [102, 103], a glucose concentration [104] and a Gram stain

[105] were performed. Concentrations of IL-6 [92] were determined either at the time of col-

lection or from frozen plasma samples. Amniotic fluid samples used in this study were col-

lected between 17.1 and 36.4 weeks of gestation and were stored at −70˚C until analysis.

Preparation of extracellular vesicle fractions

Amniotic fluid samples were thawed at room temperature and treated with Exoquick-TC™
(System Biosciences, SBI, Palo Alto, CA, USA) to sediment the extracellular vesicles, according

to the manufacturer’s instructions. The resulting supernatants free of extracellular vesicles,

and extracellular vesicle pellets re-suspended in the original starting volume, were collected for

subsequent cytokine measurement.

Cytokine measurement

The concentration of 38 cytokines (see S1 Table) was determined with an in-house multi-

plexed bead-based assay, using methods similar to those previously described [61]. All anti-

body pairs and protein standards were purchased from R&D Systems (Minneapolis MN,

USA), except those for IFN-β (Abcam, Cambridge, UK). Magnetic beads (Luminex Corpora-

tion, Austin, TX, USA) with distinct spectral signatures (regions) were coupled to analyte-spe-

cific capture antibodies, according to the manufacturer’s recommendations, and stored at 4˚C.

Samples and protein standards for the supernatant fluid and intact vesicles were prepared

in assay buffer (1% bovine serum albumin in PBS), and lysed samples and standards were pre-

pared in assay buffer with Triton™ X-100 at a final concentration of 0.5%. Samples and stan-

dards were combined with analyte-specific capture antibody coupled bead mixtures in 96-well

flat bottom plates (Nunc, ThermoFisher Scientific, Waltham, MA, USA) and incubated at 4˚C

overnight. Plates were washed on a magnetic plate washer (405 TS, Biotek Winooski, VT,

USA), followed by incubation with polyclonal biotinylated anti-analyte antibodies for 1 hour
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at room temperature. Plates were washed and incubated for 30 minutes with 16 μg/ml of strep-

tavidin-phycoerythrin (ThermoFisher Scientific, Waltham, MA, USA) in PBS. Plates were

washed and beads were re-suspended in PBS and read on a Luminex 200 analyzer (Luminex

Corporation, Austin, TX, USA) with acquisition of 100 beads for each region and analyzed

using Bioplex Manager software (Bio-Rad Laboratories, Hercules, CA, USA). Analyte concen-

trations (pg/ml) were determined using 5P regression algorithms and expressed as the mean

pg/ml ± S.E. Concentrations were corrected for dilution by ExoQuick-TC™ or Triton™ X-100.

Extracellular vesicle luminal content was calculated as [analyte content of lysed vesicle] − [ana-

lyte content of intact vesicles].

Statistical analyses

Analysis of the demographic data. Continuous variables were compared among multiple

groups using the Welch’s one–way analysis of variance (ANOVA) [106] or Kruskal-Wallis

test, as appropriate. The Fisher’s exact test was used to compare proportions in the analysis of

contingency tables.

Differences in protein concentration among groups by amniotic fluid compartment.

Protein concentrations were offset by adding 1 unit and then log2 transformed to improve nor-

mality before analysis [107]. The transformed concentrations were then compared between

pairs of the preterm labor groups, using the Wilcoxon rank sum test. Fold change in protein

concentrations between groups was determined based on the median log transformed values

in each group.

To test for differences in the magnitude of change among the preterm labor groups between

different compartments (extracellular vesicle surface, extracellular vesicle internal, and amniotic

fluid soluble fraction), a quantile regression model for repeated measures [108] was used for anal-

ysis—the transformed protein concentration was treated as the dependent variable, while the pre-

term labor group, the amniotic fluid compartment and gestational age at amniocentesis were

treated as fixed effects. Differences in the effect of infection or inflammation on the cytokine

abundance between compartments were tested by allowing for interaction terms in the regression

models. The R package, rqpd, was used to estimate the model coefficients and their significance.

The Benjamini-Hochberg procedure [109] was employed to correct for multiple compari-

sons, and a q-value (corrected p-value) of less than 0.05 was considered a statistically signifi-

cant result.

All analyses were performed using software packages within the R statistical environment

[110].

Prediction of preterm delivery. An additional analysis was conducted to determine

whether amniotic fluid compartmentalized protein abundance measured before 32 weeks of

gestation is predictive of the time of delivery (<32 vs�32 weeks of gestation). Random forest

prediction models [111] were built for each of the three amniotic fluid compartments sepa-

rately, as well as using data from all three amniotic fluid compartments at the same time. The

randomForest in R was used to fit the models while allowing for 1,000 decision trees in each

random forest model. Leave-one-out cross validation was used to estimate prediction perfor-

mance indicators, including the area under the receiver operating characteristic (ROC) curves

(AUC), sensitivity, and specificity.

Results

Clinical characteristics of the study population

Clinical characteristics of the patient population are summarized in Table 1. No significant dif-

ferences in maternal age, body mass index, gestational age at amniocentesis, gravidity, parity,
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history of previous preterm delivery, and fetal gender were found among the 3 preterm labor

groups. Gestational age at delivery, birthweight, 1- and 5-minute Apgar scores, frequency of

clinical chorioamnionitis, amniotic fluid white blood cell count, and amniotic fluid glucose

concentration varied significantly among the groups, consistent with clinical presentation.

Among the patients with preterm labor with intra-amniotic infection, microorganisms were

detected in the amniotic fluid through cultivation in 16 (48.5%) cases and through PCR/

ESI-MS in 29 (88%) cases (S2 Table). The most common microorganisms detected included

Sneathia spp. (n = 6), Fusobacterium nucleatum (n = 6), Ureaplasma parvum (n = 4), and Urea-
plasma urealyticum (n = 4).

Differences in protein concentration by amniotic fluid compartment

among the groups

Protein concentrations by preterm labor group and amniotic fluid compartment are summa-

rized as box plots in S1 Fig and data is available in S3 Table. Intra-amniotic inflammation,

regardless of the detection of microorganisms, was associated with a pronounced expression

of cytokines on the extracellular vesicle surface and in the soluble fraction of amniotic fluid

(Fig 1). Pair-wise comparisons of protein concentration by amniotic fluid compartment are

presented in Table 2 and illustrated in volcano plots (Fig 2). For some comparisons, even

though the median protein concentrations were identical (log2 fold change = 0) in the compar-

ison groups, the Wilcoxon rank sum test returned a significant p-value (e.g. IL-1α: preterm

labor with intra-amniotic infection vs preterm labor without either intra-amniotic inflamma-

tion or proven intra-amniotic infection in the internal compartment of vesicles Table 2). In

most cases, this was due to non-detection of protein (S4 Table) in majority of the samples

resulting in median concentrations being zero for the two groups being compared. However,

as was the case for IL-1α (S1 Fig), among the samples in which the protein was detected, the

concentrations were higher in one group compared to the other. Therefore, these comparisons

were retained.

Extracellular vesicle surface. On the surface of extracellular vesicles, median concentra-

tions of 37 proteins were significantly increased (q-value <0.05) in preterm labor with intra-

amniotic infection compared to preterm labor without either intra-amniotic inflammation or

proven intra-amniotic infection. The highest fold change (FC) was observed for MIP-3α (log2

FC = 10.5) followed by CXCl6 (log2 FC = 8.6) and Calgranulin C (log2 FC = 8.6). Median con-

centrations of 28 cytokines were significantly higher in preterm labor with sterile intra-amni-

otic inflammation compared to preterm labor without either intra-amniotic inflammation or

proven intra-amniotic infection, with the highest fold changes being observed for Calgranulin

C (log2 FC = 7.7), MIP-3α (log2 FC = 6.8), and IL-6 (log2 FC = 5.6). The comparison of intra-

amniotic infection to sterile intra-amniotic inflammation groups identified 28 mediators with

increased concentration [e.g., IL-33 (log2 FC = 5.8), IFN-λ (log2 FC = 5.6), and MIP-1α (log2

FC = 4.5), among others].

Extracellular vesicle internal compartment. In the internal compartment of the extracel-

lular vesicles, the median concentrations of 24 cytokines were significantly higher in preterm

labor with intra-amniotic infection compared to preterm labor without either intra-amniotic

inflammation or proven intra-amniotic infection. MIP-3α (log2 FC = 8.7), Calgranulin A (log2

FC = 3.5), and IL-1β (log2 FC = 2.3) showed the highest increase in concentration in the pres-

ence of intra-amniotic infection.

When comparing preterm labor with sterile intra-amniotic inflammation to preterm labor

without either intra-amniotic inflammation or proven intra-amniotic infection, median con-

centrations of 5 cytokines [e.g. MIP-3α (log2 FC = 3.6), Calgranulin C (log2 FC = 2.6), and IL-
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1β (log2 FC = 0.9)] were significantly increased. Similarly, six cytokines [e.g., MIP-3α (log2

FC = 5.1), Calgranulin A (log2 FC = 4.5), and IL-4 (log2 FC = 1.8)] showed a significant

increase in concentration in preterm labor with intra-amniotic infection compared to preterm

labor with sterile intra-amniotic inflammation.

Table 1. Clinical characteristics of the study population.

PTL without either intra-amniotic inflammation or

proven intra-amniotic infection

(N = 88)

PTL with sterile intra-amniotic

inflammation

(N = 19)

PTL with intra-

amniotic infection

(N = 33)

P

Maternal

Maternal Age (years) 24.4(5.4) 24.3(4.3) 26.5(6.5) 0.223

BMI� 25.7(7.2) 25.6(5.3) 29(8.2) 0.163

Gestation Age at Amniocentesis 26.7(5.3) 29.1(4.9) 25.7(3.8) 0.051

African American Ethnicity 77/88(87.5%) 15/19(78.9%) 26/33(78.8%) 0.345

Smoking 25/88(28.4%) 3/19(15.8%) 10/33(30.3%) 0.51

Alcohol� 6/86(7%) 1/19(5.3%) 1/33(3%) 0.868

Drugs� 20/87(23%) 8/19(42.1%) 4/32(12.5%) 0.057

Obstetric History

Primigravida 22/88(25%) 4/19(21.1%) 4/33(12.1%) 0.307

Term Deliveries 39/88(44.3%) 7/19(36.8%) 16/33(48.5%) 0.705

Preterm Deliveries 34/88(38.6%) 5/19(26.3%) 7/33(21.2%) 0.171

Delivery

Gestation Age at Delivery (weeks)� 33.7(5.1) 29.5(4.8) 26.3(3.9) <0.001

Induced Labor� 10/85(11.8%) 1/19(5.3%) 2/32(6.2%) 0.633

C/S� 17/85(20%) 4/19(21.1%) 7/33(21.2%) 1

Vaginal� 66/85(77.6%) 13/19(68.4%) 22/33(66.7%) 0.388

VBAC� 2/85(2.4%) 2/19(10.5%) 4/33(12.1%) 0.052

Fetal

Fetal Male Gender� 46/84(54.8%) 12/19(63.2%) 16/33(48.5%) 0.598

Birth Weight g� 2171.5(888.7) 1512(769.5) 1010.5(602.1) <0.001

Apgar 1 min< 5� 14/85(16.5%) 6/19(31.6%) 21/33(63.6%) <0.001

Apgar 5 min< 7� 14/85(16.5%) 7/19(36.8%) 20/33(60.6%) <0.001

Amniotic Fluid Glucose (mg/dl) < 14
mg/dl[104]�

2/83(2.4%) 2/17(11.8%) 16/30(53.3%) <0.001

Amniotic Fluid WBC (cells/mm3)�
50 cells/mm3[102]�

2/79(2.5%) 3/16(18.8%) 17/30(56.7%) <0.001

Amniotic Fluid RBC (cells/mm3)� 11(3–48.8) 63(10–320) 23(6–120) 0.054ʷ
Amniocentesis to Delivery (days
interval)�

43.5(16.2–78.8) 2(1–3.5) 1(0–3) <0.001ʷ

Complications
Preterm Premature Rupture of the
Membranes

10/88(11.4%) 2/19(10.5%) 3/33(9.1%) 1

Small for Gestational Age Neonates 11/88(12.5%) 1/19(5.3%) 0/33(0%) 0.071

Preeclampsia 1/88(1.1%) 0/19(0%) 0/33(0%) 1

Clinical Chorioamnionitis 3/88(3.4%) 2/19(10.5%) 8/33(24.2%) 0.002

Continuous variable data are presented as the mean (standard deviation) when the differences among groups were assessed by ANOVA; or as median (interquartile

range) when the Kruskal-Wallis test was performed. Count data are presented as number (%) and were compared using Fisher’s exact test.

� Contain missing data
ʷ Kruskal-Wallis one-way ANOVA

https://doi.org/10.1371/journal.pone.0227881.t001
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Soluble fraction of amniotic fluid. In the soluble fraction of amniotic fluid, median con-

centrations of 37 cytokines were significantly higher in preterm labor with intra-amniotic

infection compared preterm labor without either intra-amniotic inflammation or proven

intra-amniotic infection, with eotaxin-1, CXCL-6, and HMGB1 being the most increased (log2

FC >10 for all). When comparing preterm labor with sterile intra-amniotic inflammation to

preterm labor without either intra-amniotic inflammation or proven intra-amniotic infection,

20 cytokines showed significantly increased abundance, such as eotaxin-1 (log2 FC = 10.6),

CXCL6 (log2 FC = 7), and Calgranulin C (log2 FC = 5.1) (Table 2). Finally, 26 cytokines [e.g.,

IFN-γ (log2 FC = 4.9), CXCL6 (log2 FC = 4), and IFN-λ (log2 FC = 3.3), among others] also

showed a significant increase in preterm labor with intra-amniotic infection compared to pre-

term labor with sterile intra-amniotic inflammation.

Compartment-dependent differences in protein abundance among three

preterm labor groups

Quantile regression models were used to assess if the differences in protein abundance among

preterm labor groups were significantly different among the three amniotic fluid compart-

ments. For each pair-wise comparison among the study groups, the differences in log2-fold

changes between the pairs of amniotic fluid compartments are provided in Table 3. Significant

differences highlighted in Fig 3 (scatter plots of paired log2 fold changes on the differences

observed among the amniotic fluid compartments), are summarized below:

The extracellular vesicle surface compartment versus the extracellular internal com-

partment. The changes in protein abundance with intra-amniotic inflammation, regardless

of the detection of microorganisms, were more pronounced on the extracellular vesicle surface

Fig 1. Heatmap of protein concentrations on the extracellular vesicle surface, within the vesicle and in the soluble

fraction of amniotic fluid. The protein concentrations were offset by adding 1 unit, log2 transformed, and then

normalized (min-max normalization) separately for each amniotic fluid compartment.

https://doi.org/10.1371/journal.pone.0227881.g001
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Table 2. Compartmentalized differential concentration analysis.

Extracellular Vesicle Surface Extracellular Vesicle Internal Amniotic Fluid Soluble

IAI vs Control SIAI vs Control IAI vs SIAI IAI vs Control SIAI vs Control IAI vs SIAI IAI vs Control SIAI vs Control IAI vs SIAI

IL-1α 3.4��� 0�� 3.4� 0��� 0. 0 5.3��� 2.1�� 3.2�

IL-1β 3.6��� 1.8��� 1.9�� 2.3��� 0.9��� 1.4 5.6��� 2.7��� 2.9���

IL-2 1.4��� 0 1.4�� 0��� 0� 0 4.3��� 1.8. 2.5.

IL-4 3.3��� 1.6�� 1.7�� 1.8��� 0 1.8� 2.5��� 2.2��� 0.4

IL-6 6.7��� 3.4��� 3.3�� 1.6��� 0 1.6�� 7.7��� 4.4��� 3.2��

IL-8 7.4��� 4��� 3.4��� 0�� 0 0 5.3��� 2.6��� 2.7���

IL-10 2.5��� 0.7��� 1.8�� 0��� 0 0 4.7��� 2.1��� 2.6��

IL-13 1.1��� 0��� 1.1 3.8��� 2.9�� 0.9

IL-15 2.7��� 2.5�� 0.2 1.1�� 0.2 0.8 0.4. -0.2 0.6

IL-16 6.6��� 5.6��� 1.1. 0 0 0 1.8��� 1.2. 0.6�

IL-18 0.6��� 0.7�� -0.2 1�� 0.4 0.6 2��� 0.1 1.9��

IL-33 5.8��� 0 5.8�� 0��� 0 0. 2.1��� 0 2.2��

Calgranulin A 5��� 2� 3�� 3.5��� -1 4.5��� 2.7��� 0.9� 1.8��

Calgranulin C 8.6��� 7.7��� 1 0.8��� 2.6��� -1.8 5.2��� 5.1��� 0.1

Eotaxin-1 7.6��� 5.3. 2.3 0�� 0 0 11.1��� 10.6� 0.5

GMCSF 1.5��� 0.4� 1.2� 0 0 4.9��� 4.7�� 0.2

Gro-α/CXCL-1 6.9��� 4.3��� 2.5�� 0. 0 0 3.7��� 1.7��� 2��

HMGB1 3.8��� 0. 3.8 0� 0 0 10.1��� 0. 10.1

IFNγ 2.8��� 0.5� 2.3�� 0��� 0 6.6��� 1.7 4.9��

IP-10 4.2��� 1.7� 2.6�� 1.4 -1.1 2.6 1.5��� 0.6 1�

ITAC/CXCL-11 8��� 5.4. 2.6� 0��� 0 0 0.9�� -0.3 1.2�

MCSF 1.1��� 0.5��� 0.7� 0�� 0 0 1.9��� 0.6 1.3.

MCP-1 7.8��� 4.2��� 3.6��� 0. 0 0 5.1��� 1.9��� 3.1���

MIG 2.9��� 2�� 0.9. 0. 0 0 1.4��� 0.8 0.6.

MIP-1α 7.8��� 3.3��� 4.5�� 0��� 0��� 0 6.9��� 3.7��� 3.2��

MIP-1β 6.5��� 4.4��� 2.1�� 0�� 0 0 6.6��� 4.5��� 2.1��

MIP-3α 10.5��� 6.8��� 3.7�� 8.7��� 3.6��� 5.1�� 5.2��� 2.2��� 3��

RANTES 5.3��� 3��� 2.3�� 0. 0 0 4.3��� 3.6��� 0.8.

TGFβ 2.1��� 0 2.1��� 0��� 0 0�� 6.2��� 4.1��� 2.1���

TNFα 2.1��� 0�� 2.1��� 0.5��� 0 0.5�� 4.7��� 1.8��� 2.9���

CRP 2��� 0.3 1.7�� 0 0 0 2.8��� 0.7 2.1�

TRAIL 2.1��� 1.4� 0.7 0 0 0 1.1��� 0.9 0.2

CXCL6 8.6��� 4.3�� 4.3��� 0�� 0 0 11��� 7��� 4���

CXCL13 6.7��� 3.9��� 2.7�� 0� 0 2.7��� 0.7 2���

MIF 1.6��� -0.1 1.7�� 0.6 -1.6. 2.2. 0.9��� 0.2 0.7�

IFNα 0��� 0�

IFNβ 2.1��� -0.9 3��� 3.6��� 0.8 2.8���

IFNλ 5.6��� 0� 5.6��� 3��� -0.3 3.3��

Log2 fold changes in protein abundance among the three preterm labor groups are presented for each compartment. Statistical significance was assessed by Wilcoxon

rank sum test. IAI, preterm labor with intra-amniotic infection; SIAI, preterm labor with sterile intra-amniotic inflammation; Control, preterm labor without either

intra-amniotic inflammation or proven intra-amniotic infection

Significance code for p-values:

<0.001 “���”,

<0.01 “��”,

< 0.05 “�”

https://doi.org/10.1371/journal.pone.0227881.t002
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compared to the internal compartment (middle panel in Fig 3 and Table 3). For example,

when comparing preterm labor with intra-amniotic infection vs preterm labor without either

intra-amniotic inflammation or proven intra-amniotic infection, fold changes of 16 proteins

were higher when assessed on the extracellular vesicle surface than internal to extracellular

vesicles.

The extracellular vesicle surface compartment versus the amniotic fluid soluble frac-

tion. A comparison of the data collected on the extracellular vesicle surface and in the soluble

fraction of amniotic fluid revealed differences in the fold changes in protein abundance with

intra-amniotic infection and with sterile intra-amniotic inflammation as follows: some cyto-

kines showed significantly stronger associations on the extracellular vesicle surface and others

in the soluble fraction of amniotic fluid (top panel in Fig 3 and Table 3). For example, when

comparing preterm labor with intra-amniotic infection vs preterm labor without either intra-

amniotic inflammation or proven intra-amniotic infection, fold changes of 15 proteins were

significantly higher when assessed on the surface of extracellular vesicles compared to the

Fig 2. Volcano plot of—log10 transformed p-values against log2 transformed fold changes illustrating the changes

in protein abundance with intra-amniotic infection and with sterile intra-amniotic inflammation. Differentially

abundant proteins (q-value< 0.05) are highlighted in red. Changes in protein concentrations were most evident when

comparing preterm labor with intra-amniotic infection to preterm labor without either intra-amniotic inflammation

or proven intra-amniotic infection on the extracellular vesicle surface or in the soluble fraction of amniotic fluid.

Control: preterm labor without either intra-amniotic inflammation or proven intra-amniotic infection.

https://doi.org/10.1371/journal.pone.0227881.g002
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Table 3. Amniotic fluid between-compartment differences in the magnitude of changes in cytokine concentrations among preterm labor groups.

PTL with intra-amniotic infection vs PTL without

either intra-amniotic inflammation or proven

intra-amniotic infection

PTL with sterile intra-amniotic inflammation vs

PTL without either intra-amniotic inflammation

or proven intra-amniotic infection

PTL with intra-amniotic infection vs PTL with

sterile intra-amniotic inflammation

Surface vs

Internal

Soluble vs

Internal

Soluble vs

Surface

Surface vs

Internal

Soluble vs

Internal

Soluble vs

Surface

Surface vs

Internal

Soluble vs

Internal

Soluble vs

Surface

IL-1α 3.4�� 5.3��� 1.9� 0 2.1 2.1 3.4 3.2 -0.2

IL-1β 1.3 3.3��� 2��� 0.9 1.8��� 0.9�� 0.5 1.5 1

IL-2 1.4��� 4.3��� 2.9��� 0 1.8 1.8 1.4��� 2.5 1.1

IL-4 1.5��� 0.7 -0.8� 1.6�� 2.2��� 0.6 -0.1 -1.4� -1.3�

IL-6 5.1��� 6.1��� 1 3.4��� 4.4��� 1 1.7 1.6 -0.1

IL-8 7.4��� 5.3��� -2.1�� 4��� 2.6��� -1.4 3.4 2.7 -0.7

IL-10 2.5��� 4.7��� 2.2��� 0.7 2.1��� 1.4�� 1.8� 2.6��� 0.8

IL-13 1.1�� 3.8��� 2.7��� 0 2.9 2.9 1.1� 0.9 -0.2

IL-15 1.6 -0.7� -2.3��� 2.3� -0.4 -2.7��� -0.6 -0.2 0.4

IL-16 6.6��� 1.8�� -4.8��� 5.6�� 1.2 -4.4��� 1.1 0.6 -0.5

IL-18 -0.4 1�� 1.4�� 0.3 -0.3 -0.6� -0.8 1.3� 2.1���

IL-33 5.8� 2.1 -3.7 0 0 0 5.8� 2.2 -3.6

Calgranulin A 1.5 -0.8 -2.3 3�� 1.9� -1.1 -1.5 -2.7 -1.2

Calgranulin C 7.8 4.4 -3.4�� 5.1 2.5 -2.6�� 2.8 1.9 -0.9

Eotaxin-1 7.6� 11.1��� 3.5��� 5.3 10.6��� 5.3� 2.3 0.5 -1.8

GMCSF 1.5��� 4.9��� 3.4��� 0.4 4.7��� 4.3��� 1.2�� 0.2 -1

Gro-α/CXCL-

1

6.9��� 3.7��� -3.2�� 4.3��� 1.7��� -2.6� 2.5�� 2 -0.5

HMGB1 3.8 10.1 6.3 0 0 0 3.8 10.1 6.3

IFNγ 2.8��� 6.6��� 3.8��� 0.5 1.7 1.2 2.3�� 4.9 2.6

IP-10 2.8 0.1 -2.7��� 2.8 1.7 -1.1 0 -1.6 -1.6

ITAC/CXCL-

11

8 0.9 -7.1�� 5.4� -0.3 -5.7� 2.6 1.2 -1.4

MCSF 1.1��� 1.9��� 0.8 0.5 0.6 0.1 0.7 1.3 0.6

MCP-1 7.8�� 5.1 -2.7��� 4.2��� 1.9�� -2.3� 3.6 3.1 -0.5

MIG 2.9 1.4 -1.5� 2 0.8 -1.2 0.9 0.6 -0.3

MIP-1α 7.8��� 6.9��� -0.9 3.3�� 3.7��� 0.4 4.5� 3.2 -1.3

MIP-1β 6.5��� 6.6��� 0.1 4.4��� 4.5��� 0.1 2.1� 2.1 0

MIP-3α 1.8 -3.5��� -5.3��� 3.2 -1.4� -4.6��� -1.4 -2.1 -0.7

RANTES 5.3��� 4.3�� -1�� 3� 3.6�� 0.6 2.3� 0.8 -1.5

TGFβ 2.1�� 6.2��� 4.1��� 0 4.1��� 4.1��� 2.1� 2.1 0

TNFα 1.6��� 4.2��� 2.6��� 0 1.8��� 1.8��� 1.6��� 2.4�� 0.8

CRP 2��� 2.8��� 0.8 0.3 0.7 0.4 1.7��� 2.1�� 0.4

TRAIL 2.1��� 1.1� -1�� 1.4�� 0.9 -0.5 0.7 0.2 -0.5

CXCL6 8.6��� 11��� 2.4��� 4.3 7��� 2.7 4.3� 4 -0.3

CXCL13 6.7��� 2.7��� -4��� 3.9��� 0.7 -3.2��� 2.7� 2� -0.7

MIF 1 0.3 -0.7 1.5 1.8� 0.3 -0.5 -1.5 -1

IFNβ 2.1��� 3.6��� 1.5� -0.9 0.8 1.7 3��� 2.8��� -0.2

IFNλ 5.6��� 3��� -2.6��� 0 -0.3 -0.3 5.6��� 3.3 -2.3

Differences in the magnitude of changes in cytokine concentration with intra-amniotic infection and with sterile intra-amniotic inflammation were assessed between

pairs of amniotic fluid compartments. Data represent differences in log2 fold changes (Δ log2 FC) reported in Table 2. Statistical significance was assessed using quantile

regression models. PTL: preterm labor.

Significance code for p-values:

<0.001 “���”,

<0.01 “��”,

< 0.05 “�”

https://doi.org/10.1371/journal.pone.0227881.t003
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soluble amniotic fluid fraction; whereas fold changes of 13 proteins were higher in the soluble

fraction of amniotic fluid compared to the extracellular vesicle surface.

The extracellular vesicle internal compartment versus the amniotic fluid soluble frac-

tion. The changes in protein abundance with intra-amniotic inflammation, regardless of

detected microorganisms, were generally lower when assessed within the extracellular vesicles

than in the soluble fraction of amniotic fluid, with a few notable exceptions (bottom panel in

Fig 3 and Table 3). For e.g., the fold changes in MIP-3α with intra-amniotic infection and with

sterile intra-amniotic inflammation were higher within vesicles compared to the soluble frac-

tion of amniotic fluid (preterm labor with intra-amniotic infection vs preterm labor without

either intra-amniotic inflammation or proven intra-amniotic infection: Δ log2 FC = 3.5; pre-

term labor with sterile intra-amniotic inflammation vs preterm labor without either intra-

amniotic inflammation or proven intra-amniotic infection: Δ log2 FC = 1.4). Similarly, for

IL-4, the change in protein abundance with intra-amniotic infection vs sterile intra-amniotic

inflammation was higher within extracellular vesicles compared to that in the soluble fraction

of amniotic fluid (Δ log2 FC = 1.4).

Prediction of preterm delivery based on compartmentalized proteomic

profiles of amniotic fluid

Of the 138 cases for which gestational age at delivery was available, 22 delivered at term (� 37

weeks), 61 delivered early preterm (< 32 weeks), and the 55 delivered late preterm (at or after

32 but before 37 weeks).

Fig 3. Scatter plot of fold changes in protein abundance with intra- amniotic infection and with sterile intra-

amniotic inflammation between pairs of amniotic fluid compartments. Proteins for which the changes were

significantly different between compartments are highlighted in red. Data represents log2 fold changes between groups.

Control: preterm labor without either intra-amniotic inflammation or proven intra-amniotic infection.

https://doi.org/10.1371/journal.pone.0227881.g003
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For the subset of cases where amniocentesis was performed before 32 weeks of gestation,

the predictive value of the compartmentalized cytokine concentrations for early preterm deliv-

ery was evaluated by building univariate and multivariate prediction models. The performance

of prediction models is summarized in Table 4 that gives the AUC statistic of univariate

Table 4. Prediction performance of early preterm delivery by single protein prediction models.

Extracellular vesicle Surface Extracellular vesicle Internal Amniotic fluid Soluble

AUC q-value AUC q-value AUC q-value

IL-1α 0.71(0.64–0.79) <0.001 0.6(0.54–0.67) 0.050 0.68(0.58–0.78) 0.003

IL-1β 0.77(0.68–0.86) <0.001 0.68(0.58–0.78) 0.012 0.77(0.68–0.86) <0.001

IL-2 0.66(0.58–0.75) 0.002 0.57(0.5–0.64) 0.127 0.65(0.56–0.74) 0.006

IL-4 0.73(0.64–0.83) <0.001 0.61(0.51–0.71) 0.114 0.73(0.63–0.83) <0.001

IL-6 0.87(0.8–0.94) <0.001 0.59(0.5–0.69) 0.127 0.84(0.76–0.92) <0.001

IL-8 0.88(0.81–0.94) <0.001 0.57(0.5–0.63) 0.127 0.85(0.77–0.93) <0.001

IL-10 0.76(0.67–0.85) <0.001 0.53(0.45–0.61) 0.546 0.81(0.73–0.9) <0.001

IL-13 0.67(0.6–0.73) <0.001 0.51(0.49–0.52) 0.515 0.71(0.62–0.79) <0.001

IL-15 0.62(0.52–0.72) 0.032 0.54(0.43–0.65) 0.546 0.51(0.4–0.62) 0.879

IL-16 0.69(0.59–0.79) 0.001 0.56(0.48–0.65) 0.210 0.67(0.57–0.78) 0.004

IL-18 0.6(0.49–0.71) 0.098 0.62(0.51–0.72) 0.114 0.68(0.58–0.78) 0.003

IL-33 0.65(0.57–0.73) 0.002 0.61(0.54–0.68) 0.050 0.62(0.52–0.73) 0.033

Calgranulin A 0.73(0.64–0.82) <0.001 0.61(0.5–0.71) 0.127 0.74(0.65–0.84) <0.001

Calgranulin C 0.79(0.71–0.86) <0.001 0.64(0.57–0.71) 0.012 0.85(0.78–0.92) <0.001

Eotaxin-1 0.67(0.58–0.76) 0.002 0.57(0.5–0.64) 0.127 0.63(0.52–0.73) 0.025

GMCSF 0.63(0.55–0.71) 0.007 0.47(0.43–0.52) 0.240 0.67(0.57–0.77) 0.004

Gro-α/CXCL1 0.73(0.64–0.82) <0.001 0.57(0.5–0.64) 0.146 0.77(0.67–0.86) <0.001

HMGB1 0.6(0.52–0.68) 0.026 0.53(0.48–0.57) 0.453 0.61(0.52–0.7) 0.036

IFNγ 0.69(0.61–0.78) <0.001 0.59(0.53–0.64) 0.050 0.69(0.59–0.78) 0.001

IP10 0.7(0.6–0.8) 0.001 0.57(0.46–0.68) 0.339 0.68(0.57–0.78) 0.004

ITAC/CXCL11 0.64(0.54–0.74) 0.014 0.58(0.51–0.66) 0.114 0.56(0.45–0.67) 0.303

MCSF 0.76(0.67–0.84) <0.001 0.56(0.49–0.63) 0.172 0.66(0.55–0.76) 0.009

MCP1 0.83(0.75–0.91) <0.001 0.48(0.38–0.58) 0.711 0.85(0.78–0.93) <0.001

MIG 0.68(0.58–0.78) 0.002 0.53(0.43–0.63) 0.636 0.59(0.48–0.7) 0.130

MIP-1α 0.82(0.75–0.89) <0.001 0.58(0.51–0.65) 0.114 0.87(0.8–0.94) <0.001

MIP-1β 0.84(0.77–0.92) <0.001 0.57(0.5–0.63) 0.127 0.83(0.75–0.92) <0.001

MIP-3α 0.78(0.7–0.87) <0.001 0.75(0.67–0.83) <0.001 0.87(0.8–0.94) <0.001

RANTES 0.78(0.7–0.87) <0.001 0.61(0.51–0.7) 0.114 0.81(0.73–0.9) <0.001

TGFβ 0.71(0.63–0.79) <0.001 0.58(0.52–0.65) 0.114 0.76(0.67–0.84) <0.001

TNFα 0.76(0.69–0.82) <0.001 0.67(0.61–0.74) 0.001 0.81(0.73–0.89) <0.001

CRP 0.65(0.55–0.76) 0.010 0.51(0.42–0.59) 0.896 0.64(0.53–0.75) 0.020

TRAIL 0.59(0.48–0.7) 0.115 0.52(0.46–0.58) 0.595 0.57(0.45–0.68) 0.265

CXCL6 0.77(0.69–0.85) <0.001 0.57(0.51–0.63) 0.114 0.83(0.76–0.91) <0.001

CXCL13 0.79(0.71–0.87) <0.001 0.54(0.49–0.58) 0.202 0.74(0.64–0.83) <0.001

MIF 0.59(0.48–0.7) 0.122 0.54(0.42–0.65) 0.595 0.66(0.56–0.77) 0.006

IFNα 0.57(0.52–0.61) 0.018

IFNβ 0.61(0.5–0.71) 0.074 0.76(0.67–0.85) <0.001

IFNλ 0.74(0.67–0.81) <0.001 0.7(0.6–0.8) 0.001

Area Under the Receiver Operating Characteristic Curve (AUC) for univariate prediction models using data collected from each amniotic fluid compartment separately,

are presented along with their 95% confidence intervals and q-values (adjusted p-values from Wilcoxon rank sum test for differences between early preterm delivery and

moderate to late preterm or term delivery).

https://doi.org/10.1371/journal.pone.0227881.t004
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models by amniotic fluid compartment, in Table 5 that provides the performance metrics (sen-

sitivity, and specificity) of multivariate models, and Fig 4 that displays the Receiver Operating

Characteristic curves of multivariate models by amniotic fluid compartment.

For 33 cytokines, the AUC estimates obtained from univariate models based on their extra-

cellular vesicle surface concentrations were significantly higher than 0.5 [e.g. IL-8 0.88(0.81–

0.94), IL-6 0.87(0.8–0.94), MIP-1β 0.84(0.77–0.92)]. Moreover, the AUC statistic for 16 of

these cytokines (e.g. IL-15, MCSF, MIG, and ITAC/CXCL11, among others) was higher based

on data collected on the extracellular vesicle surface than the data collected in the soluble frac-

tion of amniotic fluid, yet the difference failed to reach statistical significance. The AUC esti-

mates based on their extracellular vesicle internal concentrations were generally lower than the

extracellular vesicle surface or amniotic fluid soluble counterparts (Table 4).

The performance indicators of multivariate models based on cytokine measurements in

the extracellular vesicle internal, extracellular vesicle surface, and amniotic fluid soluble

compartments were overall similar [EV Internal AUC = 0.73 (0.64–0.83), EV Surface

AUC = 0.85 (0.78–0.93), Soluble fraction AUC = 0.86 (0.79–0.93)]. The top five ranked cyto-

kines, based on their importance in prediction, were found in these compartments: EV sur-

face: IL-6, IL-8, MCP-1, MIP-1β, and MIP-1α; EV internal: Calgranulin C, IP-10, MIP-3α,

IL-1β, and MIF; and amniotic fluid soluble: MIP-1α, MIP-1β, MIP-3α, IL-6, and IL-8. There

was no significant improvement in the cross-validated point estimate of AUC of a multi-var-

iate early preterm delivery prediction model when information from all three compartments

was used [AUC = 0.86 (0.78–0.93)] as compared to individual compartments.

Discussion

Pathologic insults to the feto-placental unit are often clinically expressed as complications of

pregnancy, such as preterm labor with intact membranes and preterm prelabor rupture of the

membranes [113–115]. A contemporary paradigm of the initiation of labor and delivery, both

at term and preterm, involves the activation of intrauterine inflammatory signaling pathways

and a shift to a more pro-inflammatory intra-amniotic environment [35, 60, 61, 96–101, 103,

116–128].

In addition to these canonical signaling pathways, recent studies identified the release of

extracellular vesicles as a significant pathway for intercellular communication [129, 130]. The

release of extracellular vesicles is an evolutionarily conserved effector and intercellular-signal-

ing pathway and has been described in archeacian [131], prokaryotic [132], and eukaryotic

[133–137] cells. Extracellular vesicles, including exosomes (nanovesicles of late endoplasmic

Table 5. Prediction performance of early preterm delivery by multivariate protein prediction models.

Model Sensitivity Specificity Positive likelihood ratio Negative likelihood ratio AUC

Amniotic fluid Soluble 0.74

(0.61–0.84)

0.93

(0.81–0.99)

10.57

(3.51–31.82)

0.28

(0.18–0.43)

0.86

(0.79–0.93)

Extracellular vesicle Surface 0.7

(0.57–0.81)

0.91

(0.78–0.97)

7.58

(2.94–19.54)

0.33

(0.22–0.49)

0.85

(0.78–0.93)

Extracellular vesicle Internal 0.67

(0.54–0.79)

0.72

(0.56–0.85)

2.41

(1.44–4.02)

0.45

(0.3–0.68)

0.73

(0.64–0.83)

Combined 0.74

(0.61–0.84)

0.93

(0.81–0.99)

10.57

(3.51–31.82)

0.28

(0.18–0.43)

0.86

(0.78–0.93)

Prediction performance metrics for early preterm delivery (<32 weeks of gestation) is given for multivariate predictive models, using as predictors the

compartmentalized protein concentration profiles. Statistics are presented along with their 95% confidence intervals. The prevalence of early preterm delivery(<32

weeks of gestation) in the United States was 1.59% in 2017 [112].

https://doi.org/10.1371/journal.pone.0227881.t005
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reticulum origin and released via the fusion of multivesicular bodies with the plasma mem-

brane) and ectosomes (nanovesicles formed by the direct budding of the plasma membrane)

[130, 138], are derived from distinct biogenic pathways. They may share common functional

activities but are profoundly different in their origin, biogenesis, distribution, release mecha-

nisms, and response to stimuli [139]. In contrast to well-characterized endocrine signaling

pathways, extracellular vesicle-dependent communication allows the exchange of proteins

[140], RNA [140, 141], and DNA [142], with conformational fidelity.

Extracellular vesicles regulate inflammatory and immune processes [89, 143–158] and are

present in amniotic fluid [75, 76, 81, 159, 160]. Amnion-derived extracellular vesicles are bio-

logically active as mediators of proliferation, apoptosis, immune responses, angiogenesis, and

inflammation [78, 79, 81] and may participate in labor-associated paracrine signaling [86, 90,

161]. Nanovesicles may affect these changes either directly, via the pro- and anti- inflammatory

proteins carried on their surface and within their lumen, or indirectly, via the induction of

inflammatory pathways in the target cells with which they engage [86].

To gain insight into the contribution of proteins packaged in extracellular vesicles, we

established the profile and compartmentalization of extracellular vesicle-associated proteins in

Fig 4. Receiver operating characteristic (ROC) curves of multivariate predictive models for early preterm delivery

(<32 weeks of gestation). The Area Under the Receiver Operating Characteristic Curve (AUC) and 95% confidence

interval are reported.

https://doi.org/10.1371/journal.pone.0227881.g004
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amniotic fluid obtained from women with preterm labor. We evaluated the distribution of 38

cytokines between the vesicle surface and intra-vesicle compartments. Their concentration in

extracellular vesicle-free amniotic fluid was also determined for each sample. These measure-

ments allowed us to test whether there was an advantage to measuring cytokine concentrations

in the extracellular vesicle compartments, as opposed to unfractionated amniotic fluid, in pre-

dicting preterm delivery. We have specifically addressed the following research questions:

Does the cytokine abundance internal to and on the extracellular vesicle

surface change with sterile intra-amniotic inflammation and with intra-

amniotic infection in women with preterm labor?

We found that intra-amniotic inflammation, regardless of detected microbial invasion of the

amniotic fluid cavity, was associated with an increased abundance of cytokines internal to and

on the surface of extracellular vesicles. Earlier we reported on the general increase of cytokines

[61] in unfractionated amniotic fluid obtained from preterm labor cases with intra-amniotic

infection and sterile intra-amniotic inflammation. These results are reconfirmed herein, but

here, for the first time we report on changes in cytokines quantified internally and on the sur-

face of extracellular vesicles in this subset of women with preterm labor. Development of the

pro-inflammatory vesicle surface was most evident in intra-amniotic infection, for which the

surface expression of 37 cytokines was increased. Of these, 36 cytokines were also increased in

the soluble fraction of amniotic fluid, and 24 had increased concentrations within the extracel-

lular vesicles.

The extracellular vesicle associated proteins showing the strongest increase in concentra-

tion with intra-amniotic infection were MIP-3α, Calgranulin C, CXCL6, ITAC/CXCL11,

MCP1, MIP-1α, Eotaxin 1, IL-8, Gro-α/CXCL1, and IL-6 on the surface, and MIP-3α and Cal-

granulin A in the lumen. The up-regulation of these pro-inflammatory cytokines (IL-6), che-

mokines (MIP-3α, CXCL6, ITAC/CXCL11, MCP1, MIP-1α, Eotaxin 1, IL-8, Gro-α/CXCL1)

and antimicrobial polypeptides (Calgranulin C) results from the activation of the innate

immune system which includes the recognition of pathogen-associated molecular patterns

(PAMPs) by pattern recognition receptors (e.g. Toll-like receptors, C-reactive protein) [61,

113, 162–167]. This is plausible given the observed increase in the concentration of the C-reac-

tive protein (CRP) in the soluble fraction of the amniotic fluid in preterm labor with intra-

amniotic infection.

The top ranked proteins based on the magnitude of change in their concentrations with

sterile intra-amniotic inflammation were Calgranulin C, MIP-3α, IL-16, MIP-1b, Groα/

CXCL1, CXCL6, MCP-1, IL-8, CXCL13, and IL-6 on the surface of extracellular vesicles and

MIP-3α, and Calgranulin C in the lumen of extracellular vesicles. The overexpression of these

inflammatory mediators in the absence of microbes is initiated upon recognition of damage-

associated molecular patterns (DAMPs or alarmins) by pattern recognition receptors (e.g.

Toll-like receptors, NLRs, etc.) [61, 165, 168–171]. In this study, we observed that concentra-

tions of alarmins, IL-1α [172], and S100 family proteins (Calgranulin A, and Calgranulin C)

[173] were significantly increased in the soluble fraction of the amniotic fluid in preterm labor

cases with sterile intra-amniotic inflammation. These findings are in line with previous studies

showing that the intra-amniotic administration of alarmins induces sterile intra-amniotic

inflammation and preterm birth in mice [174, 175]. The mechanisms whereby DAMPs induce

sterile intra-amniotic inflammation and preterm birth involve the activation of the NLRP3

inflammasome [99, 124, 175–179]

The association of intra-amniotic inflammation with or without detected microbes with pre-

term parturition syndrome and the role of cytokines in these processes are well documented
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[60, 61, 93, 96, 97, 180–182]. However, this study shows that there is up-regulation in inflamma-

tory mediators secreted not only as free molecules in amniotic fluid but also as part of the cargo

carried by extracellular vesicles. The observed expression and the change in abundance of not

only free (soluble) cytokines but also extracellular vesicle associated cytokines with intra-amni-

otic inflammation/infection may represent urgency and redundancy in the feto-placental unit’s

response to environmental stimuli.

While cytokine changes with inflammation, regardless of detected microbial invasion of the

amniotic fluid cavity, on the surface of extracellular vesicles correlated with those determined

in the soluble fraction of amniotic fluid, the magnitude of the increase was significantly differ-

ent between these compartments, suggesting that they include different information about the

amniotic fluid milieu. Overall, although protein changes in extracellular vesicle surface and the

soluble fraction in intra-amniotic inflammation, regardless of detected micro-organisms, were

higher than those within the extracellular vesicles, the magnitude of changes within the extra-

cellular vesicles was higher compared to the soluble fraction of amniotic fluid for MIP-3α.

Cytokines contained within the internal compartment are not accessible to routine immu-

noassay quantification; therefore, this contribution has not been incorporated in contempo-

rary models of inflammation-associated parturition. While the relative amount of internal

mediators is low, their biological effect may be significant as vesicles can deliver these media-

tors to the very vicinity of the target cells. The roles of these extracellular vesicle -associated

mediators in parturition remain to be established. Previously, we and other investigators have

established that encapsulation within extracellular vesicles protects against degradation and

affords alternative pathways for engagement with target cells and transport pathways [183].

Is compartmentalized amniotic fluid protein concentration profiling useful

in the development of biomarkers for early preterm delivery?

To determine the potential of amniotic fluid compartmentalized protein profiling for develop-

ing new biomarkers of preterm labor and other obstetrical complications, we have developed

univariate and multi-variate prediction models for early preterm delivery (gestational age�32

weeks). For all but one cytokine (TRAIL), the AUC estimates obtained from either the extra-

cellular vesicle surface or the amniotic fluid soluble fraction concentrations were significantly

above 0.5. The AUC statistic for univariate models based on data collected on the extracellular

vesicle surface for IL-6, IL-8, MCP-1, MIP-1α, and MIP-1β was greater than 0.8. This is consis-

tent with our previous report of the association between unfractionated amniotic fluid concen-

trations of these proteins and early preterm delivery in patients diagnosed with a short cervix

[62]. Although prediction performances (AUC) for individual cytokines were different

between compartments, the overall performance of the multivariate models was statistically

similar among the different amniotic fluid compartments. This finding can be explained in

part by the redundancy of the cytokine network, but it does not preclude that compartmental-

ized profiling could improve prediction performance for other phenotypes.

Strengths and limitations

The main strength of this study is its novelty component, which is the compartmentalized pro-

filing of proteins in the amniotic fluid for three phenotypes of preterm labor. Another strength

is the moderate sample size that enabled not only detection of differences among groups

within a given compartment, but also detection of significant differences in the magnitude of

changes between groups across the different compartments. The use of cross-validation to

avoid overfitting in multi-variate models was also a strength of the analysis. Limitations are

related to the variability in the gestational ages at sampling of amniotic fluid, and the lack of
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amniotic fluid samples collected during second or early third trimester from mothers without

preterm labor.

Conclusions

The data obtained in this study are consistent with our hypothesis that amniotic fluid proteins

are differentially expressed and grouped within the extracellular vesicle and soluble amniotic

fluid fraction, and compartment-specific profiles characterize clinical subgroups of preterm

labor. Intra-amniotic inflammation with and without detectable microorganisms was associ-

ated with the differential packaging of extracellular vesicles cytokines. Proteins packaged

within the extracellular vesicles contribute to total amniotic fluid concentrations. Although the

current study points to possible improvement in biomarker prediction based on compartmen-

talized profiling, further de-convolution of the heterogeneity of preterm labor and delivery is

warranted.
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