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Proneural and mesenchymal glioma stem cells display major
differences in splicing and IncRNA profiles

Gabriela D. A. Guardia', Bruna R. Correa', Patricia Rosa Araujo? Mei Qiao? Suzanne Burns®, Luiz O. F. Penalva*** and

Pedro A. F. Galante ®"™*

Therapy resistance and recurrence in high-grade gliomas are driven by their populations of glioma stem cells (GSCs). Thus, detailed
molecular characterization of GSCs is needed to develop more effective therapies. We conducted a study to identify differences in
the splicing profile and expression of long non-coding RNAs in proneural and mesenchymal GSC cell lines. Genes related to cell
cycle, DNA repair, cilium assembly, and splicing showed the most differences between GSC subgroups. We also identified genes
distinctly associated with survival among patients of mesenchymal or proneural subgroups. We determined that multiple long non-
coding RNAs with increased expression in mesenchymal GSCs are associated with poor survival of glioblastoma patients. In
summary, our study established critical differences between proneural and mesenchymal GSCs in splicing profiles and expression
of long non-coding RNA. These splicing isoforms and IncRNA signatures may contribute to the uniqueness of GSC subgroups, thus
contributing to cancer phenotypes and explaining differences in therapeutic responses.
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INTRODUCTION

High-grade (Grades Ill and IV) gliomas are the most common
malignant brain tumors in adults. Glioblastoma (GBM, grade IV) in
particular is highly invasive and refractory to conventional therapy;
GBM patients have an average survival of 15 months.! Therapy
resistance and relapse are driven by glioma stem cells (GSCs),
which comprise a small subpopulation of tumorigenic cells
displaying stem-like properties: self-renewal, persistent prolifera-
tion, and ability to generate progeny of multiple lineages.”
Therefore, characterization of their biological properties, expres-
sion profile, and regulation is critical for creating new therapeutic
strategies. GSCs are categorized based on molecular and
phenotypic differences.® For instance, mesenchymal (MES) GSCs
have higher rates of proliferation in vitro,* mice that received MES
GSCs developed brain tumors at a much faster rate,* and MES
GSCs are more resistant to radiation than proneural (PN) GSCs.* In
addition, primary PN GBM, originally responsive to treatment, may
relapse as MES tumors which become refractory to treatment. Two
explanations for this change have been proposed: (i) PN-MES
transition, in which PN GSCs are triggered to switch to a MES
phenotype upon treatment; and (i) tumor heterogeneity: MES
GSCs already in primary PN tumors are more resistant to treatment
and then take over, driving growth of secondary tumors.®
Transcriptomic analyses of GSCs have established a list of
subtype-specific markers® and defined changes in their expression
levels in response to radiation.” Additional studies have focused
on mutation profiles and methylation status.® Here we expand the
characterization of GSCs by focusing on RNA-mediated mechan-
isms. Splicing profiles of MES and PN GSC lines show major
differences affecting genes implicated in cell cycle regulation,
DNA repair, cilium assembly, and RNA splicing. Additionally, we
found long non-coding RNAs (IncRNAs) preferentially expressed in
each GSC subgroup, with some exhibiting prognostic value.

RESULTS

Splicing profiles define GSC subgroups

To assess the contribution of alternative splicing to GSC
phenotypes and identify relevant differences between MES and
PN GSCs, we performed RNA sequencing of three mesenchymal
(MES-83, MES-326, MES-1123) and three PN GSC (PN-19, PN-157,
and PN-528) cell lines (Supplementary Table 1). RNA-seq analysis
revealed that MES and PN GSCs showed differences in 4934 spli-
cing events affecting 3253 genes (|APSI| > 0.1 and false discovery
rate [FDR] < 0.05, likelihood-ratio test); among these, 1793 events
were not reported in the reference transcriptome (GENCODE
version 26; Supplementary Table 2). Using only the splicing
profiling, we correctly clustered samples according to their
subgroups (Fig. 1a). MES and PN GSCs showed a similar number
of genes presenting alternative splicing (AS) events of exon
skipping (ES), mutually exclusive exons (MXE), intron retention (IR),
and alternative 5'/3’ splice sites (ASS; Fig. 1b). We randomly
selected exon-skipping events to be validated by quantitative RT-
PCR (Supplementary Table 3, Fig. 1c—f). All were in concordance
(higher fold change, on average) with the ES “direction” indicated
by RNA-seq data: ELMOD3, FDFT1, OSBPL6, and RAB18 have
skipped exons in PN GSCs (Fig. 1¢, d; Supplementary Fig. 1a), while
GSN, SLC9A5, and WASF3 have skipped exons in MES GSCs (Fig.
1e, f; Supplementary Fig. 1b).

Moreover, we used GBM samples from The Cancer Genome Atlas
(TCGA) to determine which AS events found in PN GSC cell lines
compared to MES are also confirmed in GBM. We found 78.7%
(3,882/4,934; Supplementary Table 4) of AS isoforms from GSCs in
GBM samples. Among the AS subtypes, IR and alternative splice sites
(ASS) events were more highly match to GBM (>90%; Fig. 2a, b,
classes in green plus yellow) than ES and MXE (~75%; Fig. 2a, b,
classes in green plus yellow). Additionally, ~35% of AS events from
MES GSC have agreement with GBM mesenchymal AS events
(Fig. 2a, classes in yellow) and ~50% of AS events from PN GSC have
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Fig. 1 Mesenchymal and proneural GSCs have distinct alternative splicing profiles, but a similar number of genes harboring alternative
splicing events. a Hierarchical cluster showing that GSCs can, be grouped based on their alternative splicing profile (PSI values). Bootstrap (bp)
and approximately unbiased (AU) probability from pvclust®® b Percentage of events and number of genes harboring exon skipping (ES),
mutually exclusive exons (MXE), alternative 3’ or 3’ splice site (ASS), and retained introns (RI) events in MES or PN GSCs. ¢ Quantitative RT-PCR
(gRT-PCR) validation of four exon-skipping events in PN and MES GSCs. ELMOD3, FDFT1, OSBPL6, and RAB18 are official gene names. d An
exon- skipping event (gene OSBPL6; second exon) in PN and MES GSCs. e qRT-PCR validation of three exon-skipping events in MES and PN

GSCs. GSN, SLC9A5, and WASF3 are official gene names. d An exon-skipping event (gene GSN; second exon) in MES and PN GSCs.

agreement with GBM proneural AS events (Fig. 2b, classes in yellow).
By performing gene ontology (GO) analysis with protein-coding
genes sharing agreement in AS events (|APSI| > 0.1 and FDR < 0.05,
likelihood-ratio test) between PN GSC and GBM versus MES GSC and
GBM, several biological processes commonly involved in brain
tumors (e.g., neurogenesis, cell division and epithelial-mesenchymal
transition)” were enriched (FDR < 0.05, Fisher's exact test) (Supple-
mentary Fig. 2), indicating that AS events in MES and PN GSCs are
reliable and potentially important to GBM maintenance.

Next, we evaluated if differences in splicing profile between PN
and MES GSCs affect mRNA levels. First, we identified 6393
differentially expressed genes between MES and PN GSCs, 5,625
of which were multi-exonic: 2545 were upregulated in MES GSCs
and 3,080 were upregulated in PN GSCs (|log2FC| > 1 and FDR < 0.05,
Wald test; Supplementary Table 5). We also explored differences in
gene expression observed between MES and PN GSCs in MES and
PN GBM samples from TCGA. We confirmed higher expression of
756 and 924 genes in MES and PN GBM (|log2FC| > 0; FDR < 0.05,
Wald test; Supplementary Table 6), respectively. Considering the
heterogeneity in GBM and that GSCs represent only a subpopulation

npj Genomic Medicine (2020) 2

of their cells, this low agreement (29.7%; (756 + 924)/5625)) in gene
sets with differential expression between PN or MES GSCs and PN or
MES GBMs was expected. Among splicing variants prevalent in MES
GSCs (|APSI|>0.1 and FDR < 0.05, likelihood-ratio test), 195 genes
(11.89%) had higher levels of expression, while 235 genes (14.33%)
had lower levels of expression in MES compared to PN GSCs. In the
case of splicing variants prevalent in PN GSCs (JAPSI| > 0.1 and FDR
< 0.05, likelihood-ratio test), 256 genes (15.87%) were upregulated
and 156 genes (9.67%) downregulated in PN GSCs compared to MES
GSCs (Fig. 2¢, d, Supplementary Table 7). Overall, splicing variants
prevalent in MES GSCs were more often associated with down-
regulated genes in the same subgroup compared to splicing
variants prevalent in PN GSCs (p-value =0.0001; chi-square 28.83;
df.=1).

Genes displaying splicing differences between PN and MES GSCs
are implicated in survival of GBM patients

We investigated whether expression levels of protein-coding genes
with splicing differences in MES vs. PN GSCs influence survival of
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Fig.2 Proneural and mesenchymal GSCs share most of their AS events with GBM samples. a Percentage of alternative splicing events from
GSCs in GBM samples. GSC-MES & GBM-MES contains AS events found in GSC MES and GBM (molecular subtype) mesenchymal. GSC-PN &
GBM-PN contains AS events found in GSC PN and GBM (molecular subtype) proneural. GSC-MES & GBM and GSC-PN & GBM contains AS
events found in GSC-MES and GSC-PN and GBM samples (all molecular subtypes), respectively. GSC-MES and GSC-PN contain AS events not
found in GBM samples. b Intersection between differentially spliced and differentially expressed genes (up- and downregulated) in the two

GSC subtypes.

GBM patients with one type of GBM but not the other one. Using
data from TCGA, we created Kaplan-Meier survival curves to
separately explore correlations between expression levels of each
gene and patient survival. Genes exclusively associated with
prognosis of MES or PN GBM were then included in multivariate
Cox proportional-hazards regression models to adjust for the effects
of clinical variables. Several genes exclusively affected prognosis of
patients with PN versus MES GBM (log-rank p-value <0.05 and
multivariate Cox p-value < 0.05; Supplementary Table 8, Fig. 3a—c).
Most genes predicted prognostic outcomes exclusively in PN GBM
and present more splicing events in PN GSCs (Fig. 3b). In particular,
11 genes that are upregulated in PN GSCs are also associated with
prognostic outcome in patients with PN but not MES GBM. Six genes
were associated with poor prognostic outcomes, i.e., samples with
higher expression of these genes (based on their median expression
values) were associated with decreased survival compared to
samples exhibiting lower expression of that gene. The other five
genes were associated with increased survival when highly
expressed. Co-expression analysis in TCGA GBM samples revealed
weak or no correlations among these genes (|Spearman'’s coeffi-
cient| < 0.8; Supplementary Table 9), suggesting that their impact on
prognosis is independent. In the univariate analysis, only LRRFIP1,
which is more highly expressed in MES GSCs, predicted prognosis in
both GBM molecular subgroups. However, when considered with
other clinical parameters in the multivariate Cox analysis, this gene
remained significantly associated only with prognosis of MES GBM.

Genes displaying splicing differences in PN and MES GSCs are
implicated in mMRNA splicing, DNA repair, cell division, and cilium
assembly

To elucidate the biological function of genes with differences in
splicing profiles between PN and MES GSCs, we first focused on
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cancer-related genes (Supplementary Fig. 3, Supplementary Table
10), using a consensus list of cancer driver genes identified in
three studies.'®"? From this list, we identified 72 genes displaying
splicing differences between PN and MES GSCs; 26 of these also
showed differences in expression (Supplementary Table 11).

We also conducted GO analysis using the DAVID web tools'>
and protein network analysis using the STRING database'* to
determine if genes displaying differences in splicing levels are
associated with particular biological processes. For genes display-
ing differences exclusively in splicing profiles and no significant
changes in expression, the top enriched terms were cell cycle,
cilium assembly, DNA repair, transcription, and mRNA splicing
(FDR < 0.05, Fisher's exact test; Fig. 4a, Supplementary Table 12).
Genes showing differences in expression levels without significant
splicing events were associated with a different set of GO terms, in
particular cell adhesion and neuronal function (FDR < 0.05, Fisher's
exact test; Fig. 4a, Supplementary Table 13). Next, we conducted
protein interaction analyses with gene sets associated with DNA
repair, cell cycle, cilium assembly, and mRNA splicing; all showed a
highly connected gene network (Fig. 4b—-e).

Splicing regulators potentially driving isoform preference

To determine which splicing regulators are potentially driving
different splicing profiles in PN versus MES GSCs, we analyzed the
expression and splicing profiles of 388 splicing-related RBPs,
comprising 66 components of the spliccosome'® (Supplementary
Table 14). Among them, 50 (12.9%) were differentially expressed:
35 were upregulated in PN GSCs while 15 were upregulated in
MES GSCs (|log2FC|>1 and FDR<0.05, Wald test; Fig. 5a, b,
Supplementary Table 15). From this group, 19 RBPs showed the
same differences in expression in GBM MES vs. PN samples from
TCGA (Supplementary Table 15). We also identified 188 events
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Fig. 3 Differentially expressed genes in mesenchymal or proneural GSCs are related to GBM patient prognosis of patients with GBM. a
Protein-coding genes with higher expression in proneural GSCs (showed in blue) or mesenchymal GSCs (showed in red) are exclusively
associated with better versus poor prognosis in GBM patients with tumors of molecular subtypes proneural or mesenchymal subtypes of GBM,
respectively. b Genes associated with survival in GBM patients are listed by type of alternative splicing event detected in the GSCs: ES, exon
skipping; IR, intron retention; MXE, mutually exclusive exons; ASS, alternative splice sites 3’ or 5'. ¢ Survival curves of four genes (presented in
a) exclusively affecting patients with GBM proneural or mesenchymal GBM. Significant log-rank p-values and multivariate Cox p-values are

shown in blue.

affecting 95 splicing-related RBPs that differed between PN and
MES GSCs (Fig. 5a) (|APSI|>0.1 and FDR < 0.05, likelihood-ratio
test; Supplementary Table 16). Moreover, 39 RBPs from the group
of splicing factors showing expression and/or splicing differences
between PN and MES GSCs were identified in recent meta-studies
that used TCGA data to map mutations affecting multiple tumor
types'®'” (Fig. 5¢, Tables $17 and S18).

We investigated co-expression patterns among differentially
expressed RBPs in MES and PN GSCs using Spearman’s rank
correlation (Supplementary Fig. 4a, b, respectively). Correlation
patterns were then confirmed in GBM samples from TCGA. We
found two sets of positively correlated RBPs in MES GBM (Fig. 6a,
b) and two other sets in PN GBM (Fig. 6c, d). Network analysis
showed that these correlated RBPs also display functional
interaction (Fig. 6e, f, respectively), indicating that these groups
of related RBPs may act together to regulate distinct sets of
splicing events and may regulate one another by modulating
inclusion of some alternative exons.'®

npj Genomic Medicine (2020) 2

IncRNAs display differences in expression and isoform preferences
in PN vs. MES GSCs

Aberrant expression of IncRNAs has been described in numerous
cancer types, and a growing number of IncRNAs are implicated in
malignant transformation.'? We investigated expression of INcRNAs
in MES and PN GSGs. First, we found 1240 differentially expressed
IncRNAs between MES and PN GSCs (Fig. 7a, Supplementary Table
19) and clustered GSCs based only on their IncRNA profile
(Supplementary Fig. 5). Next, we investigated whether these
differences are also observed in MES versus PN GBM tumors from
TCGA (Jlog2FC| > 0 and FDR < 0.05, Wald test). We found 357 genes
in concordance between GSCs and GBM tumors (i.e., upregulated
in MES GSC and upregulated in MES GBM; downregulated in MES
GSC and downregulated in MES GBM; same pattern as PN GSCs
and PN GBM; Supplementary Table 20). The levels of agreement
(28.7%; 357/1240) for differentially expressed IncRNAs were similar
to those for coding genes (29.7%) and splicing isoforms between
PN and MES GSCs and PN and MES GBM tumors.

Published in partnership with CEGMR, King Abdulaziz University



G.D.A. Guardia et al.

DNA repair
3 gt @ T
—m® Fr—
Exclusive AS 000 O ) o § I FANG
Exclusive DE O . O . O O O . O . g'
<t
L™
e - ® - <
O & S N & XC %o S > 3 92 02 o0 8 g%
S5 TESSYSEE 5% %3 133 %0%5%% B @
§EF ¢ EF S5 487 82 5% 3% 3580358 %3 o &
553 % 9 g 58 55 S59 =¥ 3% 399 323552 % S= e 7,
5% = o = Tg c§ L9 28 2% 382 3% 3w 5% 3%,
s5 3 Q S5 85 588 0% 23 WZP 3% 2% 23
§F5 85 " 588 Fak 35 5o 838 3% 3938
T §  § S% e85 32 %5 235 7% 33§
§ of §8¢8 52 433 g ®
gse s 3%e
< ) -
c Cell cycle D Cilium assembly E mRNA splicing
cPise b d » b4 coB)e 2 % I® @ :“’"”““-"": ofae & R Z@ 2“’"""'-']":
wABES Gl B2 LR RGN oles
n HERNBR
sefiro )
. e o @@ a*
o » @6
- = () « ®
A e > e
e .
ANAPG16 ‘ @ 04
Y suaps
s @ ik NEHP3
o < o
c@ OYR§
o o

- & ©
» @

L@ ..@
-
R ¢

@s@

Fig. 4 Proneural and mesenchymal GSCs have genes with alternative splicing and differential expression related to key biological
processes in tumorigenesis and sets of highly connected networks of genes. a Gene Ontology (Biological Process) enrichment analysis of
genes harboring alternative splicing events and genes differentially expressed genes in proneural versus mesenchymal types of GSCs. The
networks based on protein-protein interactions display genes associated with b DNA repair; b cell cycle; ¢ cilium assembly; and d mRNA

splicing.

We also queried all IncRNAs differentially expressed between
MES and PN GSCs to determine if their expression levels might
have prognostic value in GBM and other tumor types (Supple-
mentary Table 21). We used univariate Cox proportional-hazards
regression models to explore correlations between expression of
IncRNAs and patient survival (Cox p-value <0.05). Each IncRNA
significantly correlated with GBM survival was then included in a
multivariate Cox model with multiple covariates relevant to GBM
prognosis. We created Kaplan-Meier survival curves for IncRNAs
that remained significantly associated with patient survival in
multivariate analyses (Cox p-value <0.05). Six IncRNAs had
significant association with prognosis of GBM (Cox p-value < 0.05;
Supplementary Table 22, Supplementary Fig. 6). Of these, 5 (83.3%)
displayed increased expression in MES GSCs and 5 (83.3%) were
also linked to survival in other tumor types (Fig. 7b, ¢). In a second
analysis, we evaluated the prognostic value of differentially
expressed INcRNAs separately in MES and PN subgroups. Three
and five IncRNAs were associated with survival rates in MES and PN
GBM samples, respectively (multivariate Cox p-value < 0.05, log-
rank p-value < 0.05; Supplementary Table 23, Figs. S7 and S8).

Despite having fewer exons per transcript on average compared
to coding genes, alternative splicing occurs relatively often in
IncRNAs.*°We found 249 alternative splicing events (108 IncRNAs)
that differed between MES and PN GSCs (JAPSI| > 0.1 and FDR <
0.05, likelihood-ratio test; Fig. 7A; Supplementary Table 24). When
we compared differentially expressed and differentially spliced
IncRNAs in MES and PN GSCs, 34 appeared on both lists (13
IncRNAs upregulated in MES GSCs and 21 upregulated in PN GSCs;
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Supplementary Table 25). A few IncRNAs displayed differences in
multiple splicing events; these were GAS5 (23 events), PVT1 (5
events), TPT1-AS1 (14 events), PSMA3-AS1 (10 events), and CD27-
AS1 (6 events).

Some IncRNAs are particularly complex. For example, GAS5
harbors several snoRNAs in its transcripts.”’ The splicing
differences observed between PN and MES (IR events) affect
expression of snorD79, snorD80, and snorD47 (Fig. 7d). The latter
has been described as a potential tumor suppressor in GBM, and
associated with reduced proliferation, invasion and epithelial-
mesenchymal transition, and induction of G2 cell-cycle arrest.??

DISCUSSION

Alternative splicing affects all hallmarks of cancer, and splicing
regulators have been shown to function as drivers of glioblastoma
development.®® Importantly, there are several examples of
inhibitors of the splicing machinery and their use in cancer
therapy has started to be explored.”*** Here, we provide evidence
that MES and PN GSCs display specific splicing profiles. Splicing
differences preferentially affect genes implicated in cell cycle
regulation, DNA repair, splicing, and cilium formation, which are all
critical processes in therapy response and tumor relapse. We
suggest that these sets of splicing events are important
contributors to MES and PN features and differences in respond-
ing to radiation and temozolomide. In agreement, we observed
that several genes whose splicing profiles differ between MES and
PN GSCs show distinct association with survival in each subgroup.
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Fig. 5 Mesenchymal and proneural GSCs have splicing-related genes with distinct profile of alternative splicing and/or differentially
expressed. a Splicing-related genes differentially expressed and/or harboring alternative splicing events in mesenchymal versus proneural
GSCs. Mutated genes are shown in bold. b Differentially expressed splicing-related genes in MES and PN GSCs. Genes reported to harbor
mutations are shown in bold. ¢ Number of splicing-related genes in our study that harbor mutations according to studies by Seiler and

colleagues'® and Jayasinghe and colleagues'”.

GBM tumors contain radio-resistant GSCs that display increased
pair capacity and, upon radiation, activate DNA damage
checkpoint signals. MES GSCs are more resistant to radiation than
PN GSCs, which can be explained based on differences in their
expression profiles?%° A recent analysis with paired GBM
samples (primary and recurrent) indicated that relapse was often
associated with significant alterations in the expression of DNA
repair and cell-cycle genes.*® In concordance, our analysis showed
that multiple DNA repair genes display splicing differences
between MES and PN GSCs. In particular, genes in DNA damage
and integrity checkpoints are enriched among those with
differences in splicing profiles. Regarding major nodes in the
DNA repair network (Fig. 4a), ERCC1, FANCD2, and RAD17 have
been associated with therapy resistance in gliomas and other
tumor types. In a preclinical study, inhibition of ERCC1 significantly
decreased tumor growth and sensitized cells to chemotherapy
with cisplatin and temozolomide, increasing cell death by up to
25%." Also, methylation of the ERCC1 promoter was associated
with sensitivity to radiation in glioma cell lines.*? Expression levels
of FANCD2, a member of the Fanconi anemia DNA repair pathway,
were strongly associated with glioma tumor grade, and inhibition
of FANCD2 improved sensitivity to temozolomide and carmustine
in glioma cells.* Finally, certain splicing variants of gene RAD17
promote resistance to radiotherapy in cell lines.>*

GSCs employ cell cycle regulation mechanisms to circumvent
the effects of chemotherapy and radiotherapy.>® There are critical
differences between PN and MES GBM regarding cell cycle
regulation that could influence therapy response. For instance,
CDK4/6 inhibition with palbociclib preferentially inhibited cell
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proliferation of PN GSCs.3® Alterations in cell cycle checkpoint can
contribute to GSC resistance to radiation.?” Higher expression of
RADS51 after exposure to radiation was observed in radio-resistant
GSCs. GSCs resistant and sensitive to radiation have different cell
cycle checkpoint responses when radiation was combined with
RAD51 inhibition.>** RAD51, RAD51D, and RAD51AP1 show differ-
ences in their splicing profiles in PN vs. MES GSCs. The main nodes
in the cell cycle network (Fig. 4b) contain critical players in glioma
progression and response to therapy. For example, high expres-
sion of XPO1, also known as CRM1, correlates with malignancy and
poor survival outcome in gliomas.®® High expression of XPO1
provides a growth advantage to glioma cells by promoting
nuclear export of p27, a known cell cycle regulator with reduced
expression in various tumors.>® Another main node, PLKI, has been
associated with therapy resistance in gliomas and other brain
tumors when highly expressed.>? In a recent study, Koncar et al.
established PLK1 as a potential therapeutic target in IDH1-
mutated gliomas.*® PLK1 bypasses the temozolomide-induced
DNA damage checkpoint, limiting its effectiveness. Therefore,
PLK1 inhibitors may improve temozolomide efficacy.

The protein kinase encoded by AURKA is a central regulator of
mitotic processes, such as chromosomal segregation, chromatin
condensation, and mitotic checkpoints. AURKA expression levels
correlate with malignancy grade in gliomas. Its inhibition
decreases cell proliferation, induces G2/M cell cycle arrest, and
produces synergistic effects with radiation in GBM cell lines.*'
Another study showed that AURKA regulates self-renewal and
tumorigenicity of GSCs by activating the Wnt signaling pathway.*?
Other nodes of the cell cycle network include centromere proteins
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(CENPU, CENPO, and CENPQ). Upregulation of CENPU has been
reported in several malignancies, including GBM.*?

We found that multiple genes implicated in cilia formation
show splicing differences between PN and MES GSCs. There is
growing evidence that cilia participate in gliomagenesis, including
cell signaling activation, cell proliferation, apoptosis, and partici-
pation in therapeutic resistance.***> The proposed function of
primary cilia is to limit GBM proliferation, and its loss leads to
increased proliferation.*® However, others have proposed that cilia
can induce or suppress tumorigenesis and is influenced by the
oncogenic driver event* Between 1 and 30% of cells in
glioblastoma samples are ciliated, and study in GBM cell lines
shows that they rarely gave rise to cilia.”’ Given that primary
cilium has emerged as a key component in cancer development
and alterations are observed during tumor development (includ-
ing gliomas), the impact of splicing alterations on the function and
expression of central nodes of the identified network (OFDT,
DYNLL1, SSX2IP, LCA5, C11orf74, and IFT122) warrants further
investigation.

We also determined that splicing differences between PN and
MES GSCs preferentially affect genes implicated in splicing
regulation. In the mRNA splicing network of genes with
differences in splicing profiles (Fig. 4d), heterogeneous nuclear
ribonucleoproteins (hnRNPs) occupy a central position. They
regulate various post-transcriptional and translational processes,
including alternative splicing and mRNA stabilization. hnRNPH is
overexpressed in gliomas and regulates the splicing of RON and
1G20, producing isoforms that promote survival, proliferation, and
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migration and invasion of GBM cells.*®* hnRNPA1 has a central role
in the let-7a/c-Myc/HNRNPA1/PKM2 signaling pathway via activat-
ing PKM2 expression and thus increasing aerobic glycolysis and
cell proliferation in gliomas.** hnRNPC overexpression in more
aggressive glioma cells correlates with increased migratory and
invasive activities through regulation of PDCD4.°° Similarly,
hnRNPK has been associated with increased migration and
invasion capabilities and MES transformation of GSCs through
interactions with RTVP-1 and N-WASP.*" Finally, hnRNPM has been
implicated in resistance to temozolomide in GBM.>?

Differences in expression levels of RBPs implicated in splicing
regulation are likely the main drivers of PN and MES splicing
profiles. As indicated by expression correlation and network
analyses, specific groups of associated RBPs might coordinately
regulate distinct groups of splicing events. We highlight a specific
set of RBPs: CLK4, PHF5A, PRPF40B, QKI, THOCS6, TIA1, and U2AF1.
These RBPs are frequently mutated in GBM and show differential
splicing and expression in MES versus PN GSCs, and in GBM
samples from TCGA compared to normal brain samples from the
Genotype-Tissue Expression dataset.>® Expression variation of
some of these RBPs has been associated with gliomas and other
tumor types. In particular, CLK4 was included in a 6-gene signature
that predicts cell proliferation of high-grade glioma cultures after
in vitro treatment with the tyrosine kinase inhibitor sunitinib.>*
PHF5A, a component of the spliceosome machinery, maintains
proper exon recognition of C-rich 3’ splice sites in GSCs derived
from GBM patients, and its knockdown leads to cell cycle arrest
and loss of viability.>> Depletion of PRPF40B modulates ASS
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selection of apoptotic genes through direct interactions with SF1
and U2AF2, leading to decreased cell survival.>® Deletion of QKI, a
known tumor suppressor, maintains stemness of GSCs and
decreases differentiation in suboptimal environments.”” QK
influences splicing in many solid tumors,®® and is implicated in
epithelial-to-mesenchymal transition.”® Finally, one of the most
frequently mutated RBPs, U2AF1, affects alternative splicing in
different tumor types. For example, in lung adenocarcinoma,
alterations in splicing driven by U2AF1 induce cell cycle
dysregulation and mitotic stress.®

Expression levels of splicing regulators preferentially affect
genes implicated in RNA processing and other RNA-related
processes.’’ The spliceosome machinery may regulate itself by
modulating inclusion of some alternative exons.'® Overall, our
results indicate that alternative splicing signatures and the status
of RNA processing components contribute to maintain the MES
and PN phenotypes of GSCs. We have previously shown in a
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functional screening in GBM that several splicing regulators are
among highly expressed RBPs affecting cancer phenotypes.®'
Importantly, a growing number of specific splicing factor
inhibitors are being identified, and their use in cancer therapy is
gaining momentum.*

Differences in IncRNA expression and splicing profiles have
been observed across tissues and during development, and
impact several diseases, including cancer.?® In the second part of
our study, we identified differences in expression and splicing
profiles of IncRNAs between the two GSC subgroups. We
established that the IncRNA profile also defines MES and PN
GSCs. Among IncRNAs displaying expression differences between
PN and MES GSCs, we identified six IncRNAs associated with
survival in GBM and other cancers: CTD-2589M5.5, MYOSLID,
CRNDE, AC005264.2, SOX21-AS1 and RP11-575F12.1. MYOSLID,
CRNDE, and SOX21-AS1 have been characterized in the context of
tumorigenesis. MYOSLID was correlated with tumor size, stage,
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invasion, and survival time in gastric cancer, and its knockdown
inhibited tumorigenesis in mouse xenografts. MYOSLID acts as a
ceRNA of miR-29¢-3p, causing de-repression of anti-apoptotic
gene MCL-1.2 MYOSLID was also defined as potential biomarker
in head and neck squamous cell carcinoma, where it promotes
invasion and metastasis by modulating the epithelial-
mesenchymal transition.* SOX21-AS1 has been linked to tumor
progression and defined as a prognostic marker in cervical cancer,
nephroblastoma, hepatocellular carcinoma, and lung and oral
cancer.?*® In glioblastoma, SOX21-AS1 was defined along other
four INcRNAs as a signature that predicts survival.”® CRNDE is an
important oncogenic INRNA implicated in multiple malignancies
including glioblastoma.”'™”® Several relevant pathways, such as
mTor, EGFR and TLR3-NF-kB-cytokine, are modulated by
CRNDE.”*7® CRNDE also functions as a scaffold for chromatin-
modifying complexes such as PRC2 and CoREST.”’

Altogether, our study provides a novel RNA map to be explored
regarding GBM progression, PN to MES transition, and treatment
response and resistance.

METHODS

Cell lines, cell culture and maintenance, RNA preparation and
sequencing

We used six GSC lines previously described.® Three were PN cell lines (PN-
19, PN-157, and PN-528) and three were MES cell lines (MES-83, MES-326,
MES-1123). PN and MES GSCs were maintained in DMEM/
F12 supplemented with B27, heparin, bFGF, and EGF. Total RNA was: (i)
extracted using TRIzol reagent (Life Technologies); (i) purified with RNeasy
(Qiagen), according to the manufacturer’s instructions; (iii) prepared for
RNA-Seq according to the manufacturer’s instructions (lllumina); and (iv)
sequenced using 101-bp paired-end chemistry on a HiSeq-2000 machine
in the UTHSCSA Genomic Facility.

Alternative splicing analysis

To identify splicing events differentially represented between PN and MES
GSC cell lines, we first mapped raw RNA sequencing reads from all samples
against the human reference genome (hg38/GRCh38) and the reference
transcriptome (GENCODE version 26; www.gencodegenes.org; accessed on
30 Nov 2018) using GSNAP version 2016-09-23"% (parameters: -t 20; -B 4; -N 1;
-E 1; -w 200000;—-pairmax-rna 200000). Following this, reliable alignments
against the genome (mapping quality score (Q) >20) were selected using
SAMtools.” To search for splicing differences between MES and PN cell lines,
we used Replicate Multivariate Analysis of Transcript Splicing (rMATS)2°
which reports splicing events already reported in the reference transcrip-
tome, and those absent in the reference transcriptome (novel events). First,
we compared the two GSC subgroups and selected all differentially
represented splicing events (JAPSI|>0.1 and FDR-adjusted p-value <0.05,
likelihood-ratio test). Novel and known splicing variants were then classified
as follows: ES, MXE, retained intron (RI), alternative donor site (A5SS) or
alternative acceptor site (A3SS). Outputs from rMATS were further processed
using a set of locally created Python and R scripts. A hierarchical cluster was
built based on inclusion levels of splicing events (PSI values) using dist and
hclust R functions (https://www.r-project.org/; accessed 30 Jan 2019). We
sought alternative isoforms for IncRNAs, selected according to GENCODE
annotations.

To differentiate splicing events between PN and MES subtypes of GBM,
we first downloaded aligned reads from 49 MES and 38 PN GBM samples
from TCGA. Next, reads were aligned against the human reference genome
(hg38/GRCh38 and the reference transcriptome (GENCODE version 22;
https://www.gencodegenes.org/human/release_22.html; accessed 1 Oct
2019) using STAR®' For GSCs, we selected reliable alignments against the
genome (mapping quality score (Q) = 20) using SAMtools, and searched for
alternative splicing events using rMATs. Any batch-effect were detected or
corrections were applied.

Gene expression analyses

Differential expression analyses were performed using DESeq2®? To
compare MES-GSCs and PN-GSCs, only genomic mapped reads presenting
mapping quality (Q) =20 (as described above) were considered. Read
counts per gene were quantified using HTSeq-count,®®> and GENCODE v26
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was used as the reference for the human transcriptome. For comparisons
between GBM and normal brain samples, read counts of 156 GBM samples
were obtained from TCGA (GENCODE v22) and read counts of 287 samples
from frontal cortex were obtained from the Genotype-Tissue Expression
project (GENCODE v19). To compare MES and PN GBM samples, we used
read counts from 50 and 45 samples from TCGA, respectively. For all
comparisons, we selected as differentially expressed those genes
presenting with a Benjamini-Hochberg (FDR) adjusted p-value < 0.05 and
|log,FoldChange| = 1 after the Wald test. Any batch effects were detected
or corrections were applied.

RNA-binding proteins (RBPs) and splicing regulator genes

We used a catalogue of 1542 human genes encoding RBPs'> to build a list
of splicing regulators. We selected all genes associated with splice-related
functional annotations in the catalog (388 genes) and identified the
differentially spliced ones among them. Then we evaluated whether these
RBPs represent known components of the spliccosomal machinery
according to a comprehensive list of 404 splicing factor genes.'® We also
sought alternative isoforms for IncRNAs, selected according to GENCODE
annotations.

Co-expression of RBP

We first analyzed co-expression patterns among differentially expressed
RBPs in MES and PN GSCs using Spearman’s rank correlation. To identify
groups of positively correlated RBPs (rho > 0.8), we performed hierarchical
clustering of the correlation results. To confirm co-expression of the
identified groups in a broader context, expression data (FPKM) from MES
and PN GBM samples were downloaded from TCGA. Correlation analyses
of selected groups were then performed separately for MES and PN GBM
samples using Spearman'’s rank correlation. Correlation plots were built for
groups of RBPs exhibiting significant correlation patterns in GBM samples
(Spearman's rank correlation p-values < 0.01). Correlation analyses were
performed using R packages corrplot (github.com/taiyun/corrplot) and
Hmisc (github.com/harrelfe/Hmisc).

Survival analysis of protein-coding genes

Gene expression data (FPKM) and corresponding clinical data from GBM
samples were downloaded from TCGA (https:/portal.gdc.cancer.gov/).
Expression data from TCGA were first filtered based on the list of protein-
coding genes which were alternatively spliced and presented expression
changes in PN versus MES GSCs. Based on the median value of gene
expression levels, relevant survival differences between samples with high
or low expression of each gene were determined using the log-rank test
(p-value < 0.05). Associations of each gene with patient survival were
separately assessed in MES and PN GBM samples, classified according to
the GlioVis data portal.®* Genes exclusively associated with prognosis of
MES or PN GBM (log-rank p-value <0.05) were further included in a
multivariate Cox proportional hazards model with the following covariates:
age at diagnosis, gender, CIMP status, IDH1 mutation, MGMT methylation,
chromosome 19/20 co-gain, and chromosome 7 gain/chromosome 10 loss.
After adjusting for effects of these clinical variables, Kaplan-Meier survival
curves were then built for genes that remained significantly associated
with patient survival (multivariate Cox proportional-hazards regression
p-value < 0.05).

Functional annotation and interaction networks

GO categories and KEGG pathways were considered in the functional
annotation, using the human genome as background in the DAVID web
tool. Clusters of biological categories with FDR corrected p-values < 0.05
(Fisher's exact test) were considered enriched. Enriched clusters of GO
categories were further processed to remove redundancy based on
semantic similarities using the REVIGO web tool.®® Interaction analyses
were performed based on protein-protein interaction data from STRING.
Interaction networks of proteins exhibiting at least two interactions were
then built using Cytoscape.®®

Survival analysis of IncRNAs

Data for expression of IncRNAs and corresponding clinical data from all
tumor types in the study were downloaded from TCGA (https://portal.gdc.
cancer.gov/). Expression data from TCGA were first filtered based on the
list of differentially expressed IncRNAs previously obtained from our data
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(candidate IncRNAs). Expression data for each candidate IncRNA were then
individually submitted to a separate survival analysis performed using
univariate Cox proportional hazards models,” with expression levels of
IncRNAs as continuous variables. To adjust for other clinical variables, each
IncRNA exhibiting significant correlation with patient survival in the
univariate analysis (Cox proportional-hazards regression p-value < 0.05)
was then included in a multivariate Cox proportional hazards model with
the following covariates: age at diagnosis, gender, CIMP status, IDH1
mutation, MGMT methylation, chromosome 19/20 co-gain, and chromo-
some 7 gain/chromosome 10 loss. Kaplan-Meier survival curves were then
built for IncRNAs that remained significantly associated with patient
survival in the multivariate Cox proportional-hazards regression models (p-
value < 0.05). Relevant survival differences between samples exhibiting
high or low expression of each IncRNA (samples split based on the median
value of IncRNA expression levels) were determined using the log-rank test
(p-value < 0.05). We first considered all GBM samples in the survival
analyses. Next, analyses were performed separately considering MES and
PN subgroups. GBM samples were classified into these subgroups based
on data from the GlioVis data portal.*®

Validation of splicing events by qRT-PCR

First, we selected a total of seven exon-skipping events to be tested by qRT-
PCR. These candidates were randomly selected (using a random number
generator) from a sorted list containing the top 500 exon-skipping events
with the highest APSI between GSC MES vs. PN. Next, total RNA was
extracted using TRIzol reagent (Invitrogen) according to the manufacturer’s
instructions. Reverse transcription of messenger RNAs was performed using
a high-capacity cDNA reverse transcription kit (Applied Biosystems) with
random priming. For mRNA analysis, quantitative PCR was performed using
the primers listed in Supplementary Table 26 and Power SYBR green PCR
master mix (Applied Biosystems). Real-time PCR was performed on a ViiA™
STRING7 Real-Time PCR System (Applied Biosystems). Data were acquired
using the ViiA 7 RUO software package (Applied Biosystems) and analyzed
using an adapted 2—AACT method with B2M as an endogenous control.

Statistical analysis and figures

Statistical analyses were performed using R. Figures were built using R,
Cytoscape,®® Circos Plot,®® Inkscape (https://inkscape.org/) and rmats2sa-
shimiplot (https://github.com/Xinglab/rmats2sashimiplot/).

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

RNA sequencing data have been deposited in the European Nucleotide Archive
[ENA: PRJEB27943].

Received: 22 June 2019; Accepted: 18 November 2019;
Published online: 16 January 2020

REFERENCES

1. Paolillo, M., Boselli, C. & Schinelli, S. Glioblastoma under siege: an overview of
current therapeutic strategies. Brain Sci. 8, 1-13 (2018).

2. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432,
396-401 (2004).

3. Safa, A. R, Saadatzadeh, M. R, Cohen-Gadol, A. A, Pollok, K. E. & Bijangi-Vish-
ehsaraei, K. Glioblastoma stem cells (GSCs) epigenetic plasticity and inter-
conversion between differentiated non-GSCs and GSCs. Genes Dis. 2, 152-163
(2015).

4. Garnier, D., Renoult, O., Alves-Guerra, M.-C., Paris, F. & Pecqueur, C. Glioblastoma
stem-like cells, metabolic strategy to kill a challenging target. Front. Oncol. 9, 118
(2019).

5. Bhat, K. P. L. et al. Mesenchymal differentiation mediated by NF-kB promotes
radiation resistance in glioblastoma. Cancer Cell 24, 331-346 (2013).

6. Mao, P. et al. Mesenchymal glioma stem cells are maintained by activated gly-
colytic metabolism involving aldehyde dehydrogenase 1A3. Proc. Natl Acad. Sci.
USA 110, 8644-8649 (2013).

npj Genomic Medicine (2020) 2

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

. Kupp, R. et al. Lineage-restricted OLIG2-RTK signaling governs the molecular

subtype of glioma stem-like cells. Cell Rep. 16, 2838-2845 (2016).

. Pangeni, R. P. et al. Genome-wide methylomic and transcriptomic analyses

identify subtype-specific epigenetic signatures commonly dysregulated in glioma
stem cells and glioblastoma. Epigenetics 13, 432-448 (2018).

. Sun, B. O, Fang, Y., Li, Z, Chen, Z. & Xiang, J. Role of cellular cytoskeleton in

epithelial-mesenchymal transition process during cancer progression. Biomed.
Rep. 3, 603-610 (2015).

. Tamborero, D. et al. Comprehensive identification of mutational cancer driver

genes across 12 tumor types. Sci. Rep. 3, 2650 (2013).

. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21

tumour types. Nature 505, 495-501 (2014).

. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546-1558 (2013).
. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis

of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57
(2009).

. Szklarczyk, D. et al. STRING v11: protein-protein association networks with

increased coverage, supporting functional discovery in genome-wide experi-
mental datasets. Nucleic Acids Res. 47, D607-D613 (2019).

. Gerstberger, S., Hafner, M. & Tuschl, T. A census of human RNA-binding proteins.

Nat. Rev. Genet. 15, 829-845 (2014).

. Seiler, M. et al. Somatic mutational landscape of splicing factor genes and their

functional consequences across 33 cancer types. Cell Rep. 23, 282-296.e4 (2018).

. Jayasinghe, R. G. et al. Systematic analysis of splice-site-creating mutations in

cancer. Cell Rep. 23, 270-281.e3 (2018).

. Saltzman, A. L., Pan, Q. & Blencowe, B. J. Regulation of alternative splicing by the

core spliceosomal machinery. Genes Dev. 25, 373-384 (2011).

. Huarte, M. The emerging role of IncRNAs in cancer. Nat. Med. 21, 1253-1261

(2015).

Romero-Barrios, N., Legascue, M. F., Benhamed, M., Ariel, F. & Crespi, M. Splicing
regulation by long noncoding RNAs. Nucleic Acids Res. 46, 2169-2184 (2018).
Pickard, M. R. & Williams, G. T. Molecular and cellular mechanisms of action of
tumour suppressor GAS5 LncRNA. Genes 6, 484-499 (2015).

Xu, B. et al. SNORD47, a box C/D snoRNA, suppresses tumorigenesis in glio-
blastoma. Oncotarget 8, 43953-43966 (2017).

Marcelino Meliso, F., Hubert, C. G., Favoretto Galante, P. A. & Penalva, L. O. RNA
processing as an alternative route to attack glioblastoma. Hum. Genet. 136,
1129-1141 (2017).

Bonnal, S., Vigevani, L. & Valcarcel, J. The spliceosome as a target of novel anti-
tumour drugs. Nat. Rev. Drug Discov. 11, 847-859 (2012).

Effenberger, K. A, Urabe, V. K. & Jurica, M. S. Modulating splicing with small
molecular inhibitors of the spliceosome. Wiley Interdiscip. Rev. RNA 8, 1-26 (2017).
Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation
of the DNA damage response. Nature 444, 756-760 (2006).

Segerman, A. et al. Clonal variation in drug and radiation response among
glioma-initiating cells is linked to proneural-mesenchymal transition. Cell Rep. 17,
2994-3009 (2016).

Pencheva, N. et al. Identification of a druggable pathway controlling glioblastoma
invasiveness. Cell Rep. 20, 48-60 (2017).

Annovazzi, L., Mellai, M. & Schiffer, D. Chemotherapeutic drugs: DNA damage and
repair in glioblastoma. Cancers 9, 1-17 (2017).

Gobin, M. et al. A DNA repair and cell-cycle gene expression signature in primary
and recurrent glioblastoma: prognostic value and clinical implications. Cancer
Res. 79, 1226-1238 (2019).

Boccard, S. G. et al. Inhibition of DNA-repair genes Erccl and Mgmt enhances
temozolomide efficacy in gliomas treatment: a pre-clinical study. Oncotarget 6,
29456-29468 (2015).

Liu, Z-G. et al. Relationship between methylation status of ERCC1 promoter and
radiosensitivity in glioma cell lines. Cell Biol. Int. 33, 1111-1117 (2009).

Patil, A. A. et al. FANCD2 re-expression is associated with glioma grade and
chemical inhibition of the Fanconi Anaemia pathway sensitises gliomas to che-
motherapeutic agents. Oncotarget 5, 6414-6424 (2014).

Chen, M. S,, Higashikubo, R., Laszlo, A. & Roti Roti, J. Multiple alternative splicing
forms of human RAD17 and their differential response to ionizing radiation. Gene
277, 145-152 (2001).

Auffinger, B., Spencer, D., Pytel, P., Ahmed, A. U. & Lesniak, M. S. The role of
glioma stem cells in chemotherapy resistance and glioblastoma multiforme
recurrence. Expert Rev. Neurother. 15, 741-752 (2015).

Li, M. et al. CDK4/6 inhibition is more active against the glioblastoma proneural
subtype. Oncotarget 8, 55319-55331 (2017).

Tachon, G. et al. Cell cycle changes after glioblastoma stem cell irradiation: the
major role of RAD51. Int. J. Mol. Sci. 19, 1-14 (2018).

Shen, A. et al. Expression of CRM1 in human gliomas and its significance in p27
expression and clinical prognosis. Neurosurgery 65, 153-159 (2009). discussion
159-60.

Published in partnership with CEGMR, King Abdulaziz University


https://inkscape.org/
https://github.com/Xinglab/rmats2sashimiplot/

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Amani, V. et al. Polo-like Kinase 1 as a potential therapeutic target in Diffuse
Intrinsic Pontine Glioma. BMC Cancer 16, 647 (2016).

Koncar, R. F. et al. PLK1 inhibition enhances temozolomide efficacy in IDH1
mutant gliomas. Oncotarget 8, 15827-15837 (2017).

Barton, V. N. et al. Aurora kinase A as a rational target for therapy in glioblastoma.
J. Neurosurg. Pediatr. 6, 98-105 (2010).

Xia, Z. et al. AURKA governs self-renewal capacity in glioma-initiating cells via
stabilization/activation of (-catenin/Wnt signaling. Mol. Cancer Res. 11,
1101-1111 (2013).

Hanissian, S. H. et al. Regulation of myeloid leukemia factor-1 interacting protein
(MLF1IP) expression in glioblastoma. Brain Res. 1047, 56-64 (2005).
Alvarez-Satta, M. & Matheu, A. Primary cilium and glioblastoma. Ther. Adv. Med.
Oncol. 10, 1758835918801169 (2018).

Hoang-Minh, L. B. et al. PCM1 depletion inhibits glioblastoma cell ciliogenesis and
increases cell death and sensitivity to temozolomide. Transl. Oncol. 9, 392-402
(2016).

Sarkisian, M. R. & Semple-Rowland, S. L. Emerging roles of primary cilia in glioma.
Front. Cell. Neurosci. 13, 55 (2019).

Moser, J. J., Fritzler, M. J. & Rattner, J. B. Primary ciliogenesis defects are associated
with human astrocytoma/glioblastoma cells. BMC Cancer 9, 448 (2009).

Lefave, C. V. et al. Splicing factor hnRNPH drives an oncogenic splicing switch in
gliomas. EMBO J. 30, 4084-4097 (2011).

Luan, W. et al. PKM2 promotes glucose metabolism and cell growth in gliomas
through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop. Onco-
target 6, 13006-13018 (2015).

Park, Y. M. et al. Heterogeneous nuclear ribonucleoprotein C1/C2 controls the
metastatic potential of glioblastoma by regulating PDCD4. Mol. Cell. Biol. 32,
4237-4244 (2012).

Ziv-Av, A. et al. RTVP-1 regulates glioma cell migration and invasion via inter-
action with N-WASP and hnRNPK. Oncotarget 6, 19826-19840 (2015).

Yang, S. H. et al. Metformin treatment reduces temozolomide resistance of
glioblastoma cells. Oncotarget 7, 78787-78803 (2016).

GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45,
580-585 (2013).

Moeckel, S. et al. Response-predictive gene expression profiling of glioma pro-
genitor cells in vitro. PLoS ONE 9, 108632 (2014).

Hubert, C. G. et al. Genome-wide RNAi screens in human brain tumor isolates
reveal a novel viability requirement for PHF5A. Genes Dev. 27, 1032-1045 (2013).
Becerra, S., Montes, M., Hernandez-Munain, C. & Sufié, C. Prp40 pre-mRNA pro-
cessing factor 40 homolog B (PRPF40B) associates with SF1 and U2AF65 and
modulates alternative pre-mRNA splicing in vivo. RNA 21, 438-457 (2015).
Shingu, T. et al. Qki deficiency maintains stemness of glioma stem cells in sub-
optimal environment by downregulating endolysosomal degradation. Nat. Genet.
49, 75-86 (2017).

Danan-Gotthold, M. et al. Identification of recurrent regulated alternative splicing
events across human solid tumors. Nucleic Acids Res. 43, 5130-5144 (2015).
Yang, Y. et al. Determination of a comprehensive alternative splicing regulatory
network and combinatorial regulation by key factors during the epithelial-to-
mesenchymal transition. Mol. Cell. Biol. 36, 1704-1719 (2016).

Kim, S. et al. Integrative profiling of alternative splicing induced by U2AF1 S34F
mutation in lung adenocarcinoma reveals a mechanistic link to mitotic stress.
Mol. Cells 41, 733-741 (2018).

Correa, B. R. et al. Functional genomics analyses of RNA-binding proteins reveal
the splicing regulator SNRPB as an oncogenic candidate in glioblastoma. Genome
Biol. 17, 125 (2016).

Han, Y. et al. Long non-coding RNA MYOSLID functions as a competing endo-
genous RNA to regulate MCL-1 expression by sponging miR-29¢-3p in gastric
cancer. Cell Prolif. 12678 (2019).

Xiong, H.-G. et al. Long noncoding RNA MYOSLID promotes invasion and
metastasis by modulating the partial epithelial-mesenchymal transition program
in head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res. 38, 278 (2019).
Wang, R. et al. Hypomethylation of the IncRNA SOX21-AS1 has clinical prognostic
value in cervical cancer. Life Sci. 233, 116708 (2019).

Zhang, X., Zhao, X, Li, Y., Zhou, Y. & Zhang, Z. Long noncoding RNA SOX21-AS1
promotes cervical cancer progression by competitively sponging miR-7/VDAC1. J.
Cell. Physiol. 234, 17494-17504 (2019).

Zhang, J,, Hou, T., Qi, X, Wang, J. & Sun, X. SOX21-AS1 is associated with clinical
stage and regulates cell proliferation in nephroblastoma. Biosci. Rep. 39, 1-7
(2019).

Wei, C,, Wang, H., Xu, F., Liu, Z. & Jiang, R. LncRNA SOX21-AS1 is associated with
progression of hepatocellular carcinoma and predicts prognosis through epi-
genetically silencing p21. Biomed. Pharmacother. 104, 137-144 (2018).

Lu, X. et al. A novel long non-coding RNA, SOX21-AS1, indicates a poor prognosis
and promotes lung adenocarcinoma proliferation. Cell. Physiol. Biochem. 42,
1857-1869 (2017).

Published in partnership with CEGMR, King Abdulaziz University

G.D.A. Guardia et al.

np)

69.

70.

Yang, C-M. et al. Aberrant DNA hypermethylation-silenced SOX21-AS1 gene
expression and its clinical importance in oral cancer. Clin. Epigenetics 8, 129
(2016).

Paul, Y. et al. Genetic landscape of long noncoding RNA (IncRNAs) in glio-
blastoma: identification of complex IncRNA regulatory networks and clinically
relevant IncRNAs in glioblastoma. Oncotarget 9, 29548-29564 (2018).

71. Zhang, J., Yin, M., Peng, G. & Zhao, Y. CRNDE: an important oncogenic long non-
coding RNA in human cancers. Cell Prolif. 51, 12440 (2018).

72. Hongzhen, Z. et al. The diagnostic and prognostic significance of long non-
coding RNA CRNDE in pan-cancer based on TCGA, GEO and comprehensive
meta-analysis. Pathol. Res. Pract. 215, 256-264 (2019).

73. Kiang, K. M.-Y.,, Zhang, X.-Q. & Leung, G. K-K. Long non-coding RNAs: the key
players in glioma pathogenesis. Cancers 7, 1406-1424 (2015).

74. Kiang, K. M.-Y. et al. CRNDE expression positively correlates with EGFR activation
and modulates glioma cell growth. Target. Oncol. 12, 353-363 (2017).

75. Li, H. et al. LncRNA CRNDE triggers inflammation through the TLR3-NF-kB-Cyto-
kine signaling pathway. Tumour Biol. 39, 1010428317703821 (2017).

76. Wang, Y. et al. CRNDE, a long-noncoding RNA, promotes glioma cell growth and
invasion through mTOR signaling. Cancer Lett. 367, 122-128 (2015).

77. Ellis, B. C,, Molloy, P. L. & Graham, L. D. CRNDE: a long non-coding RNA involved in
CanceR, Neurobiology, and DEvelopment. Front. Genet. 3, 270 (2012).

78. Wu, T. D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and
splicing in short reads. Bioinformatics 26, 873-881 (2010).

79. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25,
2078-2079 (2009).

80. Shen, S. et al. rMATS: robust and flexible detection of differential alternative
splicing from replicate RNA-Seq data. Proc. Natl Acad. Sci. USA 111, E5593-601
(2014).

81. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21
(2013).

82. Love, M. I, Huber, W. & Anders, S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

83. Anders, S., Pyl, P. T. & Huber, W. HTSeg-a Python framework to work with high-
throughput sequencing data. Bioinformatics 31, 166-169 (2015).

84. Bowman, R. L, Wang, Q,, Carro, A, Verhaak, R. G. W. & Squatrito, M. GlioVis data
portal for visualization and analysis of brain tumor expression datasets. Neuro.
Oncol. 19, 139-141 (2017).

85. Supek, F., Bosnjak, M., Skunca, N. & Smuc, T. REVIGO summarizes and visualizes
long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).

86. Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498-2504 (2003).

87. Cox, D. R. Regression models and life-tables. J. R. Stat. Soc. Series B Stat. Methodol.
(1972).

88. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics.
Genome Res. 19, 1639-1645 (2009).

89. Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in
hierarchical clustering. Bioinformatics 22, 1540-1542 (2006).

ACKNOWLEDGEMENTS

We thank all members of Galante laboratory for helpful discussions. Daniel T. Ohara
for technical assistance and Dr. Ichiro Nakano for sharing GSC lines. This study was
supported by a grant from Conselho Nacional de Desenvolvimento Cientifico e
Tecnoldgico (CNPq), Brazil to PAFG and LOFP and by NIH 7R21CA175875-03. This
study was partially supported by grants from Serrapilheira foundation and Fundagao
de Amparo a Pesquisa do Estado de S&o Paulo (FAPESP; 2018/15579-8) to PAFG.
GDAG and BRC were supported by fellowships from FAPESP (2017/19541-2) and
(2013/25483-4 and 2013/07159-5), respectively. PRA was supported by CPRIT Training
Grant - RP140105.

AUTHOR CONTRIBUTIONS

Study design and manuscript writing were done by G.D.A.G., BR.C, L.O.P.and P.AF.G.
Computational data analyses were done by G.D.A.G. and B.R.C. Cell line cultures, RNA
extraction, candidate validations, and preparation of material for sequencing were
done by P.RA, M.Q. and S.B.,, LO.F.P. and P.AF.G. led the project.

COMPETING INTERESTS

The authors declare no competing interests.

npj Genomic Medicine (2020) 2

11



np)

G.D.A. Guardia et al.

12

ADDITIONAL INFORMATION

Supplementary information is available for this paper at https://doi.org/10.1038/
$41525-019-0108-5.

Correspondence and requests for materials should be addressed to L.O.F.P. or P.A[F.
G.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

npj Genomic Medicine (2020) 2

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

Published in partnership with CEGMR, King Abdulaziz University


https://doi.org/10.1038/s41525-019-0108-5
https://doi.org/10.1038/s41525-019-0108-5
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Proneural and mesenchymal glioma stem cells display major differences in splicing and lncRNA profiles
	Introduction
	Results
	Splicing profiles define GSC subgroups
	Genes displaying splicing differences between PN and MES GSCs are implicated in survival of GBM patients
	Genes displaying splicing differences in PN and MES GSCs are implicated in mRNA splicing, DNA repair, cell division, and cilium assembly
	Splicing regulators potentially driving isoform preference
	lncRNAs display differences in expression and isoform preferences in PN vs. MES GSCs

	Discussion
	Methods
	Cell lines, cell culture and maintenance, RNA preparation and sequencing
	Alternative splicing analysis
	Gene expression analyses
	RNA-binding proteins (RBPs) and splicing regulator genes
	Co-expression of RBP
	Survival analysis of protein-coding genes
	Functional annotation and interaction networks
	Survival analysis of lncRNAs
	Validation of splicing events by qRT-PCR
	Statistical analysis and figures
	Reporting summary

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




