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A B S T R A C T

We investigated the effects of blindness on the structural and functional integrity of the corpus callosum and the
anterior commissure (AC), which together form the two major components of the commissural pathways. Twelve
congenitally blind (CB), 15 late blind (LB; mean onset of blindness of 16.6 ± 8.9 years), and 15 matched
normally sighted controls (SC) participated in a multimodal brain imaging study. Magnetic resonance imaging
(MRI) data were acquired using a 3T scanner, and included a structural brain scan, resting state functional MRI,
and diffusion-weighted imaging. We used tractography to divide the AC into its anterior (aAC) and posterior
(pAC) branch. Virtual tract dissection was performed using a deterministic spherical deconvolution tractography
algorithm. The corpus callosum was subdivided into five subregions based on the criteria described by Witelson
and modified by Bermudez and Zatorre. Our data revealed decreased fractional anisotropy of the pAC in CB and
LB compared to SC, together with an increase in the number of streamlines in CB only. In addition, the AC
surface area was significantly larger in CB compared to SC and LB, and correlated with the number of streamlines
in pAC (rho = 0.55) and tract volume (rho = 0.46). As for the corpus callosum, the splenial part was sig-
nificantly smaller in CB and LB, and fewer streamlines passed through it. We did not find group differences in
functional connectivity of cortical areas connected by fibers crossing any of the five callosal subregions. The
present data suggest that the two main components of the commissural system undergo neuroplastic changes,
irrespective of the age of onset of blindness, although the alterations observed in the AC are more important in
congenital than late-onset blindness.

Introduction

There is now ample evidence that visual deprivation strongly
modulates brain structure and function (Bavelier and Neville, 2002;
Noppeney 2007; Ptito et al., 2008; Kupers et al., 2011; Heine et al.,
2015). These plastic rearrangements even occur outside the visually
deprived occipital cortex, and include cortical, subcortical and white
matter structures not directly related to visual processing (Kupers and

Ptito, 2014; Desgent and Ptito 2012). For instance, several authors have
reported differences in hippocampal subfields (Chebat et al., 2007;
Fortin et al., 2008), anterior insula (Liu et al., 2017), corticospinal tract
(Yu et al., 2007) and the tonotopic region of the auditory cortex
(Elbert et al., 2002; Stevens and Weaver, 2009) of blind compared to
sighted subjects.

Structural changes of the corpus callosum following visual depri-
vation have been well studied in both animal models (Lund and
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Mitchell 1979; Frost and Moy 1989; Berman and Payne 1983;
Tremblay et al., 1987) and in human models of blindness (Ptito et al.,
2008; Tomaiuiolo et al., 2014; Leporé et al., 2010; Levin et al., 2010;
Bridge et al., 2009; Bock et al., 2013; Reislev et al., 2016). Collectively,
these studies have shown alterations in the corpus callosum following
visual deprivation from birth (reviewed in Kupers and Ptito, 2014).
Although all studies concur on a volume reduction of the splenium, i.e.
the posterior part of the corpus callosum, results regarding the other
portions of the corpus callosum are inconclusive (Ptito et al., 2008;
Tomaiuolo et al., 2014; Leporé et al., 2010; Levin et al., 2010;
Bridge et al., 2009; Bock et al., 2013). For example, some authors have
found an enlargement of the genu, the anterior portion of the corpus
callosum (Ptito et al., 2008; Lepore et al., 2010), others an enlargement
of the isthmus and the posterior part of the body (Tomaiuolo et al.,
2014); still others found no changes at all in the anatomical organiza-
tion of the corpus callosum (Bock et al., 2013).

To the best of our knowledge, no studies have investigated the ef-
fects of blindness on the anterior commissure (AC) which is the second
main component of the commissural system (Lamantia and
Rakic, 1990). There is evidence that axons originating from the occi-
pital and the inferior temporal cortices send projections through the AC
(Di Virgillio et al., 1999), suggesting that blindness may affect its
structural and functional organization. The functional importance of
the AC in visual functions has been highlighted in various animal and
human studies of callosal splits or callosal agenesis (reviewed in
Lassonde and Jeeves, 1994) showing that the AC becomes enlarged and
can facilitate interhemispheric transfer of visual information in the
presence of corpus callosum deficiencies. For example, patients with
callosal agenesis who show an enlarged AC have a normal interhemi-
spheric transfer of visual information, suggesting that the AC may
compensate for the absence of the corpus callosum (Guenot, 1998;
Brown et al., 1999; Barr and Corballis, 2002; Bayard et al., 2004). In
addition, acallosal mice have a significantly larger number of axons in
the AC compared to controls (Livy et al., 1997).

The primary aim of the present study was to study purported ana-
tomical modifications of the AC following congenital and late-onset
visual deprivation, thereby combining T1 structural markers with
resting-state fMRI and diffusion weighted imaging (DWI) data. In order
to better resolve fiber resolution in crossing points that mainly affects
commissural bundles, we used a tractography algorithm based on de-
terministic spherical deconvolution which gives improved results for in
vivo virtual dissection of these pathways (Dell'Acqua et al., 2013). A
secondary aim was to compare changes in the organization of the
corpus callosum in congenitally blind (CB) and late-onset blind (LB)
subjects.

Material and methods

Study participants

We included 12 CB (mean age: 42 ± 13 y), 15 LB (mean age
52 ± 15 y) and 15 normal sighted control (SC) subjects (mean age
46 ± 13 y). The three groups were matched for gender, age, and
handedness. Mean onset of blindness in the LB group was 16.6 ± 8.9 y
(range: 6 - 60 y). All blind subjects suffered from blindness caused by
bilateral peripheral damage to the visual system causing total blindness.
Retinopathy of prematurity (ROP) was the main cause of blindness,
while one subject suffered from both ROP and glaucoma (Table 1). CB
subjects were classified as such, based on self-reports of medical history
and etiology. The ethics committee for the city of Copenhagen and
Frederiksberg (Denmark) had approved the experimental procedures
and all participants gave their informed consent.

MRI data acquisition

Brain MRIs were acquired using a 3 Tesla Siemens Verio MRI system

(Siemens, Erlangen, Germany) equipped with a 32-channel head coil.
Structural scans were acquired using a 3D T1-weighted MPRAGE se-
quence (TE = 2.32 ms, TR = 1900 ms, flip angle = 9°, isotropic
0.93 mm3 voxels). Functional images were acquired using an EPI se-
quence (280 volumes, TR = 2150 ms, TE = 26 ms, flip angle = 78°,
FOV = 192mm2, 64 × 64 matrix, 43 axial slices of 4 mm) at rest, with
eyes closed (resting state fMRI, rsfMRI). Head motion was restricted by
placement of comfortable padding around the participant's head.
Finally, diffusion-weighted images (DWIs) were acquired using a twice-
refocused spin-echo sequence with a 2.33 mm3 isotropic resolution in
61 non-collinear directions (b-value of 1500 s/mm2). Moreover, to
improve signal-to-noise ratio (SNR) in the tensor estimation
(Jones et al., 1999; Chen et al., 2015), ten non-diffusion-weighted vo-
lumes were acquired and averaged to obtain a reliable b0 map. A set of
reversed phase-encoded b = 0 images was also acquired for pre-
processing purposes.

Manual segmentation of the corpus callosum and the AC

In order to be more consistent with manual segmentation proce-
dures and to reduce possible bias due to brain tilting, in a first step we
aligned each pre-processed subject's T1 imagemanually by positioning
it along the anterior-posterior commissure plane (AC-PC line) and ro-
tating it such that the septum pellucidum and at least a large part of the
falx were visible in the sagittal plane (Tomaiuolo et al., 2014). Next, we
performed segmentation and tractography reconstructions in the sub-
ject individual space.

The corpus callosum was defined using the mid-sagittal MRI slice in
which the septum pellucidum and the falx were simultaneously visible,
considering the peri-callosal sulcus for the dorsal and rostral bound-
aries, whereas the third ventricle and the cisterna superior for the
ventral boundary. A trained neuroradiologist (CC) manually drew the
minimum rectangle circumscribing the corpus callosum in the mid-sa-
gittal plane. Next, four lines perpendicular to the longest side of the
minimum rectangle subdivided the corpus callosum into five con-
tiguous sub-regions, covering 33, 17, 17, 13 and 20% of its total length,
respectively(Tomaiuolo et al., 2014). This division resulted in the fol-
lowing contiguous subregions along the rostro-caudal direction: a) the
anterior third of the corpus callosum, including the rostrum, the genu,
and the rostral body; b) the anterior mid-body; c) the posterior mid-
body; d) the isthmus; and e) the splenium (Fig. 1). This division is based
on a modification of the original Witelson, 1989 segmentation of the
corpus callosum in seven segments, but whereby the anterior sections of
the corpus callosum are kept together (Bermudez and Zatorre, 2001).
The five callosal subregions were estimated in terms of area (mm2) and
were used as seed-points for the tracking algorithm (Trackvis; Ruopeng
Wang, Van J. Wedeen, TrackVis.org, Martinos Center for Biomedical
Imaging, Massachusetts General Hospital) (Wedeen et al., 2008).

The AC was defined using the mid-sagittal MR image (Mai et al.,
1997) where it crosses the midline as a compact cylindrical bundle
between the anterior and posterior columns of the fornix, beneath the
septum pellucidum and the anterior to the third ventricle
(Dejerine, 1895). The AC area was estimated (in mm2) and used for
tractography reconstruction. The AC was divided into an anterior (aAC)
and posterior (pAC) branch, using a VOI to VOI approach in Trackvis
(Fig. 1).

MRI data processing

We used ExploreDTI for data preprocessing and spherical decon-
volution-based tractography (Catani et al., 2017). The diffusion-
weighted (DW) images were corrected for subject motion and eddy-
current-induced distortions, after which the b-matrix was reoriented to
provide a more accurate estimate of diffusion tensor orientations
(Leemans and Jones 2009). Spherical deconvolution was calculated
applying the damped version of the Richardson–Lucy algorithm with a
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fiber response parameter of α=1.5, 200 algorithm iterations, an ALFA
value of 2, threshold parameters of 0.04, and geometrical regularization
parameters of 8 (Dell'Acqua et al., 2013). Fiber orientation estimates
were obtained by selecting the orientation corresponding to the peaks
(local maxima) of the fiber orientation distribution (FOD) profiles.
Whole brain tractography was run on the diffusion datasets using a step
size of 1 mm with a limit set to display only streamlines between 15 and
400 mm in length. The Euler algorithm was used to follow the or-
ientation vector of least curvature (angle threshold of 60°), thus al-
lowing to track through crossing fibers (Dell'Acqua et al., 2013). All
spherical deconvolution and tractography analyses were performed
using StarTrack software (http//www.mr-startrack.com/).

The rsfMRI data were pre-processed using DPABI 4.0 (Chao-Gan and
Yu-Feng, 2010; Aiello et al., 2015; Cavaliere et al., 2016), a Matlab
(Mathworks Inc.) toolbox containing libraries for fMRI analysis that
rely on the Statistical Parametric Mapping 8 package (SPM8, Wellcome
Department of Neurology, London UK (Friston and Frith, 1995). The
three initial volumes were discarded to avoid T1 saturation effects. The
first 10 time points were removed to avoid non-equilibrium effects of
magnetization. The remaining 230 volumes were corrected for slice
timing effects; motion correction was performed by aligning all vo-
lumes to the first time point (Friston and Frith, 1995). Runs in which
head motion exceeded 3.0 mm and/or 3.0° were excluded from the
analysis. In order to remove BOLD signal fluctuations unrelated to
neuronal activity, the white matter and cerebrospinal fluid mean sig-
nals were regressed out as nuisance variables (Zuo et al., 2013). To take
into account signal drifts arising from scanner instability or other

possible causes, linear trend effects were removed from each voxel's
time course.

Imaging post-processing

The FA values were calculated by averaging across all voxels in the
tract. Tract volume was calculated by multiplying the number of voxels
containing reconstructed streamlines with the voxel size (2.33 mm3)
(Reich et al., 2006).

Functional connectivity between regions structurally connected by
AC and corpus callosum segments was estimated by considering the
intersection between the endpoints of the segment for each hemisphere
and the relative parcel of grey matter as pair of regions of interest
(ROI). Therefore, we calculated Pearson correlations between the pre-
processed rsfMRI time courses as obtained by averaging across the ROIs
belonging to each commissural subregion (mean BOLD correlation).
Network graphs were created using a circular layout function in Matlab
(Mathworks Inc.).

Statistical analysis

A chi-square test was applied for comparison of qualitative variables
(e.g. sex, handedness). Group differences between the DTI parameters
and the Pearson correlation coefficients of blind and sighted partici-
pants were assessed by means of a two-sample t-test as implemented in
SPM. A one-way analysis of variance (ANOVA) was performed for DTI
parameters of the five callosal sub-regions and in case of significance, a
Bonferroni correction was used for multiple comparisons, with p-values
< 0.01 considered as statistically significant. Data are presented as
mean± SD.

Results

Differences in structural and functional connectivity of the AC in blind
subjects

The AC midline area was significantly larger in CB
(8.54 ± 2.10 mm2) compared to LB (5.97 ± 1.59 mm2; p = 0.002)
and SC (6.42 ± 1.34 mm2; p = 0.007) (Fig. 2A). CB showed a sig-
nificant increase in the number of streamlines in pAC (131.92 ± 53.5)
compared to SC (75.33 ± 72.62; p = 0.007) and LB (82.75 ± 41.59;
p = 0.01) (Fig. 2B), without differences in tract volume (Figs. 2C and
3). In addition, the mean FA of the pAC was significantly reduced in
both CB (0.24 ± 0.03; p < 0.001) and LB (0.24 ± 0.03; p<0.001)
compared to SC (0.28 ± 0.03) (Figs. 2D and 3). There were no sig-
nificant differences between CB and LB for the other tractography
parameters extracted, neither for the pAC nor the aAC projections
(Table 2). When combining the results of all participants together, AC
surface area correlated significantly with both the number of stream-
lines (rho = 0.55, p < 0.001, Fig. 2E) and tract volume (rho = 0.46,

Table 1
Demographic data participants.

Overall Sample
Variable Blind subjects&&(n or mean± SD) Healthy controls&&(n or mean± SD) Group comparison
Age 48 ± 15 y 46 ± 12 y p = 0.89
Sex (male/female) 14/12 8/7 p = 0.97
Handedness (right/left) 24/2 14/1 p = 0.9
Blind subgroups
Variable Congenitally blind&&(n or mean± SD) Late blind&&(n or mean± SD) Group comparison
Age 42 ± 14 y 53 ± 15 y p = 0.10
Onset of blindness birth 17 ± 9 y
Sex (male/female) 7/5 7/7 p = 0.67
Pathogenesis
Retinopathy of prematurity 11 10
Glaucoma 1 4
Unknown 1

Fig. 1. Analysis workflow for AC and corpus callosum commissural pathways. The
left column shows a midline sagittal T1 slice indicating the AC and the five
segments of the corpus callosum. The middle column shows a lateral view of a
brain volume rendering with superimposed streamlines as revealed by tracto-
graphy; the upper row shows the anterior (red) and posterior (blue) branches of
the AC, whereas the lower row shows corpus callosum fibers originating from
the anterior third (light blue), anterior mid-body (white), posterior mid-body
(red), isthmus (violet) and splenium (purple). The right column shows cortical
projections for each commissural segment as determined by functional con-
nectivity analysis. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

C. Cavaliere, et al. NeuroImage: Clinical 25 (2020) 102133

3

http://www.mr-startrack.com/


p = 0.002, Fig. 2F) of pAC, but not of aAC.
We did not detect group differences in functional connectivity of

cortical areas connected by fibers composing the aAC and pAC
(p = 0.51) (Table 2, Fig. 4).

Changes in structural and functional connectivity of the corpus callosum in
blind subjects

There were no significant group differences in total corpus callosum
midline surface area (CB: 805.5 ± 61 mm2, LB: 794.5 ± 69 mm2, SC:
881.25 ± 63.75 mm2). Looking at subregional areas, the splenium
surface area was significantly smaller in both CB (215 ± 32.5 mm2)
and LB (215.75 ± 38 mm2) compared to SC (257.75 ± 53 mm2)
(p = 0.01 for both comparisons) (Fig. 5A). No significant group dif-
ferences were found for any of the four other subregions.

We measured a significant reduction in the number of streamlines in
the splenium of CB and LB compared to SC (SC: 2415 ± 623; CB:
1653 ± 397, p < 0.001; LB: 1706 ± 518, p = 0.003) (Figs. 3 and
5B). Similarly, we found a significant reduction in tract volume crossing
the splenium region of CB (80.83 ± 21.34) and LB (75 ± 13.34)
compared to SC (105.82 ± 24.22; p = 0.003 and 0.009, respectively)

(Figs. 3 and 5C). When combining the results of all participants to-
gether, the splenium surface correlated significantly with both the
number of streamlines (rho = 0.63, p < 0.001, Fig. 5D) and the tract
volume (rho = 0.59, p< 0.001, Fig. 5E) passing through it. There were
no significant group differences in tract volume, number of streamlines,
FA, mean and axial diffusivity in the anterior third, anterior mid-body,
posterior mid-body and isthmus. There were also no group differences
in functional connectivity of cortical areas connected by fibers crossing
the five callosal subregions (p = 0.56) (Table 3, Fig. 4).

Discussion

The present study shows that the two major branches of the com-
missural system, the AC and the corpus callosum, undergo neuroplastic
changes following both congenital and late-onset blindness. More spe-
cifically, both CB and LB showed a decrease in FA of the pAC which
went together with an increase in the number of streamlines for this
area in CB only. This finding was paralleled by an increase of the AC
area in CB and a positive correlation between AC area and the number
of streamlines in pAC and tract volume for all participants. At the same
time, using a different methodology, we confirm and extend previous

Fig. 2. Tractography analysis of the pAC and aAC. (A)The area of the AC as measured on the mid sagittal plane, (B) number of streamlines, (C) tract volume and (D)
fractional anisotropy for the anterior (aAC) and posterior (pAC) branch of the AC. Scatter plots show correlation between AC area with number of streamlines (E) and
tract volume (F) of the pAC. **, p< 0.01.

Fig. 3. Tractography reconstructions for pAC and CC5 in a representative SC,CB and LB participant. Tracts area represented in scalar colours, corresponding to relative FA
values along the streamlines.
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reports of structural alterations of the corpus callosum in blind in-
dividuals, by demonstrating that tract volume of fibers crossing the
splenium is reduced in both CB and LB.

Neuroplastic changes of the anterior commissure in blindness

It has been well described that in case of complete sectioning of the
corpus callosum, as in split-brain, or when absent from birth (agenesis
of the corpus callosum), other commissures like the AC reorganize to
insure interhemispheric transfer of visual information (Ptito and
Leporé, 1983; Barr and Corballis, 2002), even between primary visual
cortical areas (van Meer et al., 2016). The present data show that the
AC also undergoes neuroplastic changes following congenital or late
onset blindness. Indeed, we measured an increase of the AC area in CB,
and a decrease in FA in the posterior part of the AC tracts in both CB
and LB, combined with an increase in the number of streamlines in CB.
Previous studies investigating brain plasticity in other physiological and
pathological conditions have shown an increase in the number of
streamlines associated with a reduction of fractional anisotropy values
(Imfeld et al., 2009; Hänggi et al., 2010; Giacosa et al., 2016). From a
microstructural perspective, these findings could be due to two dif-
ferent processes typically associated with brain plasticity, i.e. fiber
sprouting and neurogenesis. Both processes are associated with an in-
creased number of streamlines that however are not fully covered by
myelin, leading to a reduced longitudinal fractional anisotropy.Here,
AC streamlines changes occurred without an associated alteration in

tract volume of the pAC. The latter negative finding might be due to the
small size of the tract compared to our DWI image resolution. Never-
theless, we found a non-significant trend to increased tract volume in
the CB group, paralleling the findings derived from the number of
streamlines. Moreover, both the number of streamlines and the pAC
tract volume were positively correlated with the AC area, as was also
demonstrated in other studies (Patel et al., 2010). Although adaptive
neuroplastic changes have traditionally been associated with increases
in FA, there are other reports that improvement in performance in
professional musicians and dancers may be linked with decreases in FA
(Imfeld et al., 2009; Hänggi et al., 2010; Giacosa et al., 2016).

It is known that the majority of fibers of the aAC connect the ol-
factory bulb, anterior perforated substance, and anterior olfactory nu-
cleus, whereas the pAC links the amygdala, hippocampal gyrus, and
inferior temporal and occipital cortex (Catani et al., 2002). The pAC
fibers projecting to the inferior occipital cortex, and hence to multi-
modal/associative visual areas, develop earlier than the corpus cal-
losum (Di Virgilio et al., 1999; Rockland and Pandya, 1986). In case of
congenital callosal deficits or agenesis, the AC becomes strongly en-
larged, sometimes up to four times its normal size, suggesting a possible
compensatory role for this pathway in interhemispheric connectivity
(Sarnat, 2008; Lassonde and Jeeves, 1994; van Meer et al., 2016). These
adaptive changes involve multimodal/associative areas, like those
connected by the pAC, that are crucial for cross-modal plasticity in
blind subjects (Ortiz-Teran et al., 2016).

Table 2
Tract-specific measurements and functional connectivity analysis of the two segments of the anterior commissure.

Segments Measurements SC&&(mean + SD) CB&&(mean±SD) LB&&(mean±SD) CB vs SC&&p value LB vs SC&&p value CB vs LB&&p value

Anterior Streamlines 102.2 ± 124.83 85.33 ± 35.76 97.64 ± 46.4 0.62 0.9 0.45
Volume 11.8 ± 8.35 7.08 ± 3.06 9.64 ± 3.25 0.29 0.62 0.05
FA 0.24 ± 0.04 0.24 ± 0.03 0.23 ± 0.05 0.87 0.5 0.56
MD 0.7 ± 0.06 x (10–3) 0.7 ± 0.05 x (10–3) 0.7 ± 0.1 x (10–3) 0.76 0.8 0.65
AD 0.9 ± 0.08 x (10–3) 0.9 ± 0.1 x (10–3) 0.9 ± 0.1 x (10–3) 0.52 0.59 0.94
Mean BOLD correlation 0.92 ± 0.09 0.92 ± 0.08 0.87 ± 0.09 0.75 0.72 0.8

Posterior Streamlines 75.33 ± 42.62 131.92 ± 53.5 82.75 ± 41.59 0.007* 0.65 0.01
Volume 15.04 ± 8.66 19.57 ± 9.09 14.32 ± 5.51 0.2 0.79 0.09
FA 0.28 ± 0.03 0.24 ± 0.03 0.24 ± 0.03 0.001* 0.001* 0.57
MD 0.7 ± 0.04 x (10–3) 0.8 ± 0.1 x (10–3) 0.8 ± 0.1 x (10–3) 0.05 0.32 0.79
AD 0.9 ± 0.05 x (10–3) 1 ± 0.1 x (10–3) 1 ± 0.1 x (10–3) 0.37 0.79 0.76
Mean BOLD correlation 0.9 ± 0.03 0.91 ± 0.08 0.9 ± 0.08 0.72 0.84 0.7

Numbers represent means± SD. *Indicates values that survive Bonferroni correction for multiple comparisons. FA = fractional anisotropy; MD = mean diffusivity;
AD = axial diffusivity.

Fig. 4. Tractography-driven functional connectivity analysis for homotopic cortical regions, connected through AC and CC streamlines. Connectographs show mean Pearson
correlation coefficients (rho) between homotopic cortical areas in the left and right hemisphere, conveyed by fibers passing through aAC, pAC, and the five callosal
(CC1-5) subregions for SC, CB and LB.
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Fig. 5. Tractography analysis of the five callosal segments. (A)The area, (B) number of streamlines and (C) relative tract volumes for each of the five callosal subregions
(upper part). Scatter plots for correlation analyses of CC5 surface area with number of streamlines (D) and tract volume (E) (lower part). **, p< 0.01.

Table 3
Tract-specific measurements and functional connectivity analysis of the five segments of the corpus callosum.

Segments Measurements SC&&(mean±SD) CB&&(mean±SD) LB&&(mean±SD) CB vs SC&&p
value

LB vs SC&&p
value

CB vs LB&&p
value

Anterior Streamlines 2705 ± 477 2483 ± 842 2515 ± 877 0.43 0.53 0.93
Volume 95.53 ± 17.09 87.82 ± 18.07 82 ± 18.69 0.27 0.07 0.43
FA 0.27 ± 0.03 0.27 ± 0.05 0.3 ± 0.05 0.75 0.15 0.13
MD 0. 9 ± 0.05 x (10–3) 0.9 ± 0.1 x (10–3) 0.8 ± 0.09 x (10–3) 0.2 0.14 0.03
AD 1 ± 0.05 x (10–3) 1 ± 0.09 x (10–3) 1 ± 0.07 x (10–3) 0.12 0.17 0.01
Mean BOLD
correlation

0.94 ± 0.04 0.92 ± 0.08 0.94 ± 0.06 0.41 0.99 0.47

Anterior mid-body Streamlines 1425 ± 553 1270 ± 444 1509 ± 462 0.03 0.17 0.08
Volume 46.79 ± 13.2 36.25 ± 9.93 53 ± 10.81 0.03 0.17 0.07
FA 0.29 ± 0.04 0.29 ± 0.06 0.31 ± 0.06 0.87 0.26 0.42
MD 0.8 ± 0.06 x (10–3) 0.9 ± 0.1 x (10–3) 0.8 ± 0.1 x (10–3) 0.91 0.17 0.32
AD 1 ± 0.04 x (10–3) 1 ± 0.09 x (10–3) 1 ± 0.08 x (10–3) 0.93 0.14 0.22
Mean BOLD
correlation

0.96 ± 0.04 0.85 ± 0.21 0.95 ± 0.05 0.12 0.64 0.15

Posterior mid-
body

Streamlines 1250 ± 446 999 ± 297 1353 ± 386 0.02 0.53 0.05

Volume 40.36 ± 11.48 32.33 ± 7.11 46 ± 9.55 0.04 0.17 0.09
FA 0.31 ± 0.04 0.3 ± 0.06 0.33 ± 0.07 0.85 0.3 0.29
MD 0.8 ± 0.06 x (10–3) 0.8 ± 0.1 x (10–3) 0.8 ± 0.1 x (10–3) 0.73 0.08 0.22
AD 1 ± 0.08 x (10–3) 1 ± 0.08 x (10–3) 1 ± 0.09 x (10–3) 0.68 0.07 0.2
Mean BOLD
correlation

0.94 ± 0.05 0.88 ± 0.18 0.91 ± 0.07 0.36 0.38 0.6

Isthmus Streamlines 784 ± 283 507 ± 306 924 ± 372 0.02 0.31 0.008
Volume 33.21 ± 8.54 22.94 ± 9.99 44 ± 15.58 0.01 0.92 0.01
FA 0.3 ± 0.04 0.28 ± 0.06 0.35 ± 0.06 0.45 0.02 0.01
MD 0.8 ± 0.09 x (10–3) 0.8 ± 0.1 x (10–3) 0.7 ± 0.1 x (10–3) 0.75 0.03 0.04
AD 1 ± 0.07 x (10–3) 1 ± 0.1 x (10–3) 1 ± 0.1 x (10–3) 0.95 0.09 0.14
Mean BOLD
correlation

0.87 ± 0.12 0.88 ± 0.1 0.92 ± 0.05 0.85 0.39 0.26

Splenium Streamlines 2415 ± 623 1653 ± 397 1706 ± 518 0.0009* 0.003* 0.79
Volume 105.82 ± 24.22 80.83 ± 21.34 75 ± 13.34 0.003* 0.009* 0.45
FA 0.35 ± 0.05 0.29 ± 0.07 0.35 ± 0.05 0.01 0.92 0.01
MD 0.7 ± 0.07 x (10–3) 0.9 ± 0.1 x (10–3) 0.8 ± 0.1 x (10–3) 0.08 0.45 0.04
AD 1 ± 0.05 x (10–3) 1 ± 0.09 x (10–3) 1 ± 0.1 x (10–3) 0.44 0.26 0.13
Mean BOLD
correlation

0.96 ± 0.04 0.95 ± 0.03 0.96 ± 0.02 0.87 0.53 0.36

Numbers are means± SD. *Indicates values that survive Bonferroni correction for multiple comparisons. FA = fractional anisotropy; MD = mean diffusivity;
AD = axial diffusivity.
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Alterations of the splenium in congenital and late-onset blindness

There is a vast literature describing the multiple functions of the
corpus callosum, ranging from interhemispheric transfer of sensory and
motor information to the shaping of the lateralization of cognitive
functions (Lepore et al., 1985; Zaidel and Iacoboni, 2003; Lassonde and
Jeeves, 1994). The corpus callosum is undoubtedly the most important
commissure not only by its sheer size, wealth of fibers and connections
(Lamantia and Rakic, 1990), but also by its various functions that have
been documented in a large series of studies in animal and human
models of split-brain and callosal agenesis (Zaidel and Iacoboni, 2003;
Lassonde and Jeeves, 1994). Although the corpus callosum is vulner-
able to alterations in sensory inputs (Desgent and Ptito, 2012), it is
capable of plasticity since manipulations of visual inputs lead to a
strong re-arrangement of callosal projections (Innocenti and
Frost, 1979; Ptito, 2003; Ptito and Boire, 2003).

We found a significant reduction of the splenium mid-sagittal area
in both CB and LB participants. Considering that the splenium is pri-
marily composed of fibers connecting visuo-spatial areas (Putnam et al.,
2010), it is not surprising that this part was the most affected in blind
individuals. Our finding of a significant reduction of the splenium in CB
and LB is in line with other reports showing brain morphometric
changes in this part of the corpus callosum in congenital (Ptitoet al.,
2008; Leporéet al., 2010; Tomaiuolo et al., 2014) and late onset
blindness (Qin et al., 2015; Shi et al., 2015; Reislev et al., 2016a). In the
LB group, neuroplastic changes vary as a function of timing of onset of
blindness and are most pronounced in individuals who became blind
earlier in life (Noppeney, 2007; Jiang et al., 2009). The present study
confirms our earlier results that the total surface area of the corpus
callosum remains unchanged in CB (Tomaiuolo et al., 2014) and ex-
tends these by showing that the same holds true for LB. Contradictory
findings have been reported for the isthmus and the posterior portion of
the body that showed an enlargement in the study by
Tomaiuolo et al. (2014), or the anterior portion of the corpus callosum
(genu) that was reduced in a study by Leporé et al. (2010). Other stu-
dies failed to document changes in these callosal subregions. These
seemingly contradictory results might be due to differences in the
segmentation approach used (e.g., mid-sagittal plane vs. CC volume, or
manual vs. semiautomatic technique), and sample size (12 CB in the
current study compared to 28 in Tomaiuolo et al., 2014). Possibly, an
even minimal difference in the brain tilting and regional subdivision
can affect surface estimation due to the ratio between these small re-
gions and the voxel size used (1mm3).Moreover, the reduction in
splenium volume, combined with a generalized change in callosal shape
as reported elsewhere (Tomaiuolo et al., 2014; Ptito et al., 2008) could
bias callosal subdivisions and measurements, unequally affecting dif-
ferent portion of CC, and following cortical projections.

The reduction of the splenium in both groups of blind subjects oc-
curred concurrently with a significant decrease in the number of
streamlines and tract volume crossing this region, but without changes
in FA averaged along the tract. While some authors reported DWI
parameters modifications in the corpus callosum using a ROI-based
approach (Wang et al., 2013; Reislev et al., 2016b), only one other
study described a reduced anatomical connectivity of the corpus cal-
losum in CB but not in LB (Reislev et al., 2016a). The differences with
the existing literature can be explained by differences in methodolo-
gical approaches. When performing the analysis at the voxel level, re-
duced FA values in sections of the corpus callosum outside the splenium
are found (Wang et al., 2013; Reislev et al., 2016b). The fact that we
used a mean FA tract measure for each of the five callosal subregions
could explain the absence of differences in the callosal fibers. Regarding
the previous finding of reduced anatomical connectivity in the corpus
callosum of CB subjects (Reislev et al., 2016a), the different tracto-
graphy algorithm used (probabilistic vs spherical deconvolution) could
explain these discrepancies. Nevertheless, another study comparing CB
to SC reported a decreased structural connectivity between bilateral

pericalcarine regions through the splenium (Shimony et al., 2006),
supporting our result of a reduced number of connections between bi-
lateral occipital cortices.

We were not able to identify alterations in functional connectivity in
our blind subjects. Only one paper reported a reduced functional con-
nectivity of the bilateral occipital cortices in CB, as measured by resting
state fMRI (Liu et al., 2007). These results are in contrast with a more
recent report (Ortiz-Téran et al., 2016) that described increased inter-
connectivity across multimodal integration areas and between unim-
odal regions and multimodal integration cortices in blind individuals.
The differences with our findings may be explained by the fact that we
did not apply an a priori occipital parcellation to identify regions of
interest, but we considered all the cortical projections for each of the
five callosal subregions, obtained using spherical deconvolution fiber
tractography. Moreover, the DTI-derived cortical areas could be af-
fected by the uncertainty associated with tractography methods that
increases dramatically when approaching the cortex for the increased
streamlines crossing points.

Conclusions

We show for the first time that the pAC, but not the aAC, undergoes
compensatory neuroplastic changes in CB and LB. Our results further
support the findings that the splenium, a structure primarily composed
of fibers connecting the visual areas of the brain, is indeed sensitive to
visual deprivation in both CB and LB. These data provide new insights
into neuroplastic alterations of the commissural fiber system following
blindness.
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