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Abstract: To improve diagnosis of asthma, we tend to confirm potential biomarkers by comparing sputum metabo-
lome profiles between asthma patients and healthy controls, using ultra-high-performance liquid chromatography 
coupled to quadruple time-of-flight mass spectrometry (UHPLC-QTOF/MS). Thirty endogenous metabolites con-
tributing to the separation of asthma patients and healthy controls were tentatively identified in positive mode, 
such as 1-hexadecanoyl-sn-glycerol, glycerol 1-stearate, sphingosine, Phe-Ser, Tyr-Ala and Phe-Gln, and 12 endog-
enous metabolites were identified in negative mode, such as cytidine 2’,3’-cyclic phosphate, 1-hexadecanoyl-2-(9Z-
octadecenoyl)-sn-glycero-3-phospho-(1’-rac-glycerol), 1-octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoser-
ine, thymidine, gamma-L-glutamyl-L-valine and adenine. Those differential metabolites were mainly participatedin 
glycerophospholipid metabolism, retrograde endocannabinoid signaling and metabolic pathways in positive mode 
and 2-oxocarboxylic acid metabolism, biosynthesis of amino acids, phenylalanine, tyrosine and tryptophan biosyn-
thesis, valine, leucine and isoleucine degradation and metabolic pathways in negative mode. Importantly, several 
metabolic pathways including glycerophospholipid metabolism, inositol phosphate metabolism, and glycolysis or 
gluconeogenesis were found most important. These findings suggest sputum metabolomics can be used for the 
early diagnosis and risk prediction of asthma.

Keywords: Asthma, UHPLC-QTOF/MS, metabolomics, sputum

Introduction

Asthma is a complicated chronic airway allergic 
disease involving many cells and cytokines 
characterized by airway inflammation, hyperre-
sponsiveness and remodeling [1]. Asthma is 
caused by a variety of inflammatory cell infil-
trates, with symptoms of episodic dyspnea and 
reversible airway obstruction [2, 3]. Recently, 
more than 300 million people suffer from asth-
ma worldwide, with the prevalence rate in chil-
dren and adult were 3%-38% and 2%-12%, 
respectively, and their morbidity and mortality 
are increased annually [4, 5]. Recurrent attacks 
of asthma may cause a variety of complica-
tions, such as chronic obstructive emphysema, 
chronic pulmonary heart disease, pulmonary 
fibrosis, respiratory arrest, respiratory failure, 
pneumothorax and mediastinal emphysema 
[6]. Genetic variation and environmental chang-
es have shown to trigger asthma, which genetic 
susceptibility and environmental exposure has 

significant influence on the development of 
asthma, and the interaction of genes and the 
environment can also lead to asthma and aller-
gies [7]. 

Metabolomics are not only goal of qualitative 
and quantitative analysis of all metabolic com-
ponents in particular biological samples, but 
also explain all the information about the 
metabolism of organisms from the point of view 
of systematic biology [8]. It is a science that 
analyzes the changes in the concentration and 
density of small molecular metabolites in bio-
logical cells, fluids (e.g. blood and urine), and 
tissue or tissue extracts [9]. Small molecule 
metabolites are the end product of the body’s 
metabolic activity, and the concentration chan- 
ges of metabolites can therefore reaction of 
biochemical functions due to disease. Although 
metabolomics technology mainly includes the 
determination of nuclear magnetic resonance 
(NMR), mass spectrometry (MS), gas (GC) and 
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high performance liquid chromatography (HP- 
LC) and ultra HPLC (UHPLC). The ultra high 
pressure system can improve the separation 
and sensitivity of chromatographic peaks sig-
nificantly, and UHPLC coupled to quadruple 
time-of-flight mass spectrometry (UHPLC-QTOF-
MS) is more efficient and rapid in the analysis 
of complex samples [10, 11]. Mayr et al. [12] 
combined proteomic with metabolomics tech-
niques and found increased acyl coenzyme A 
dehydrogenase and decreased alanine and 
cytosolic malate dehydrogenase in blood ves-
sel of mouse with coronary heart disease, sug-
gesting that the metabolism of vascular fat 
cells may replace glucose metabolism, and the 
decrease in effective energy synthesis and glu-
cose as well as oxidative stress is of great 
importance in the pathogenesis of coronary 
heart disease. Beger et al. [13] analyzed 40 
patients with acute kidney injury in children 
after cardiac surgery, in which the vanillic acid 
was significantly increased in urine, suggesting 
that vanillic acid can be used as an early and 
sensitive diagnostic marker for acute kidney 
injury after cardiac surgery. 

The pathogenesis of asthma is very complex, 
varies or overlaps in different types of asthma 
and has so far not been fully understood. 
Metabonomics can detect differences in small 
molecule metabolites in asthma patients and 
normal controls and find out the metabolic 
markers associated with pathogenesis of asth-
ma, thus explaining the pathogenesis of asth-
ma and providing a suitable treatment method 
[14, 15]. NMR-based metabonomics applied to 
exhaled breath condensate can clearly identify 
biochemical metabolism in asthma patients 
with different severity [16]. LC-MS (liquid chro-
matography mass spectrometry) based metab-
olomics was also applied to the detection of 
urine samples from asthmatic patients, and 
representative markers were identified as the 
basis for the diagnosis of asthma [17]. Ried et 
al. [18] collected the serum samples from asth-
matic patients and found that changes in leci-
thin and phosphatidylcholine concentrations 
may be used to identify and diagnose asthma. 

As a direct secretion in the airways, sputum can 
reflect airway inflammation and is therefore 
used to identify and diagnose asthma and 
chronic obstructive pulmonary disease [19]. In 
the present study, UHPLC-QTOF/MS based 
metabolomics was performed to analyze the 

differential metabolites in sputum between 
patients with asthma in childhood and healthy 
controls. Biological correlates of metabolic 
pathways and potential biomarkers have been 
studied in depth to understand the metabolic 
disturbance of asthma in childhood. Insight 
obtained from these studies will be useful for 
developing novel diagnostic biomarkers and 
aiding in the prevention and control of asthma.

Materials and methods

Patient recruitment

35 clinical samples including 15 healthy con-
trols and 20 asthma patients were collected 
from patients hospitalized in Child’s Hospital of 
Nanjing Medical University, stored in -80°C and 
prepared for UHPLC-QTOF-MS analysis. This 
prospective study was approved by the Ethics 
Committee of Affiliated Nanjing Children’s Hos- 
pital, Nanjing Medical University. Informed con-
sent was obtained from all participants.

Sample collection and preparation

Sputum samples were collected from the 35 
clinical samples and added into 900 μL extrac-
tion liquid and 10 μL L-2-chlorophenylalanineas 
(1 mg/mL stock in dH2O) as internal standard to 
the sample in 1.5 mL EP tubes. After vortex 
mixing for 30 s, samples were ultrasound treat-
ed for 10 min (incubated in ice water), incubat-
ed 1 h at -20°C and centrifuged for 15 min at 
12000 rpm at 4°C. The supernatant (0.7 mL) 
fresh were transferred into a 2 mL LC/MS glass 
vial, dried in a vacuum concentrator without 
heating and added 100 μL extraction liquid. 
After vortex for 30 s and sonicate for 10 min 
(4°C water bath), samples were centrifuged for 
15 min at 12000 rpm at 4°C, and then transfer 
the supernatant (60 μL) into a fresh 2 mL LC/
MS glass vial, take 10 μL from each sample 
and pooling as QC samples and take 60 μL 
supernatant for the UHPLC-QTOF-MS analysis.

UHPLC-QTOF-MS analysis

LC-MS/MS analyses were performed using an 
UHPLC system (1290, Agilent Technologies) 
with a UPLC BEH Amide column (1.7 μm, 
2.1×100 mm, Waters) coupled to TripleTOF 
6600 (Q-TOF, AB Sciex). The mobile phase con-
sisted of 25 mM NH4OAc and 25 mM NH4OH in 
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Figure 1. The sputum PCA (A) and OPLS-DA score plot (B) between healthy controls and asthma patients in childhood in both positive and negative mode. P: positive 
mode; N: negative mode. C: healthy control; A: asthma patients.



Metabolites and asthma

10366	 Int J Clin Exp Pathol 2017;10(10):10363-10373

Figure 2. Different metabolites between asthma patients in childhood and healthy controls. (A) Volcano plot be-
tween asthma patients and healthy controls in positive and negative mode. Top 3 increased (B) and decreased 
metabolites (C) in healthy controls compared with asthma patients in positive mode. Top 3 increased (D) and de-
creased metabolites (E) in healthy controls compared with asthma patients in negative mode. P: positive mode; N: 
negative mode. 
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water (pH=9.75) (A) and acetonitrile (B) was 
carried with elution gradient as follows: 0 min, 
85% B; 2 min, 75% B; 9 min, 0% B; 14 min, 0% 
B; 15 min, 85% B; 20 min, 85% B, which was 
delivered at 0.3 mL min-1. The injection volume 
was 2 μL. The TripleTOF mass spectrometer 
was used during an LC/MS experiment as previ-
ously described [20].

Statistical analysis

The resulted three-dimensional data involving 
the peak number, sample name, and normal-
ized peak area were fed to SIMCA14.1 software 
package (V14.1, MKS Data Analytics Solutions, 
Umea, Sweden) for PCA and OPLS-DA. The vari-

structures-discriminate analysis (OPLS-DA) was 
presented. As shown in Figure 1B, clear sepa-
ration of groups in UHPLC-QTOF-MS in both 
positive and negative mode was found obvi-
ously. Afterwards, the parameters for the clas-
sification from the software were R2Y=0.54 and 
Q2=-0.86 in positive modes and R2Y=0.52 and 
Q2=-1.07 in negative modes. 7-fold cross vali-
dation is used to estimate the robustness and 
predictive power of our model; such permuta-
tion experiments are carried out for further veri-
fication of the model, which is stable and fitted 
and predicted well. These results suggest that 
the method can identify potential biomarkers 
for distinguishing between asthmatics and 
healthy people.

Table 1. Different metabolites in asthma patients compared with 
healthy control using UHPLC-QTOF-MS in positive ion mode

MS2 name MS2 
score Type P-

value
Log2Fold 
change

1-Hexadecanoyl-sn-glycerol_1 0.817 MS2 forward 0.001 2.3 
Glycerol 1-stearate_1 0.623 MS2 reverse 0.000 2.0 
Sphingosine_2 0.677 MS2 forward 0.003 1.7 
PC (16:0/16:0) 16.000 MS2 reverse 0.005 1.6 
1-Hexadecanoyl-sn-glycerol_2 0.961 MS2 reverse 0.048 1.5 
Glu-Pro_1 0.729 MS2 reverse 0.010 -1.5 
Pro-Arg_2 0.624 MS2 forward 0.011 -1.5 
L-Arginine_4 0.987 MS2 reverse 0.010 -1.5 
Phe-His_1 0.937 MS2 forward 0.004 -1.6 
N-Acetyl-D-glucosamine_2 0.643 MS2 forward 0.043 -1.7 
Gamma-L-Glutamyl-L-valine_1 0.942 MS2 forward 0.003 -1.7 
Glu-Pro_2 0.652 MS2 forward 0.007 -1.8 
Lys-Pro_3 0.739 MS2 forward 0.010 -1.8
Phe-Ile 0.742 MS2 forward 0.035 -1.8 
Phe-His_3 0.937 MS2 forward 0.004 -1.8 
Pro-Val_2 0.608 MS2 reverse 0.009 -1.9 
Urocanic acid_1 0.933 MS2 forward 0.002 -2.0 
Tyr-Pro_2 0.935 MS2 reverse 0.021 -2.1 
His-Pro 0.907 MS2 forward 0.007 -2.1 
Tyr-Pro_1 0.954 MS2 reverse 0.022 -2.1 
N-Acetyl-D-glucosamine_1 0.908 MS2 reverse 0.047 -2.1 
Lys-Phe_1 0.774 MS2 forward 0.020 -2.1 
Thr-Phe_1 0.791 MS2 forward 0.007 -2.2 
L-Citrulline_1 0.935 MS2 reverse 0.049 -2.3 
Arg-Phe_1 0.807 MS2 forward 0.003 -2.5 
Adenine_1 0.834 MS2 reverse 0.007 -2.5 
Phe-Tyr_1 0.802 MS2 forward 0.004 -2.6 
Phe-Gln_1 0.888 MS2 forward 0.001 -2.8 
Tyr-Ala_2 0.935 MS2 forward 0.007 -4.4 
Phe-Ser_1 0.856 MS2 forward 0.005 -5.1 

able importance in the projec-
tion (VIP) value exceeding 1.0 
was first filtered out as the ch- 
anged metabolites. The remain-
ing variables were then asses- 
sed by Student’s t-test (P-value 
< 0.05). Kyoto Encyclopedia of 
Genes and Genomes (KEGG; 
http://www.genome.jp/kegg/) 
and MetaboAnalyst3.0 (http://
www.metaboanalyst.ca) datab- 
ases were utilized to analyze for 
the pathways of metabolites.

Results

Multivariate data analysis 

First of all, matrices showed 
1514 and 651 features for 
UHPLC-QTOF-MS in positive and 
negative mode, respectively. 
For multivariate analysis, PCA 
that showed the distribution of 
origin data was performed to 
prediction of control and asth-
ma groups for UHPLC-QTOF-MS 
in both positive and negative 
mode. As shown in Figure 1A, 
control and asthma groups had 
no differences in metabolic pro-
files and no strong outliers were 
observed. 

In order to gain higher levels of 
population separation and ob- 
tain better understandings of 
variables that are responsible 
for classification, supervised 
orthogonal projections to latent 
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Identification and quantization of potential 
metabolites

Volcano plot analysis using Student’s t-test 
(P-value < 0.05) with VIP score >1 when com-
pared between asthma patients and healthy 
control (Figure 2A). Combined with retention 
time, accurate molecular mass and mass spec-
trometric analysis of the data provided by the 
method, the preliminary screening of endoge-
nous metabolites can be made. Our data 
revealed 30 potential biomarkers in positive 
mode, among which 5 metabolites were 

increased and 25 metabolites were decreased 
in asthma patients compared with healthy con-
trols with Log2fold-change ≥ 1.5 and P < 0.05 
by Student’s t-test (Table 1). Meanwhile, there 
were 12 potential biomarkers in negative mode, 
among which 4 metabolites were increased 
and 8 metabolites were decreased in asthma 
patients compared with healthy controls (Table 
2). Top 3 increased and decreased metabolites 
in healthy controls compared with asthma 
patients in positive mode, including 1-Hexade- 
canoyl-sn-glycerol, Glycerol 1-stearate, Sphin- 
gosine, Phe-Ser, Tyr-Ala and Phe-Gln, were 

Table 3. KEGG pathways representing the differentially expressed compounds in asthma patients 
compared with healthy control using UHPLC-QTOF-MS in positive ion mode
Pathway Compounds
Metabolic pathways-Homo sapiens (human) Adenine, Phosphatidylcholine, L-Citrulline, Phos-

phatidylethanolamine, Sphingomyelin, Betaine, 
2-Methylprop-2-enoyl-CoA

Retrograde endocannabinoid signaling-Homo sapiens (human) Phosphatidylcholine, Phosphatidylethanolamine
Glycerophospholipid metabolism-Homo sapiens (human) Phosphatidylcholine, Phosphatidylethanolamine

Table 2. Different metabolites in asthma patients compared with healthy control using UHPLC-QTOF-MS 
in negative ion mode

MS2 name MS2 
score Type P-

value
Log2Fold 
change

Cytidine 2’,3’-cyclic phosphate 0.994 MS2 forward 0.000 2.6
1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1’-rac-glycerol) 0.983 MS2 forward 0.001 2.2
1-Octadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoserine 0.839 MS2 reverse 0.000 2.0
1-Stearoyl-sn-glycerol 3-phosphocholine 0.622 MS2 reverse 0.010 1.5
Thymine_2 0.999 MS2 forward 0.010 -1.5
p-Chlorophenylalanine_3 0.623 MS2 reverse 0.046 -1.7
Phenylpyruvate_2 0.887 MS2 forward 0.001 -1.7
Phosphoenolpyruvate 0.996 MS2 forward 0.045 -2.0
Urocanic acid 0.938 MS2 forward 0.005 -2.1
Adenine_1 0.810 MS2 forward 0.021 -2.1
Gamma-L-Glutamyl-L-valine_1 0.707 MS2 forward 0.028 -2.4
Thymidine 0.927 MS2 forward 0.034 -3.4

Table 4. KEGG pathways representing the differentially expressed compounds in asthma patients 
compared with healthy control using UHPLC-QTOF-MS in negative ion mode
Pathway Compounds
Metabolic pathways-Homo sapiens (human) Phosphoenolpyruvate, myo-Inositol, 3-Methyl-2-oxobutanoic acid, 

Adenine, Phenylpyruvate, Thymidine, Hexadecanoic acid, Indole, 
N-Acetyl-L-glutamate, Urocanate, 2-Methylprop-2-enoyl-CoA

Biosynthesis of amino acids-Homo sapiens (human) Phosphoenolpyruvate, 3-Methyl-2-oxobutanoic acid, Phenylpyru-
vate, N-Acetyl-L-glutamate

2-Oxocarboxylic acid metabolism-Homo sapiens (human) 3-Methyl-2-oxobutanoic acid, Phenylpyruvate, N-Acetyl-L-glutamate

Phenylalanine, tyrosine and tryptophan biosynthesis-Homo sapiens (human) Phosphoenolpyruvate, Phenylpyruvate, Indole

Valine, leucine and isoleucine degradation-Homo sapiens (human) 3-Methyl-2-oxobutanoic acid, 2-Methylprop-2-enoyl-CoA
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shown in Figure 2B and 2C, respectively. Top 3 
increased and decreased metabolites in heal- 
thy controls compared with asthma patients in 
negative mode, including Cytidine 2’,3’-cyclic 
phosphate, 1-Hexadecanoyl-2-(9Z-octadeceno- 
yl)-sn-glycero-3-phospho-(1’-rac-glycerol), 1-Oc- 
tadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3- 
phosphoserine, Thymidine, Gamma-L-Glutamyl-
L-valine and Adenine, were shown in Figure 2D 
and 2E, respectively. 

Metabolic pathway analysis

KEGG pathways representing the differentially 
expressed metabolites in asthma patients 
compared with healthy control using UHPLC-
QTOF-MS in positive and negative mode were 
shown in Tables 3 and 4, respectively. KEGG 
analysis identified only the pathways in which 
all differential metabolites were involved, but 
further metabolic pathway analysis was need-
ed to determine whether these pathways were 
closely related to experimental conditions. Us- 
ing the comprehensive analysis of the pathway 
of differential metabolites (including enrich-
ment and topological analysis), the pathway 
can be further screened to find the most critical 
pathway associated with the different metabo-
lites. We used the KEGG metabolic pathway as 
a background repository. Our data showed that 
several metabolic pathways, including glycero-
phospholipid metabolism (positive mode), ino-
sitol phosphate metabolism (negative mode) 
and glycolysis or gluconeogenesis (negative 
mode) with the impact-value 0.23, 0.14 and 
0.10, respectively, were found most important 
(Figure 3A and 3B), with the impact-value ≥ 
0.10 as potential target pathway [21].

Discussion

In the present study, we found that 30 potential 
biomarkers in positive mode and 12 potential 
biomarkers in negative mode were different 
between healthy controls and asthma patients, 
based on UHPLC-QTOF-MS analysis. Metabolic 
pathways, retrograde endocannabinoid signal-
ing and glycerophospholipid metabolism in pos-
itive mode and metabolic pathways, biosynthe-
sis of amino acids, 2-oxocarboxylic acid metab-
olism, phenylalanine, tyrosine and tryptophan 
biosynthesis and valine, leucine and isoleucine 
degradation in negative mode represented the 
differentially expressed compounds in asthma 
patients compared with healthy control using 

UHPLC-QTOF-MS. Moreover, several metabolic 
pathways, including glycerophospholipid meta- 
bolism, inositol phosphate metabolism, and 
glycolysis or gluconeogenesis, were found most 
important.

Asthma and related respiratory disease are the 
most common chronic disease in industrialized 
countries, with doubled prevalence rate in 
recent decades, affecting 26 million children in 
the United States [22]. The development of new 
treatments for asthma, however, has not kept 
up with the rise in prevalence, which mainly due 
to the incomplete understanding of the patho-
logical and physiological mechanism of asth-
ma. Asthma is a heterogeneous syndrome, 
including many different subtypes and multiple 
phenotypes. Explaining its complex, underlying 
biological mechanisms requires new approach-
es. New biomarkers and therapeutic targets 
are needed to reflect new approaches to het-
erogeneity of asthma. Although the metabolo-
mics of asthma has so far promoted studies of 
biological metabolites and metabolic pathways 
that are associated with asthma development 
and performance, the validation of these find-
ings is lacking, which mainly due to the hetero-
geneity of asthma [23]. To better understand 
which metabolites are important in asthma, we 
performed metabolomic analysis of sputum 
from asthma patients and healthy controls.

The metabolomic is a biochemical phenotype 
of a cell or tissue, and metabolite, the compo-
nent of the metabolomic, is the final product of 
gene expression and is produced under the 
action of metabolic enzymes. Many life activi-
ties in cells actually occur at the metabolite 
level, such as cell signaling, energy delivery and 
intercellular communication, are regulated by 
metabolites [24]. By analyzing the metabolic 
groups of different physiological states, we can 
fully understand the biochemical state of the 
organism or cell. The metabolomic analysis of 
phenotype from biological or physiological sta- 
te of recently acquired information, so metabo-
lomics analysis provided more information to 
reveal the relationship between gene and phe-
notype and to achieve the purpose of monitor-
ing and inferring gene function [25]. By using 
NMR based metabolomics to study saliva in 
patients with intractable asthma, it was found 
that metabolomics successfully predicted 86% 
of the patients; however, the rate of success 
was 81% by using traditional exhaled NO con-
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Figure 3. Summary of pathway analysis of sputum specimens of asthma patients. A. Pathways based on positive mode. (a) Glycine, serine and threonine metabo-
lism; (b) Valine, leucine and isoleucine degradation; (c) Arginine and proline metabolism; (d) Tyrosine metabolism; (e) Sphingolipid metabolism; (f) Purine metabo-
lism; (g) alpha-Linolenic acid metabolism; (h) Phenylalanine metabolism; (i) Arachidonic acid metabolism. B. Pathways based on negative mode. (a) Glycolysis or 
Gluconeogenesis; (b) Valine, leucine and isoleucine biosynthesis; (c) Pantothenate and CoA biosynthesis; (d) Histidine metabolism; (e) Pyrimidine metabolism; (f) 
Phenylalanine metabolism; (g) Ubiquinone and other terpenoid-quinone biosynthesis; (h) Fatty acid metabolism; (i) Tryptophan metabolism; (j) Arginine and proline 
metabolism; (k) Purine metabolism; (l) Citrate cycle (TCA cycle); (m) Fatty acid elongation in mitochondria; (n) Pyruvate metabolism; (o) Galactose metabolism; (p) 
Ascorbate and aldarate metabolism; (q) Fatty acid biosynthesis; (r) Tyrosine metabolism. P: positive mode; N: negative mode.
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tent and forced expiratory volume in one sec-
ond as the index [26]. Metabolomics study of 
hydrocortisone induced kidney deficiency in 
rats showed that the model group showed obvi-
ous metabolite difference compared with the 
normal group [27]. Kim et al. [28] collected 
urine samples from 50 kidney cancer patients 
and 13 normal controls and found that a profile 
analysis of low molecular weight metabolites in 
urine, including cluster analysis, PCA and linear 
discriminant analysis, can be used to screen 
for patients with kidney cancer, and it therefore 
provides a basis for the feasibility of metabo-
nomics in the diagnosis of kidney cancer. 

Mattarucchi et al. [17] applied the LC-MS tech-
nology to analyze the urine of 41 cases of chil-
dren with asthma, which showed significant dif-
ferences in urine metabonomics between asth-
matic and normal children, with the discrimina-
tion rate of 98%, and the changes of metabo-
lites are closely related to airway inflammation 
in asthma. Moreover, to assess the association 
between urinary romotyrosine level and chil-
dren with asthma, the HPLC with online electro 
spray ionization tandem MS (HPLC-ESI-MS) 
was utilized and showed that increased romoty-
rosine levels contributed to the severe asthma, 
suggesting that urinary romotyrosine can be 
used to assess the risk of asthma in children 
and to predict the risk of an acute attack of 
asthma [29]. The HPLC-QTOF-MSF method was 
developed previously for urine metabolite pro-
filing study and showed nineteen differential 
metabolites between the Shao-yao-Gancao 
decoction treatment group and the asthma 
group [30]. In the present study, 30 different 
metabolites in asthma patients compared with 
healthy control using UHPLC-QTOF-MS in posi-
tive ion mode were found, including 1-hexa- 
decanoyl-sn-glycerol_1, glycerol 1-stearate_1, 
sphingosine_2, PC (16:0/16:0) and 1-hexadec-
anoyl-sn-glycerol_2 were increased and Phe-
Ser_1, Tyr-Ala_2, Phe-Gln_1, Phe-Tyr_1, Adeni- 
ne_1, etc. were decreased. 12 different metab-
olites in asthma patients compared with heal- 
thy control using UHPLC-QTOF-MS in negative 
ion mode were also found, including cytidine 
2’,3’-cyclic phosphate, 1-hexadecanoyl-2-(9Z-
octadecenoyl)-sn-glycero-3-phospho-(1’-rac-
glycerol), 1-octadecanoyl-2-(9Z-octadecenoyl)-
sn-glycero-3-phosphoserine, and 1-stearoyl-sn-
glycerol 3-phosphocholine were increased and 
thymidine, gamma-L-glutamyl-L-valine_1, ade-

nine_1, urocanic acid, phosphoenolpyruvate, 
phenylpyruvate_2, p-chlorophenylalanine_3, 
and thymine_2 were decreased. These data 
suggest that these different metabolites may 
associate with the development of asthma. 

In the present study, metabolic pathways, retro-
grade endocannabinoid signaling and glycero-
phospholipid metabolism in positive mode and 
metabolic pathways, biosynthesis of amino 
acids, 2-oxocarboxylic acid metabolism, phe-
nylalanine, tyrosine and tryptophan biosynthe-
sis and valine, leucine and isoleucine degrada-
tion in negative mode were represented the 
differentially expressed compounds in asthma 
patients compared with healthy control. More- 
over, several metabolic pathways including gly- 
cerophospholipid metabolism, inositol phos-
phate metabolism, and glycolysis or gluconeo-
genesis were found most important. Glycero- 
phospholipid metabolism was the most signifi-
cantly perturbed pathways in experimental 
allergic asthma [31]. Inositol phosphates are 
important intracellular second messengers in 
eukaryotic cells and are of great importance in 
diverse cellular functions, such as Ca2+-signa- 
ling pathways, cell growth, cell differentiation, 
apoptosis, endocytosis, cell migration, mRNA 
exportation and maintenance of genomic sta-
bility [32, 33]. These findings demonstrated 
obvious correlation between these metabolic 
pathways and the development of asthma. 
However, some of the different metabolites in 
asthma patients should be further validated in 
our further investigation by using Real-time 
PCR and western blot analysis. 

Our study illustrates metabolic characteristics 
of sputum specimens in asthma patients and 
emphasizes the importance of metabolomics 
by using UHPLC-QTOF/MS. Several metabo-
lites, signaling pathways and metabolic path-
ways were found difference between healthy 
controls and asthma patients. The observa-
tions presented here reveal that metabolomic 
analysis of sputum on basis of UHPLC-QTOF/
MS may have clinical implications for the early 
diagnosis and risk prediction of asthma. 
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