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corruption of the pearson 
correlation coefficient by 
measurement error and its 
estimation, bias, and correction 
under different error models
edoardo Saccenti  1,4*, Margriet H. W. B. Hendriks  2 & Age K. Smilde3,4

Correlation coefficients are abundantly used in the life sciences. Their use can be limited to simple 
exploratory analysis or to construct association networks for visualization but they are also basic 
ingredients for sophisticated multivariate data analysis methods. It is therefore important to have 
reliable estimates for correlation coefficients. In modern life sciences, comprehensive measurement 
techniques are used to measure metabolites, proteins, gene-expressions and other types of data. All 
these measurement techniques have errors. Whereas in the old days, with simple measurements, the 
errors were also simple, that is not the case anymore. Errors are heterogeneous, non-constant and 
not independent. This hampers the quality of the estimated correlation coefficients seriously. We will 
discuss the different types of errors as present in modern comprehensive life science data and show 
with theory, simulations and real-life data how these affect the correlation coefficients. We will briefly 
discuss ways to improve the estimation of such coefficients.

The concept of correlation and correlation coefficient dates back to Bravais1 and Galton2 and found its modern 
formulation in the work of Fisher and Pearson3,4, whose product moment correlation coefficient ρ has become the 
most used measure to describe the linear dependence between two random variables. From the pioneering work 
of Galton on heredity, the use of correlation (or co-relation as is it was termed) spread virtually in all fields of 
research and results based on it pervade the scientific literature.

Correlations are generally used to quantify, visualize and interpret bivariate (linear) relationships among meas-
ured variables. They are the building blocks of virtually all multivariate methods such as Principal Component 
Analysis (PCA5–7), Partial Least Squares regression, Canonical Correlation Analysis (CCA8) which are used to 
reduce, analyze and interpret high-dimensional omics data sets and are often the starting point for the inference 
of biological networks such as metabolite-metabolite associations networks9,10, gene regulatory networks11,12 an 
co-expression networks13,14.

Fundamentally, correlation and correlation analysis are pivotal for understanding biological systems and the 
physical world. With the increase of comprehensive measurements (liquid-chromatography mass-spectrometry, 
nuclear magnetic resonance (NMR), gas-chromatography mass-spectrometry (MS) in metabolomics and pro-
teomics; RNA-sequencing in transcriptomics) in life sciences, correlations are used as a first tool for visualization 
and interpretation, possibly after selection of a threshold to filter the correlations. However, the complexity and 
the difficulty of estimating correlation coefficients is not fully acknowledged.

Measurement error is intrinsic to every experimental technique and measurement platform, be it a simple 
ruler, a gene sequencer or a complicated array of detectors in a high-energy physics experiment, and already in 
the early days of statistics it was known that measurement error can bias the estimation of correlations15. This 
bias was first called attenuation because it was found that under the error condition considered, the correlation 
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was attenuated towards zero. The attenuation bias has been known and discussed in some research fields16–19 but 
it seems to be totally neglected in modern omics-based science. Moreover, contemporary comprehensive omics 
measurement techniques have far more complex measurement error structures than the simple ones considered 
in the past on which early results were based.

In this paper, we intend to show the impact of measurement errors on the quality of the calculated correla-
tion coefficients and we do this for several reasons. First, to make the omics community aware of the problems. 
Secondly, to make the theory of correlation up to date with current omics measurements taking into account more 
realistic measurement error models in the calculation of the correlation coefficient and third, to propose ways 
to alleviate the problem of distortion in the estimation of correlation induced by measurement error. We will do 
this by deriving analytical expressions supported by simulations and simple illustrations. We will also use real-life 
metabolomics data to illustrate our findings.

Measurement error Models
We start with the simple case of having two correlated biological entities x0 and y0 which are randomly varying in 
a population. This may, e.g., be concentrations of two blood metabolites in a cohort of persons or gene-expressions 
of two genes in cancer tissues. We will assume that these variables are normally distributed
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We refer to ρ0 as the true correlation.
Whatever the nature of the variables x0 and y0 and whatever the experimental technique used to measure them 

there is always a random error component (also referred to as noise or uncertainty) associated with the measure-
ment procedure. This random error is by its own nature not reproducible (in contrast with systematic error which 
is reproducible and can be corrected for) but can be modeled, i.e. described, in a statistical fashion. Such models 
have been developed and applied in virtually every area of science and technology and can be used to adjust for 
measurement errors or to describe the bias introduced by it. The measured variables will be indicated by x and y 
to distinguished them from x0 and y0 which are their errorless counterparts.

The correlation coefficient ρ0 is sought to be estimated from these measured data. Assuming that N  samples 
are taken, the sample correlation rN  is calculated as
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where x y( , ) is the sample mean over N  observations and s s,x y are the usual sample standard deviation estima-
tors. This sample correlation is used as a proxy of ρ0. The population value of this sample correlation is
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and it also holds that

ρ= .
→∞

rlim (7)N
N

We will call ρ the expected correlation. Ideally, ρ ρ=0  but this is unfortunately not always the case. In plain 
words: certain measurement errors do not cancel out if the number of samples increases.

In the following section we will introduce three error models and will show with both simulated and real data 
how measurement error impacts the estimation of the Pearson correlation coefficient. We will focus mainly on ρ0 
and ρ.
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Additive error. The most simple error model is the additive error model where the measured entities x and y 
are modeled as

ε
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where it is assumed that the error components εaux
 and εauy

 are independently normally distributed around zero 
with variance σau
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 and σau
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 and are also independent from x0 and y0. The subscripts aux, auy stand for additive 

uncorrelated error (ε) on variables x and y.
Variables x and y represent measured quantities accessible to the experimenter. This error model describes the 

case in which the measurement error causes within-sample variability, which means that p measurement repli-
cates …x x x, ,i i i p,1 ,2 ,  of observation xi of variable x will all have slightly different values due to the random fluctu-
ation of the error component εaux

; the extent of the variability among the replicates depends on the magnitude of 
the error variance σau

2
x
 (and similarly for the y variable). This can be seen in Fig. 1A where it is shown that in the 

presence of measurement error (i.e. σ σ >, 0au au
2 2

x y
) the two variables x and y are more dispersed. Due to the meas-

urement error, the expected correlation coefficient ρ is always biased downwards, i.e. ρ ρ< 0, as already shown by 
Spearman15 (see Fig. 1B) who also provided an analytical expression for the attenuation of the expected correla-
tion coefficient as a function of the error components (a modern treatment can be found in reference20):
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Equation (9) implies that in presence of measurement error the expected correlation is different from the true 
correlation ρ0 which is sought to be estimated. The attenuation A is always strictly smaller than 1 and it is a 
decreasing function of the size of the measurement error relative to the biological variation (see Fig. 1C), as it can 
be seen from Eq. (10). The attenuation of the expected correlation, despite being known since 1904, has sporadi-
cally resurfaced in the statistical literature in the psychological, epidemiology and behavioral sciences (where it is 
known as attenuation due to intra-person or intra-individual variability, see19 and reference therein) but has been 
largely neglected in the life sciences, despite its relevance.

The error model (8) can be extended to include a correlated error term εac
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with εac normally distributed around zero with variance σac
2 ; the correlated error term takes on exactly the same 

value for x and y in a given sample. The ‘±’ models the sign of the error correlation. When εac has a positive sign 

Figure 1. (A) Correlation plot of two variables x and y (σ σ= = 1x y
2 2
0 0

) generated without (σ σ= = 0au au
2 2

x y
) and 

with uncorrelated additive error (σ σ= = .0 75au au
2 2

x y
) with underlying true correlation ρ = .0 80  (model 8). (B) 

Distribution of the sample correlation coefficient for different levels of measurement error (σ σ σ= =au au au
2 2 2

x y
) 

for a true correlation ρ = .0 80 . (C) The attenuation coefficient A from Eq. (10) as a function the measurement 
error for different level of the variance σ σ σ= =x y

2 2 2
0 0

 of the variables x0 and y0. See Material and Methods 
section 6.5.1 for details on the simulations.
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in both x and y the error is positively correlated; if the sign is discordant the error is negatively correlated. The 
subscript ac is used to indicate additive correlated error. The variance for x is given by

σ σ σ σ= + + (12)x x au ac
2 2 2 2

x0

and likewise for the variable y. In general, additive correlated error can have different causes depending on the 
type of instruments and measurement protocols used. For example, in transcriptomics, metabolomics and pro-
teomics, usually samples have to be pretreated (sample work-up) prior to the actual instrumental analysis. Any 
error in a sample work-up step may affect all measured entities in a similar way21. Another example is the use 
of internal standards for quantification: any error in the amount of internal standard added may also affect all 
measured entities in a similar way. Hence, in both cases this leads to (positively) correlated measurement error. 
In some cases in metabolomics and proteomics the data are preprocessed using deconvolution tools. In that case 
two co-eluting peaks are mathematically separated and quantified. Since the total area under the curve is constant 
and (positive) error in one of the deconvoluted peaks is compensated by a (negative) error in the second peak, this 
may give rise to negatively correlated measurement error.

To show the effect of additive uncorrelated measurement error we consider the concentration profiles of three 
hypothetical metabolites P1, P2 and P3 simulated using a simple dynamic model (see Fig. 2A and Section 6.5.2) 
where additive uncorrelated measurement error is added before calculating the pairwise correlations among P1, 
P2 and P3: also in this case the magnitude of the correlation is attenuated, and the attenuation increases with the 
error variance (see Fig. 2B).

This has serious repercussions when correlations are used for the definition of association networks, as com-
monly done in systems biology and functional genomics10,22: measurement error drives correlation towards zero 
and this impacts network reconstruction. If a threshold of 0.6 is imposed to discriminate between correlated and 
non correlated variables as usually done in metabolomics23, an error variance of around 15% (see Fig. 2B, point 
where the correlation crosses the threshold) of the biological variation will attenuate the correlation to the point 
that metabolites will be deemed not to be associated even if they are biologically correlated leading to very differ-
ent metabolite association networks (see Fig. 2C).

Multiplicative error. In many experimental situations it is observed that the measurement error is propor-
tional to the magnitude of the measured signal; when this happens the measurement error is said to be multiplica-
tive. The model for sampled variables in presence of multiplicative measurement error is

Figure 2. Consequences of measurement error when using correlation in systems biology. (A) Time 
concentration profile of three metabolites P1, P2 and P3 generated through a simple enzymatic metabolic 
model; 100 profiles are generated by randomly varying the kinetic parameters defining the model and sampled 
at time 0.4 (a.u.). (B) Average pairwise correlation of P1, P2 and P3 as a function of the variance of the additive 
uncorrelated error. (C) Inference of a metabolite-metabolite correlation network: two metabolites are associated 
if their correlation is above 0.623 (see threshold in B). The increasing level of measurement error hampers the 
network inference (compare the different panels). See Material and Methods section 6.5.2 for details on the 
simulations.
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where x0, y0, εmux
, εmuy

 and εmc have the same distributional properties as before in the additive error case, and the 
last three terms represent the multiplicative uncorrelated errors in x and y, respectively, and the multiplicative 
correlated error.

The characteristics of the multiplicative error and the variance of the measured entities σx
2 depend on the level 

μx0 of the signal to be measured (for a derivation of Eq. (14) see Section 6. 6.1.1):

σ σ σ μ σ σ= + + +( )( ), (14)x x x x mu mc
2 2 2 2 2 2

x0 0 0

while in the additive case the standard deviation is similar for different concentrations and does not depend 
explicitly on the signal intensity, as shown in Eq. (12). A similar equation holds for the variable y.

It has been observed that multiplicative errors often arises because of the different procedural steps like sample 
aliquoting24: this is the case of deep sequencing experiments where the multiplicative error is possibly introduced 
by the pre-processing steps like, for example, linker ligation and PCR amplification which may vary from tag to 
tag and from sample to sample25. In other cases the multiplicative error arises from the distributional properties 
of the signal, like in those experiments where the measurement comes down to counts like in the case of RNA 
fragments in an RNA-seq experiment or numbers of ions in a mass-spectrometer that are governed by Poisson 
distributions for which the standard deviation is equal to the mean. For another example, in NMR spectroscopy 
measured intensities are affected by the sample magnetization conditions: fluctuations in the external electro-
magnetic field or instability of the rf pulses affect the signal in a fashion that is proportional to the signal itself 26.

A multiplicative error distorts correlations and this affects the results of any data analysis approach which is 
based on correlations. To show the effect of multiplicative error we consider the analysis of a metabolomic data set 
simulated  from real mass-spectrometry (MS) data, on which extra uncorrelated and correlated multiplicative 
measurement errors have been added. As it can be seen in Fig. 3A, the addition of error affects the underlying data 
structure: the error free data is such that only a subset of the measured variables contributes to explain the pattern 
in a low dimensional projection of the data, i.e. have PCA loadings substantially different from zero (3B). The 
addition of extra multiplicative error perturbs the loading structure to the point that all variables contribute 
equally to the model (3C), obscuring the real data structure and hampering the interpretation of the PCA model. 
This is not necessarily caused by the multiplicative nature of the error, but it is caused by the correlated error part. 
Since the term εmc is common to all variables, it introduces the same amount of correlation among all the varia-

Figure 3. Consequences of multiplicative (correlated and uncorrelated) measurement error for data analysis. 
(A) Scatter plot of the overlayed view of the first two components of two PCA models of simulated data sets; one 
without multiplicative error and one with multiplicative error. For visualization purposes, the scores are plotted 
in the same graph, but the subspaces spanned by the first two principal components for the two data sets are of 
course different. The labels on both axes also present the percentage explained variation for the two analyses. 
(B) Loading plot for the error free data. (C) Loading plot for the data with multiplicative error. See Material and 
Methods section 6.5.3 for details on the simulations.
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bles and this leads to all the variables contributing similarly to the latent vector (principal component). One may 
also observe that the variation explained by the first principal component increases when adding the correlated 
measurement error.

Realistic error. The measurement process usually consists of different procedural steps and each step can be 
viewed as a different source of measurement error with its own characteristics, which sum to both additive and 
multiplicative error components as is the case of comprehensive omics measurements27. The model for this case is:

ε ε ε ε

ε ε ε ε








= + + + +
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0
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where all errors have been introduced before and are all assumed to be independent of each other and independ-
ent of the true (biological) signals (x0 and y0).

This realistic error model has a multiplicative as well as an additive component and also accommodates cor-
related and uncorrelated error. It is an extension of a much-used error model for analytical chemical data which 
only contains uncorrelated error28. From model (15) it follows that the error changes not only quantitatively but 
also qualitatively with changing signal intensity: the importance of the multiplicative component increases when 
the signal intensity increases, whereas the relative contribution of the additive error component increases when 
the signal decreases.

Since most of the measurements do not usually fall at the extremity of the dynamic range of the instruments 
used, the situation in which both additive and multiplicative error are important is realistic. For example, this is 
surely the case of comprehensive NMR and Mass Spectrometry measurements, where multiplicative errors are 
due to sample preparation and carry-over effect (in the case of MS) and the additive error is due to thermal error 
in the detectors29. To illustrate this we consider an NMR experiment where a different number of technical rep-
licates are measured for five samples (Fig. 4A,B). We are interested in establishing the correlation patterns across 
the (binned) resonances. For sake of simplicity we focus on two resonances, binned at 3.22 and 4.98 ppm. If one 
calculates the correlation using only one (randomly chosen) replicate per sample, the resulting correlation can be 
anywhere between −1 and 1 (see Fig. 4C.1). The variability reduces considerably if more replicates are taken and 
averaged before calculating the correlation (see Fig. 4C), but there is still a rather large variation, induced by the 
limited sample size. Averaging across the technical replicates reduces variability among the sample means: how-
ever this not accompanied by an equal reduction in the variability of the correlation estimation. This is because 
the error structure is not taken into account in the calculation of the correlation coefficient.

Figure 4. (A) PCA plot of 5 different samples of fish extract measured with technical replicates (10×) using 
NMR29. (B) Overlap of the average binned NMR spectra of the 5 samples: the two resonances whose correlation 
is investigated are highlighted (3.23 and 4.98 ppm). (C) Distribution of the correlation coefficient between 
the two resonances calculated, taking as input the average over different numbers of technical replicates (see 
inserts). See Material and Methods section 6.5.4 for more details on the estimation procedure.
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Estimation of Pearson’s Correlation Coefficient in Presence of Measurement Error
In the ideal case of an error free measurement, where the only variability is due to intrinsic biological variation, ρ 
coincides with the true correlation ρ0. If additive uncorrelated error is present, then ρ is given by Eqs. (9) and (10) 
which explicitly take into account the error component; it holds that ρ ρ< 0.

In the next Section we will derive analytical expressions, akin to Eqs. (9) and (10), for the correlation for vari-
ables sampled with measurement error (additive, multiplicative and realistic) as introduced in Section 2.

Before moving on, we define more specifically the error components. The error terms in models (11), (13) and 
(15) are assumed to have the following distributional properties
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From definitions (16), (17) and (18) it follows that:

 (1) The expected value of the errors εαE[ ] is zero:

ε α= ∀ .αE[ ] 0 in {au, ac, mu, mc} (19)

 (2) The covariance between x0 y( )0  and the error terms is zero because x0 y( )0  and errors are independent,

ε ε α− = ∀ .α αx xE[ ] E[ ]E[ ] 0 in {au, ac, mu, mc} (20)0 0

 (3) The covariance between the different error components is zero because the errors are independent from 
each other.

ε ε ε ε α α− = ∀ ≠ ′ .α α α α′ ′E[ ] E[ ]E[ ] 0 , in {au, ac, mu, mc} (21)

The Pearson correlation in the presence of additive measurement error. We show here a detailed 
derivation of the correlation among two variables x and y sampled under the additive error model (11). The var-
iance for variable x (similar considerations hold for y) is given by

= −x x xvar( ) E[ ] E[ ] (22)2 2

where
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It follows that
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The covariance of x and y is

= −x y xy x ycov( , ) E[ ] E[ ]E[ ] (26)
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Considering (20) and (21), Eq. (27) reduces to

ε= ±xy x yE[ ] E[ ] E[ ] (28)ac0 0
2
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σ μ μ
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ε σ± = ±E[ ] , (30)ac ac
2 2

with ± depending on the sign of the measurement error correlation. From Eqs. (23), (28), (29) and (30) it follows

σ σ= ± .x ycov( , ) (31)x y ac
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Plugging (25) and (31) into (6) and defining the attenuation coefficient Aa
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x 0
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y 0

, γ σ σ= /x ac x
2 2 2

0
 and γ σ σ= /y ac y

2 2 2
0
; the superscript a in Aa stands for additive.

The Pearson correlation in presence of additive measurement error is obtained as:

ρ ρ γ γ= ±A ( ) (33)
a

x y0

where the sign ± signifies positively and negatively correlated error.
The attenuation coefficient Aa is a decreasing function of the measurement error ratios, that is, the ratio 

between the variance of the uncorrelated and the correlated error to the variance of the true signal. Compared to 
Eq. (9), in formula (33) there is an extra additive term related to the correlated measurement error expressing the 
impact of the correlated measurement error relative to the original variation. In the presence of only uncorrelated 
error (i.e. σ = 0ac

2 ), Eq. (33) reduces to the Spearman’s formula for the correlation attenuation given by (9) and 
(10). As previously discussed, in this case the correlation coefficient is always biased towards zero (attenuated).

Given the true correlation ρ0, the expected correlation coefficient (33) is completely determined by the meas-
urement error ratios. Assuming the errors on x and y to be the same (σ σ=au au

2 2
x y

, σ σ=mu mu
2 2

x y
, an assumption not 

unrealistic if x and y are measured with the same instrument and under the same experimental conditions during 
an omics comprehensive experiment) and taking for simplicity σ σ=x y

2 2
0 0

, then ξ ξ ξ= =x y  and γ γ γ= =x y  and 
Eq. (33) can be simplified to:

ρ
ρ γ
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,

(34)
0

2
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and ρ can be visualized graphically as a function of the uncorrelated and correlated measurement error ratios ξ 
and γ as shown in Fig. 5.

In the presence of positively correlated error, the correlation ρ is attenuated towards 0 if the uncorrelated error 
increases and inflated if the additive correlated error increases (Fig. 5A, which refers to Eq. (34)) when ρ > 00 . If 
ρ < 00  the distortion introduced by the correlated error can be so severe that the correlation ρ can become posi-
tive. When the error is negatively correlated (Fig. 5B), the correlation ρ is biased towards 0 when ρ > 00  (and can 
change sign), while it can be attenuated or inflated if ρ < 00 .

A set of rules can be derived to describe quantitatively the bias of ρ. For positively correlated measurement 
error (for negatively correlated measurement error see Section 6.2) if the true correlation ρ0 is positive the corre-
lation ρ is always strictly positive: this is shown on Fig. 6A where the relationship between ρ and ρ0 is shown by 
means of Monte Carlo simulation (see Figure caption for more details). The magnitude of ρ ( ρ ) depends on how 
Aa (for readability in the following equations we will use A) and the additive term γ γ > 0x y  compensate each 
other. In particular when ρ > 00

ρ

ρ ρ ρ γ γ

ρ ρ γ γ

ρ ρ γ γ

→











< < >
−

=
−

.

> <
−

A
A

A
A

A
A

0 if
1

if
1

if
1 (35)

x y

x y

x y

0 0

0 0

0 0

This means that ρ is always a biased estimator of the true correlation ρ0, with the exception of the second case 
which happens only for specific values of γ and ρ0. This is unlikely to happen in practice.

If ρ < 00  it holds that
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ρ

ρ ρ ρ γ γ

ρ ρ γ γ
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→
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if (36)

A
A x y

A
A x y

A
A x y

0 0 1

0 0 1

0 0 1

The interpretation of Eq. (36) is similar to that of Eq. (35) but additionally, the correlation coefficient can even 
change sign. In particular, this happens when

ρ γ γ| | > . (37)x y0

The terms γ γ=
−

S A
A x y1

 and γ γ=
+

S A
A x y1

 in Eqs. (35), (36), (71) and (72) describe limiting surfaces S of ρ0 
values delineating the regions of attenuation and inflation of the correlation coefficient ρ. As can be seen from 
Fig. 7, these surfaces are not symmetric with respect to zero correlation, indicating that the behavior of ρ is not 
symmetric around 0 with respect to the sign of ρ0 and of the correlated error.

The Pearson correlation in presence of multiplicative measurement error. The correlation in the 
presence of multiplicative error can be derived using similar arguments and detailed calculations can be found in 
Section 6.1.1. Here we only state the main result:

ρ ρ σ δ δ σ= ± ±A A(1 ) (38)mc
m

x y mc
m

0
2 2

with δ μ σ= /x x x0 0
, δ μ σ= /y y y0

0
 (biological signal to biological variation ratios) and Am is the attenuation coefficient 

(the superscript m stands for multiplicative):
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In this case, the correlation coefficient depends explicitly on the mean of the variables, as an effect of the mul-
tiplicative nature of the error component. Our simulations show that if the signal intensity is not too large, the 
correlation can change sign (as shown in Fig. 6B); if the signal intensity is very large the multiplicative error will 
have a very large effect and if the correlated error is positive the expected correlation ρ will also be positive, and 
will be negative if the error are negatively correlated. but simulations cannot be exhaustive (as shown in Fig. 6B).

the pearson correlation in presence of realistic measurement error. When both additive and mul-
tiplicative error are present, the correlation coefficient is a combination of formula (33) and (38) (see Section 6.1.2 
for detailed derivation):

Figure 5. The expected correlation coefficient ρ in the presence of additive measurement error as a function of 
the uncorrelated (ξ2) and correlated (γ2) measurement error ratios (m.e.r.) for different values of the true 
correlation ρ0. (A) Positively correlated error. (B) Negatively correlated error.
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Figure 6. Calculations of the correlation coefficient ρ (40) as a function of the different realizations of the signal 
means and the size of the error components for different values of the true correlation ρ0. The shadowed area 
encloses the maximum and the minimum of the values of ρ calculated in the simulation using the different error 
models. The dots represent the realized values of ρ (only 100 of 105 Monte Carlo realizations for different values 
of the variances of error component are shown). The solid lines represent the 5-th and the 95-th percentiles of 
the observed values. (A) Additive measurement error with positive correlated error. (B) Multiplicative 
measurement error with positive correlated error. (C) Realistic case with both additive and multiplicative 
measurement error with positive correlated error. (D) Additive measurement error with negative correlated 
error. (E) Multiplicative measurement error with negative correlated error. (F) Realistic case with both additive 
and multiplicative measurement error with negative correlated error. For more details on the simulations see 
Material and Methods section 6.5.5.

Figure 7. Limiting surfaces S for the inflation and deflation region of the correlation coefficient in presence of 
additive measurement error. The surfaces are a function of the uncorrelated (ξ2) and correlated (γ2) 
measurement error ratios (m.e.r.). (A) S in the case of positively correlated error. (B) S for negatively correlated 
error. The plot refers to ρ defined by Eq. (34) with ξ ξ ξ= =x y

2 2 2 and γ γ γ= =x y
2 2 2.
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ρ ρ σ γ γ δ δ σ= ± ± +A A(1 ) ( ) , (40)mc
r

x y x y mc
r

0
2 2

where the γ and δ parameters have been previously defined for the additive and multiplicative case. Ar is the atten-
uation coefficient (the superscript r stands for realistic):
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General rules governing the sign of the numerator and denominator in Eq. (40) cannot be determined since it 
depends on the interplay of the six error components, the true mean and product thereof. Within the parameter 
setting of our simulations, the results presented in Fig. 6C show that the behavior of ρ under error model 15 is 
qualitatively similar to that in presence of only multiplicative error. However different behavior could be emerge 
with different parameter settings.

Generalized correlated error model. The error models presented in Eqs. (11), (13) and (15) assume a 
perfect correlation of the correlated errors, since the correlated error terms εac appear simultaneously in both x 
and y; the same hold true for εmc. A more general model that accounts for different degrees of correlation between 
the error components can be obtained by modifying the model (15) (other cases are treated in Section 6.3). to

ε ε ε ε
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where σacxy
 is the covariance between error term εacx

 and εacy
 and σmcxy

 is the covariance between error term εmcx
 

and εmcy
.

It is possible to derive expression for the correlation coefficient under the model (43) as shown in Section 3.1 
and in the Section 6.1.1 and 6.1.2. The only difference is that under this model the terms εE[ ]ac

2  and εE[ ]mc
2  in Eqs. 

(27), (58), (65) and (66) are replaced by ε ε σ=E[ , ]ac ac acx y xy
 and ε ε σ=E[ , ]mc mc mcx y xy

, respectively.
From the definition of covariance it follows that

σ π σ σ= (45)ac ac ac ac
2 2

xy x y

and

σ π σ σ= , (46)mc mc mc mc
2 2

xy x y

where πac and πmc are the correlations among the error terms for which it holds − π≤ ≤1 1mc  and − π≤ ≤1 1mc . 
If πac and πmc are negative the errors are negatively correlated. Equation (40) becomes now:
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This model generalizes the correlation coefficient among x and y from Eq. (40) to account for different 
strength of the correlation among the correlated error components. All considerations discussed in the previous 
sections do apply also to this model. Expressions for ρ in the case of additive and multiplicative error can be found 
in the Section 6.3.1 and 6.3.2.

By setting σ σ σ= =ac ac ac
2 2 2

x y
, σ σ σ= =mc mc mc

2 2 2
x y

, and π π= = 1ac mc  (perfect correlation), model (40) is 
obtained, and similarly models (33) and (38).
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correction for correlation Bias
Because virtually all kinds of measurement are affected by measurement error, the correlation calculated from 
sampled data is distorted to some degree depending on the level of the measurement error and on its nature. We 
have seen that experimental error can inflate or deflate the correlation and that ρ (and hence its sample realization 
r) is almost always a biased estimation of the true correlation ρ0. An estimator that gives a theoretically unbiased 
estimate of the correlation coefficient between two variables x and y taking into account the measurement error 
model can be derived. For simple uncorrelated additive error this is given by the Spearman’s formula (49): this is 
a known results which in the past has been presented and discussed in many different fields16–19. To obtain similar 
correction formulas for the error models considered here it is sufficient to solve for ρ0 from the defining Eqs. (33), 
(38) and (40). The correction formulas are as follows (the ± indicates positive and negatively correlated error):

 1. Correction for simple additive error (only uncorrelated error):

ρ ρ= .−A (49)0
1

 2. Correction for additive error:

ρ ρ γ γ= .± 

A
1

(50)
corrected

a x y

 3. Correction for multiplicative error:

ρ
σ

ρ
σ
σ

δ δ=
± ±

.± 

A
1

(1 ) 1 (51)
corrected

m
mc

mc

mc
x y2

2

2

 4. Correction for realistic error:

ρ
σ

ρ
γ γ δ δ σ

σ
=

±

+

±
.± 

A
1

(1 ) 1 (52)
corrected

c
mc

x y x y mc

mc
2

2

2

In practice, to obtain a corrected estimation of the correlation coefficient ρ0, the ρ is substituted by r in (50), 
(51) and (52), which is the sample correlation calculated from the data. The effect of the correction is shown, for 
the realistic error model (15), in Fig. 8 where the true know error variance components have been used. It should 
be noted that it is possible that the corrected correlation exceeds ±1.0. This phenomenon has already been 
observed and discussed16,30: it is due to the fact that the sampling error of a correlation coefficient corrected for 
distortion is greater than would be that of an uncorrected coefficient of the same size (at least for the uncorrelated 
additive error4,18,31). When this happens the corrected correlation can be rounded to ±1.019,31.

Estimation of the error variance components. Simulations shown in Fig. 8 have been performed using 
the known parameters for the error components used to generate the data. In practical applications the error 

Figure 8. Correction of the distortion induced by the realistic measurement error (see Eq. (15)). (A) Pairwise 
correlations ρ among 25 metabolites calculated from simulated data with additive and multiplicative 
measurement error vs the true correlation ρ0. (B) Corrected correlation coefficients using Eq. (52) and using the 
known error variance components. See Section 6.5.6 for details on the data simulation.
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components needs to be estimated from the measured data and the quality of the correction will depend on the 
accuracy of the error variance estimate.

The case of purely additive uncorrelated measurement error (σ = 0ac
2 ) has been addressed in the past18,19,32: in 

this case the variance components σx
2
0
 and σy

2
0
 can be substituted with their sample estimates (sx

2
0
 and sy

2
0
) obtained 

from measured data, while the error variance components (σau
2

x
 and σau

2
y
) can be estimated if an appropriate 

experimental design is implemented, i.e. if n replicates are measured for each observation.
Unfortunately, there is no simple and immediate approach to estimate the error component in the other cases 

when many variance components need to be estimated (6 error variances in the case of error model (15) and 8 in 
the case of the generalized model (42), to which the estimations of πmc and πac must be added).

Different approaches can be foreseen to estimate the error components which is not a trivial task, including 
the use of (generalized) linear mixed model33,34, error covariance matrix formulation29,35,36 or common factor 
analysis factorization37. None of these approaches is straightforward and require some extensive mathematical 
manipulations to be implemented; an accurate investigation of the simulation of the error component is outside 
the scope of this paper and will presented in a future publication.

Discussion
Since measurement error cannot be avoided, correlation coefficients calculated from experimental data are dis-
torted to a degree which is not known and that has been neglected in life sciences applications but can be expected 
to be considerable when comprehensive omics measurement are taken.

As previously discussed, the attenuation of the correlation coefficient in the presence of additive (uncorre-
lated) error has been known for more than one century. The analytical description of the distortion of the corre-
lation coefficient in presence of more complex measurement error structures (Eqs. (33), (38) and (40)) has been 
presented here for the first time to the best of our knowledge.

The inflation or attenuation of the correlation coefficient depends on the relationship between the value of true 
correlation ρ0 and the error component. In most cases in practice, ρ is a biased estimator for ρ0. In absence of 
correlated error, there is always attenuation; in the presence of correlated error there can also be increase (in 
absolute value) of the correlation coefficient. This has also been observed in regression analysis applied to nutri-
tional epidemiology and it has been suggested that correlated error can, in principle, be used to compensate for 
the attenuation38. Moreover, the distortion of the correlation coefficient also has implications for hypothesis test-
ing to assess the significance of the measured correlation r.

To illustrate the counterintuitive consequences of correlated measurement error consider the following. 
Suppose that the true correlation is null. In that case, Eqs. (33), (38) and (40) reduce to

ρ γ γ= A , (53)
a

x y

ρ δ δ σ= A , (54)
m

x y mc
2

and

ρ γ γ δ δ σ= ± + A( ) , (55)x y x y mc
r2

which implies that the correlation coefficient is not zero. Moreover, in real-life situations there is also sampling 
variability superimposed on this which may in the end result in estimated correlations of the size as found in 
several omics applications (in metabolomics observed correlations are usually lower than 0.610,23; similar patterns 
are also observed in transcriptomics39,40) while the true biological correlation is zero.

The correction equations presented need the input of estimated variances. Such estimates also carry uncer-
tainty and the quality of these estimates will influence the quality of the corrections. This will be the topic of a 
follow-up paper. Prior information regarding the sizes of the variance components would be valuable and this 
points to new requirements for system suitability tests of comprehensive measurements. In metabolomics, for 
example, it would be worthwhile to characterize an analytical measurement platform in terms of such error vari-
ances including sizes of correlated error using advanced (and to be developed) measurement protocols.

Distortion of the correlation coefficient has implications also for experimental planning. In the case of additive 
uncorrelated error, the correction depends explicitly on the sample size N  used to calculate r and on the number 
of replicates nx, ny used to estimate the intraclass correlation (i.e. the error variance components): since in real life 
the total sample size × +N n n( )x y  is fixed, there is a trade off between the sample size and the number of repli-
cates that can be measured and the experimenter has to decide whether to increase N  or nx.

The results presented here are derived under the assumption of normality of both measurement and measure-
ment errors. If x0 and y0 are normally distributed, then x and y will be, in presence of additive measurement error, 
normally distributed, with variance given by (12). For multiplicative and realistic error the distribution of x and 
y will be far from normality since it involves the distribution of the product of normally distributed quantities 
which is usually not normal41. It is known that departure from normality can result in the inflation of the correla-
tion coefficient42 and in distortion43 of its (sampling) distribution and this will add to the corruption induced by 
the measurement error.

We think that in general correlation coefficients are trusted too much on face value and we hope to have trig-
gered some doubts and pointed to precautions in this paper.
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Material and Methods
Mathematical calculations. Derivation of ρ in presence of multiplicative measurement error. In presence 
of purely multiplicative error it holds

ε ε μ= + ± =x xE[ ] E[ (1 )] (56)mu mc x0 x 0

and

ε ε ε ε ε ε ε

σ μ σ σ μ σ σ μ

= + + + + ± ±

= + + + + +( ) ( )
x x xE[ ] E[ ( 2 2 )]

, (57)

mu mc mu mc mc mu mc

x x mu x x mc x x

2
0
2

0
2 2 2

2 2 2 2 2 2 2 2
x x x

x0 0 0 0 0 0

using (19)–(21) to calculate the expectation of the cross terms. For xyE[ ] it holds

ε ε ε ε ε

ε ε ε ε ε ε

= + ± ± ±

= + + + + .

xy x y x yE[ ] E[ (

)] (58)

mc mc mc mc mu
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2
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Because of the independence of x0, y0 and the error terms, the expectations of all cross terms is null except

ε ε
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x y x yE[ ] E[ ]E[ ]
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0 0
2

0 0
2

2 2
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where x yE[ ]0 0  is given by Eq. (29). Plugging (56), (57) and (58) in (6), the expected correlation coefficient is

ρ =
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and it can re-written as (38) by setting γ σ σ= /x ac x
2 2

0
 and γ σ σ= /y ac y

2 2
0
 δ μ σ= /x x x0 0

, δ μ σ= /y y y0
0

 and defining the 
attenuation coefficient Am (39).

Derivation of ρ in presence of realistic measurement error. To simplify calculations we set
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E M[ ]x
2  is given by Eq. (57). Because error components are independent and with zero expectation (see Eqs. 

(19)–(21)) it holds
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σ μ μ σ μ μ σ σ
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x y x y x y y x

x y x y x y x y c ac
2 2

0 0 0 0 0 0 0 0

Plugging (67), (68), and (69) into (6) one gets the expression for the correlation coefficient in presence of 
additive and multiplicative measurement error:

ρ =
σ σ μ μ σ σ

σ σ μ σ σ σ σ σ σ μ σ σ σ σ
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that can re-written as (40) by using previously defined γ γ δ, ,x y x and δy and defining the attenuation coefficient Ac (41).

Behavior of ρ in the case of additive negatively correlated error. For negative correlated error, 
when the true correlation is positive
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, ρ is always smaller than the true correlation. When the true correlation is negative 
(ρ < 00 ) the expected correlation is always negative, but it can be, in absolute value, smaller or larger than the 
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Correlation coefficient under the generalized error model. Additive error. Under the generalized 
additive correlated error model
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Multiplicative error. Under the generalized multiplicative error model
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General realistic error. Formulas for the correlation coefficient under the generalized realistic correlated error 
model are to be found in the main text in Eqs. (47) and (48).

Correction of the correlation coefficient under the generalized correlated error model. Additive 
error. Under the generalized additive correlated error model the corrected correlation coefficient is

ρ ρ π γ= − γ .
A
1

(79)
corrected

a ac x y

Multiplicative error. Under the generalized multiplicative correlated error model the corrected correlation coef-
ficient is

ρ
π σ σ

ρ
π σ σ

π σ σ
δ δ=

+
−

+
.

A
1

(1 ) 1 (80)

corrected
m

mc mc mc

mc mc mc

mc mc mc
x y

x y

x y

x y

Realistic error. Under the generalized realistic correlated error model the corrected correlation coefficient is

ρ
π σ σ

ρ
π γ γ δ δ π σ σ

π σ σ
=

+
−

+

+
.

A
1

(1 ) 1 (81)

corrected
r

mc mc mc

ac x y x y mc mc mc

mc mc mcx y

x y

x y

Simulations. We provide here details on the simulation performed and shown in Figs. 1–4, 6 and 8.

Simulations in Figure 1. N = 100 realizations of two variables x and y were generated under model with additive 
uncorrelated measurement error (11), with ρ = .0 80 , σ σ= = 1x y

2 2
0 0

 and μ = (100, 100). Error variance compo-
nents were set to σ σ= = 0au au

2 2
x y

 and to σ σ= = .0 75au au
2 2

x y
 (Panel A).

Simulations in Figure 2. The time concentrations profiles P t( )1 , P t( )2  and P t( )3  of three hypothetical metabolites 
P1, P2 and P3 are simulated using the following dynamic model











= − − +

= − + − −

= +

−

−

d
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P t k P t E P t k P t

d
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P t k P t k P t E P t k P t

d
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( ) ( )( ( )) ( )

( ) ( ) ( )( ( )) ( )

( ) ( )
(82)

T

T

1 1 1 2 1 2

2 1 1 1 1 2 2 2

3 2 2

which is the model of an irreversible enzyme-catalyzed reaction described by Michaelis-Menten kinetics. Using 
this model, =N 100 concentration time profiles for P1, P2 and P3 were generated by solving the system of differ-
ential equations after varying the kinetic parameters k1, −k 1 and k2 by sampling them from a uniform distribution. 
For the realization of the jth concentration profile

≈ . × . ×

≈ . × . ×

≈ . × . ×

≈ . × . ×

− − −

k U k k
k U k k
k U k k
E U E E

(0 9 , 1 1 )
(0 9 , 1 1 )
(0 9 , 1 1 )
(0 9 , 1 1 ) (83)

j

j

j

T
j

T T

1 1 1

1 1 1

2 2 2

with population values = = =−k k k30, 20, 101 1 2 ,  and =E 1T .  Init ial  conditions were set to 
=P P P P( , , ) ( , 0, 0)j

10 2 3 10 0 0
 with ≈ . × . ×P U P P(0 9 , 1 1 )j

1 1 10 0 0
 and =P 510

. All quantities are in arbitrary units. 
Time profiles were sampled at = .t 0 4 a.u. and collected in a data matrix X0 of size 100 × 3. The variability in data 
matrix X0 is given by biological variation. The concentration time profiles of P1, P2 and P3 shown in Panel A are 
obtained using the population values for the kinetic parameters and for the initial conditions.

Additive uncorrelated and correlated measurement error is added on X0 following model (11) where P1, P2 
and P3 in X0 play the role of x y,0 0 and of an additional third variable z0 which follows a similar model. The vari-
ance of the error component was varied in 50 steps between 0 and 25% of the sample variance s s,x y

2 2
0 0

 and sz
2
0
 cal-

culated from X0. The variance of the correlated error was set to σ = .0 05ac
2  in all simulations. Pairwise Pearson 

correlations ri j,  with =i j P P P, { 1, 2, 3} were calculated for the error free case X0 and for data with measurement 
error added. 100 error realizations were simulated for each error value and the average correlation across the 100 
realization is calculated and it is shown in Panel B.
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The “mini” metabolite-metabolite association networks shown in Panel C are defined by first taking the 
Pearson correlation rij among P1, P2 and P3 and then imposing a threshold on r to define the connectivity matrix 
Aij

=





| | > .

.
A r1 if 0 6

0 otherwise (84)
ij

ij

For more details see reference10.

Simulations in Figure 3. Principal component analysis was performed on a 100 × 133 experimental metabolo-
mic data set (see Section 6.6 for a description). The 15 variables with the highest loading (in absolute value) and 
the 45 variables with the smallest loading (in absolute value) on the first principal component where selected to 
form a 100 × 60 data set X0 (we call this now the error free data, as if it only contained biological variation). On 
this subset a new a principal component analysis was performed. Then multiplicative correlated and uncorrelated 
measurement error was added on X0. The variance of the additive error was set σ = . × s0 05mu j

2 2
j 0

 with 
= …j 1, 2, , 60 where s j

2
0
 is the variance calculated for the jth column of X0, i.e., the biological variance. The 

variance of the correlated error was fixed to 5% of the average variance observed in the error free data 
σ = .( 0 045)mc

2 .

Simulations in Figure 4. Let xij and yij denote the intensities of the resonances measured at 3.23 and 4.98 in 
the randomly drawn replicate j of sample Fi ( = …i 1, 2, , 5) and define the 5 × 1 vectors of means
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∑

∑

∑
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The correlation =r x ycorr( , )J J J  is calculated for =J 1, 2, 5, and 10; for each J the replicates used to calculate 
xJ and yJ are randomly and independently sampled, for each sample separately, from the total set of the 12 to 15 
replicates available per sample. The procedure is repeated 105 times to construct the distributions of the correla-
tion coefficient shown in Fig. 4C.

Simulations in Figure 6. Simulation results presented in Fig. 6 show the results from calculations of the sample 
correlation coefficient as a function of the true correlation ρ0 and of the true means (μx0

 and μy0
), the variances (σx

2
0
 

and σy
2
0
 of the signals x0 and y0 and the measurement error variances as they appear in the definitions of ρ under 

the dif ferent error models (Eqs. (33), (38) and (40)). The calculations were done multiple times for varying values 
for μx0

 and μy0
, which were randomly and independently sampled from a uniform distribution μU(0, )0 , where μ0 

was set to be equal to 23.4, which was the maximum values observed in Data set 1 (see Section 6.6). Values for σx
2
0
 

and σy
2
0
 were randomly and independently sampled from a uniform distribution σU(0, )0

2 , where σ0
2 was set to be 

equal to the average variance observed in the experimental Data set 1. The values of the variance of all error com-
ponents are randomly and independently sampled from σ( )U 0, 1

4 0
2 . The overall procedure was repeated 104 for 

each value of ρ0 in the range −[ 1, 1] in steps of 0.1.

Simulations in Figure 8. The first 25 variables from Data set 1 have been selected and used to compute the means 
μ0 and the correlation/covariance matrix Σ0 used to generate error-free data μ∼ ΣNX ( , )0 0 0  of size 104 × 25 on 
which additive and multiplicative measurement error (correlated and uncorrelated) is added (error model (15)) 
to obtain X. All error variances are set to 0.1 which is approximately equal to 5% of the average variance observed 
in X0. Pairwise correlations among the 25 metabolites are calculated from X. The correlations are corrected using 
Eq. (52) using the known distributional and error parameters μ Σ( , )0 0  used to generate the data. The data gener-
ation is repeated 103 times and correlations (uncorrected and corrected) are averaged over the repetitions.

Data sets. Data set 1. A publicly available data set containing measurements of 133 blood metabolites from 
2139 subjects was used as a base for the simulation to obtain realistic distributional and correlation patterns 
among measured features. The data comes from a designed case-cohort and a matched sub-cohort (controls) 
stratified on age and sex from the TwinGene project44. The first 100 observation were used in the simulation 
described in Section 6.5.3 and shown in Fig. 3.

Data were downloaded from the Metabolights public repository45 (www.ebi.ac.uk/metabolights) with acces-
sion number MTBLS93. For full details on the study protocol, sample collection, chromatography, GC-MS exper-
iments and metabolites identification and quantification see the original publication46 and the Metabolights 
accession page.

Data set 2. This data set was acquired in the framework of a study aiming to the “Characterization of the meas-
urement error structure in Nuclear Magnetic Resonance (NMR) data for metabolomic studies29”. Five biological 

https://doi.org/10.1038/s41598-019-57247-4
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replicates of fish extract F1 - F5 were originally pretreated in replicates (12 to 15) and acquired using 1H NMR. 
The replicates account for variability in sample preparation and instrumental variability. For details on the sample 
preparation and NMR experiments we refer to the original publication.

Software. All calculations were performed in Matlab (version 2017a 9.2). Code to generate data under 
the measurement error models (11), (13) and (15) is available at systemsbiology.nl under the SOFTWARE tab.
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