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Abstract: The primary type of liver cancer, hepatocellular carcinoma (HCC), has been associated with
nonalcoholic steatohepatitis, diabetes, and obesity. Previous studies have identified some genetic
risk factors, such as hepatitis B virus X antigens, overexpression of SRC oncogene, and mutation of
the p53 tumor suppressor gene; however, the synergism between diet and genetic risk factors is still
unclear. To investigate the synergism between diet and genetic risk factors in hepatocarcinogenesis,
we used zebrafish with four genetic backgrounds and overfeeding or high-fat-diet-induced obesity
with an omics-based expression of genes and histopathological changes. The results show that
overfeeding and high-fat diet can induce obesity and nonalcoholic steatohepatitis in wild-type fish.
In HBx, Src (p53-) triple transgenic zebrafish, diet-induced obesity accelerated HCC formation at
five months of age and increased the cancer incidence threefold. We developed a global omics data
analysis method to investigate genes, pathways, and biological systems based on microarray and
next-generation sequencing (NGS, RNA-seq) omics data of zebrafish with four diet and genetic risk
factors. The results show that two Kyoto Encyclopedia of Genes and Genomes (KEGG) systems,
metabolism and genetic information processing, as well as the pathways of fatty acid metabolism,
steroid biosynthesis, and ribosome biogenesis, are activated during hepatocarcinogenesis. This study
provides a systematic view of the synergism between genetic and diet factors in the dynamic liver
cancer formation process, and indicate that overfeeding or a high-fat diet and the risk genes have a
synergistic effect in causing liver cancer by affecting fatty acid metabolism and ribosome biogenesis.
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1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of
mortality worldwide [1,2], and there is still no effective therapy available due to its heterogeneity [3].
Major risk factors for HCC include hepatitis B and hepatitis C virus infection, and aflatoxin
contamination, as well as chronic alcohol consumption. HCC may be formed through hepatitis,
fatty liver, and liver fibrosis, and eventually, develop into liver cancer. Hepatitis B (HBV) infection
is a major risk factor of HCC [4], and X antigen (HBx) has been reported to be the most obvious
carcinogen-induced liver cancer in mice [5] and zebrafish [6]. In human HCC patients, 75% of HCC
cancer tissue were HBx positive [7], and 65.38% of HCC tissue were SRC positive in the Chinese
population [8]. In the HBx-induced HCC mouse model, SRC was identified as a common regulator [9].
AFB1-induced p53 mutation at R249S mutation was highly associated with HCC [10]. HBx and
TP53 R249S mutation were found in 77% of HCC patients in the West African population [11].
We demonstrated that HBx and SRC overexpression induced hepatocarcinogenesis in p53 mutant
zebrafish [6]. Therefore, we generated a transgenic zebrafish model to reflect the genetic signature in
human HCC patients.

HCC also has been associated with nonalcoholic fatty liver disease (NAFLD), nonalcoholic
steatohepatitis (NASH), diabetes, and obesity [12–14]. Obesity is closely related to diabetes, chronic
liver disease, and many cancers [15]. More importantly, obesity has also been identified as one of the
main factors contributing to HCC [16–18]. According to a large epidemiological study, the number of
obese children and adolescents between the ages of 5 and 19 increased tenfold in the past 40 years [19].
In Asia, obesity and diabetes are also increasing [20]. Metabolic risk factors such as fatty liver, high
triglyceride levels, and diabetes mellitus are significantly associated with nonviral HCC in Taiwan [21].
With global anti-HBV vaccine and anti-HCV drugs, viral hepatitis-related liver cancer will gradually
subside, and NAFLD-related HCC will become an important issue. NAFLD and NASH are metabolic
diseases which are major drivers of HCC, and diet-induced obesity and high-fat diet is the cause
of metabolic disorders. Genetic variants associated with obesity can be modified by obesogenic
environments [22]. However, the synergistic effects between diet-induced obesity and genetic risk
factors for liver disease and liver cancer are unclear. It is essential to understand the synergism between
obesity and genetic risk factors and to develop therapeutic techniques derived from those discoveries.

Zebrafish is a vertebrate model with high relevance to humans; approximately 70% of human
genes have at least one obvious zebrafish orthologue [23]. The well-developed gene transfer technology
has boosted zebrafish as a prevalent research model in different research fields including human
diseases, cancer studies, and drug screening [24–26]. Zebrafish are a model in vivo organisms for
cancer research and drug identification, validation, and screening [27]. Zebrafish cancer models
could be part of preclinical precision medicine approaches [28]. Even in the Cancer Moonshot project,
zebrafish play an important role in developing new cancer technologies [29]. Previously, we developed
some transgenic zebrafish to study hepatocarcinogenesis [6,30–33]. Due to the functional conservation
in lipid metabolism, lipid biology, and glucose homeostasis, zebrafish have become a model for
obesity and diabetes [34], and a great model for genetic- and diet-induced adiposity [35]. Overfeeding
with 12 times the amount of Artemia for 8 weeks induced obesity and increased pathophysiological
pathways in wild-type zebrafish, similar to mammalian obesity [36]. However, most of these studies
lacked a global omics-based approach for a comprehensive analysis of obesity/NASH to HCC in the
zebrafish model.

To investigate the synergistic mechanism of obesity/NASH/HCC in zebrafish models with three
diet and four genetic risk factors, we developed an integrated omics computational model to examine
their related genes, pathways, subsystems, and systems. We selected 30 samples for omics analysis
using microarray (14 samples) and next-generation sequencing (NGS) (16 samples) to study the
dynamic changes of pathways from normal diet (NOR), overfeeding (DIO) using diet-induced obesity,
and high-fat-diet (FAT) treatment in four fish types: wild-type (WT), overexpression of hepatitis B virus
X antigen (HBx) with p53 mutation (HBx(p53-)), overexpression of Src with p53 mutation (Src(p53-)),
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and overexpression of both HBx and Src with p53 mutation (HBx,Src(p53-)). Our results indicate that
HBx, Src, and p53 mutations have a major impact on fat synthesis and carcinogenesis, and DIO or FAT
synergizes with those risk factors in hepatocarcinogenesis. We believe that the observed mechanisms
of interactions and the establishment of accelerated liver disease zebrafish models for drug screening
can be of benefit to people.

2. Results

2.1. Overview of Omics-Based Investigation of Diet-Induced Obesity and Hepatocarcinogenesis in
Zebrafish Model

We investigated the synergism between diet and genetic risk factors in hepatocarcinogenesis, and
the main steps of our strategy are described in Figure 1A. First, three types of diet (NOR, DIO, and FAT)
were given to zebrafish with four genetic backgrounds (WT, HBx(p53-), Src(p53-), and HBx,Src(p53-))
(Figure 1B). When compared to WT with a normal diet, DIO or FAT increased the expression of lipogenic
factors and lipogenic enzymes, including 1-acylglycerol-3-phosphate acyltransferase (agpat), fatty acid
synthase (fasn), and phosphatidate phosphatase (pap) using qPCR (Figure 1C) and hematoxylin and
eosin (H&E) (Figure 1D). Comparing DIO and FAT to a normal diet, our global omics data analysis
method identified differentially expressed genes (DEGs, such as scd, gck, and slc40a1; Figure 1E),
significant pathways with p-value < 0.05 (e.g., steroid biosynthesis, FoxO signaling pathway, and
insulin signaling pathway; Figure 1F). Finally, we found the metabolism and genetic information
processing have an increasing tendency with the increase of risk factors in microarray (Figure 1G).
These results show that our method can be useful for investigating gene-, pathway-, and system-level
activation or inactivation of diet-induced obesity and hepatocarcinogenesis in zebrafish models.

Figure 1. Overview of omics-based investigation of hepatocarcinogenesis in zebrafish models. (A) Main
procedure. (B) Experimental design of omics data in zebrafish with four genetic backgrounds: WT,
HBx(p53-), Src(p53-), and HBx,Src(p53-) with diet-induced obesity. (C) qPCR of some gene markers in the
four models. (D) Hematoxylin and eosin (H&E) stain images of the four zebrafish models with normal
diet (NOR), overfeeding (diet-induced obesity, DIO), and high-fat diet (FAT). (E) Selected differentially
expressed genes (DEGs). (F) Some enriched KEGG pathways of selected DEGs. (G) Meta-z-scores of
six KEGG systems of four zebrafish models.
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2.2. Weight Changes in Zebrafish with Different Genetic Backgrounds by Three Feeding Methods

We first checked whether the weight of the fish increased with DIO and FAT for two months,
starting at three months of age. For the wild-type, HBx(p53-), and Src(p53-) fish, the average weight
from FAT was more significant compared with normal diet and DIO. In all fish species, the average
weight gain from FAT was more significant than DIO. With a normal diet, the weight of the wild-type
fish was the highest; in the DIO group, the weight of the Src(p53-) fish was the highest; in the FAT
group, the weight of HBx(p53-) fish was the highest (Figure S1A). We also noticed gender differences
in the weight changes; weight gain was more significant in female than male fish (Supplementary
Figure S1B,C).

2.3. Impact of Genetic Factors on Steatosis and Cell Proliferation

In HBx(p53-) and Src(p53-) normal feeding (NOR) fish for two months (equivalent to five-month-old
fish), the expression of lipogenic enzyme or factors was higher than that of wild-type, and there was a
significant or extremely significant difference (Figure S2A,B). Those data indicate that HBx(p53-) and
Src(p53-) are genetic risk factors for hepatocarcinogenesis, and they alone can slightly increase the
expression of genes involved in fat synthesis in excessive or high-fat diets. Expression of HBx(p53-)
or Src(p53-) has a major impact on the expression of lipogenic enzymes and factors. The effect of
Src(p53-) is more dramatic than that of HBx(p53-). In HBx,Src(p53-) triple transgenic fish, there was
no significant increased expression of lipogenic factors and enzymes, but the cell cycle/proliferation
markers were significantly increased (Supplementary Figure S2C). Our results suggest that the impact
of genetic factors on steatosis was more significant in the overexpression of HBx and Src alone in
p53 mutant background. With the combination of HBx and Src in p53 mutant, the hepatocyte seems
forwarded from overexpressing lipogenic enzyme/factors to cell cycle/proliferation, and we suspect
the overexpression of oncogene-induced carcinogenesis.

2.4. Validation of Lipogenic Enzymes/Factors and Cell Cycle–Related Genes in Wild-Type Fish after Overfeeding

To examine the effects of diet-induced obesity on hepatocarcinogenesis, the expression patterns of
lipogenic enzymes (fasn, agpat, and pap) and lipogenic factors (pparg, srebf1, and chrebp) were examined.
We were also interested in examining the expression of the cell cycle/proliferation markers ccne1, cdk1,
and cdk2.

In wild-type fish after eight weeks of feeding, for the lipogenic enzyme, DIO did not cause
differences in the expression of agpat and pap, but decreased the expression of fasn. FAT increased
the expression of agpat and fasn, but there was no significant difference in pap (Figure 2A). For the
lipogenic factor, pparg and srebf1 were highly expressed by DIO, and the expression of srebf1 was more
significantly increased in FAT than DIO. The expression of chrebp was decreased in both FAT and DIO
after eight weeks (Figure 2B). The enhancement of lipogenic enzymes and factors was more obvious in
female than male fish (Figures S3A,B and S4A,B). In terms of cell cycle/proliferation markers, only
cdk1 was highly expressed; FAT did not show significant differences (Figure 2C). The increase of cell
cycle/proliferation markers was more obvious in female than male fish (Supplementary Figures S3C
and S4C).
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Figure 2. Expression of selected markers in various genetic background zebrafish fed with different
diets. Expression of lipogenic enzymes (agpat, fasn, and pap), lipogenic factors (pparg, srebf1, and
chrebp), and cell cycle/proliferation-related genes (ccne1, cdk1, and cdk2) in (A–C) WT, (D–F) HBx(p53-),
(G–I) Src(p53-), and (J–L) HBx,Src(p53-) fish after eight weeks of normal diet (NOR), overfeeding
(diet-induced obesity, DIO), or high-fat diet (FAT). The number of fish is 20 for each group, and the
number of experimental replicates for qPCR analysis is three. Expression fold change compared to
WT_NOR control. Statistical analysis of results was performed using a two-tailed Student’s t-test.
Asterisks (*) represent level of significance: * p-value ≤ 0.05; ** p-value ≤ 0.01; *** p-value ≤ 0.001;
**** p-value ≤ 0.0001.

2.5. Expression of Lipogenesis Factor, Lipogenesis Enzymes, and Cell Cycle–Related Genes in HBx(p53-),
Src(p53-), and HBx,Src(p53-) Transgenic Fish after Overfeeding

In HBx(p53-) transgenic fish, DIO or FAT increased the expression of lipogenic enzymes and
lipogenic factors (Figure 2D,E), and the enhancement was more obvious in females than in male fish
(Supplementary Figures S3D,E and S4D,E). After DIO and FAT, only cdk2 increased after eight weeks
of high-fat diet, and ccne1 and cdk1 were significantly decreased after FAT diet (Figure 2F), and this
enhancement seemed to be only in male fish (Supplementary Figures S3F and S4F).
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In Src(p53-) transgenic fish, DIO or FAT decreased the expression of lipogenic enzymes (Figure 2G)
and only FAT increased lipogenic factors (Figure 3H), and this enhancement seemed to be only in
female fish (Figures S3H and S4H). DIO and FAT did not increase the expression of cell cycle-related
genes (Figure 3I) in either female or male fish (Supplementary Figures S3I and S4G–I). DIO and
FAT in both HBx(p53-) and Src(p53-) transgenic fish had no further impact on the expression of cell
cycle–related genes, indicating that the genetic and diet factors reached a plateau and may represent
steatosis or early carcinogenesis.

Figure 3. Histopathological changes in various genetic background zebrafish fed with different diets.
Representative H&E stain images and histopathologic change statistics of (A–D) WT, (E–H) HBx(p53-),
(I–L) Src(p53-), and (M–P) HBx, Src(p53-) fish after 8 weeks of normal diet (NOR), overfeeding
(diet-induced obesity, DIO), or high-fat diet (FAT) starting at 3 months of age, and scarified at 5 months.
The histopathologic change consists of percentages in five states: normal, steatosis, hyperplasia,
dysplasia, and hepatocellular carcinoma (HCC). The number of fish is represented as N on top of each
bar. The scale bar is 50 µm.

From previous experiments, we found DIO and FAT diets exhibited similar effects on zebrafish,
so for the triple transgenic fish, we only applied the DIO diet and compared with the normal diet.
In HBx,Src(p53-) triple transgenic fish, DIO did not increase the expression of lipogenic enzymes and
factors (Figure 2J,K) except for srebf1, and there was no gender difference (Supplementary Figures
S3J,K and S4J,K). However, DIO further increased cell cycle–related gene expression (Figure 2L), and
the enhancement was more obvious in female than male fish (Figures S3L and S4L). Our data suggest
that more genetic factors changed the genetic regulatory networks and, with diet-induced obesity,
further promoted carcinogenesis.

2.6. Liver Pathology after Diet-Induced Obesity

We then examined liver specimens using H&E staining to verify the histopathological changes
following different feeding treatments in transgenic fish. Representative images of H&E staining are
shown in Figure 3A–C for WT, Figure 3E–G for HBx(p53-), Figure 3I–K for Src(p53-), and Figure 3M–O
for HBx,Src(p53-), and the statistical analysis is shown in Figure 3D,H,L,P. We also analyzed the
histopathological changes from overfeed for 16 weeks starting from 3 months of age and scarified the
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fish at 7 months (Figure 4). In WT fish, FAT increased steatosis, and both DIO and FAT caused slight
hyperplasia (one fish out of 20 fish developed hyperplasia), which was more significant with prolonged
feeding (Figure 4D). In HBx(p53-) and Src(p53-) transgenic fish, normal diet caused hyperplasia and
FAT enhanced steatosis (Figure 3H,L). In HBx, Src(p53-) triple transgenic zebrafish, DIO accelerated
HCC formation at five months of age and tripled the chances of getting HCC (Figure 3P). These
histopathological features were consistent with the expression data from qPCR (Figure 2).

Figure 4. Histopathological changes in various genetic background zebrafish fed with different diets.
Representative H&E stain images and histopathologic change statistics of (A–D) WT, (E–H) HBx(p53-),
(I–L) Src(p53-), and (M–P) HBx,Src(p53-) fish after 16 weeks of normal diet (NOR), overfeeding
(diet-induced obesity, DIO), or high-fat diet (FAT) starting at 3 months of age, and scarified at 7 months.
The histopathologic change consists of percentages in five states: normal, steatosis, hyperplasia,
dysplasia, and hepatocellular carcinoma (HCC). The number of fish is represented as N on top of each
bar. The scale bar is 50 µm.

2.7. Global Omics Data Analysis

We proposed a systemic approach to analyze the whole-genome expression profile (i.e., microarray
and NGS) of four types of fish after eight weeks of DIO and FAT (Table S1). We first identified DEGs
based on fold change >2, which included upregulated and downregulated genes in the four types
of fish between normal and obesity diet (DIO and FAT). In microarrays of WT, HBx(p53-), Src(p53-),
and HBx,Src(p53-) fish there were 767, 1032, 1557, and 1851 DEGs, respectively, and in NGS of WT,
HBx(p53-), Src(p53-), and HBx,Src(p53-) fish there were 527, 500, 1352, and 1498 DEGs, respectively. The
upregulated and downregulated genes underwent separate KEGG pathway enrichment analysis using
hypergeometric distribution, and pathways with p-value < 0.05 were considered significant. Based on
these pathway enrichments, we computed six KEGG system enrichments by using meta-z-scores.

At the system level, the meta-z-scores of microarray and NGS of the four types of fish are similar
and consistently increase from WT, HBx(p53-), and Src(p53-) to HBx,Src(p53-), especially metabolism
and genetic information processing (Figure 5A). In these two KEGG systems, the meta-z-scores of
Src(p53-) and HBx,Src(p53-) are consistently higher than those of WT and HBx(p53-). These results
imply that the pathways and genes of metabolism and genetic information processing have significant
effects on hepatocarcinogenesis. Interestingly, the meta-z-score of Src(p53-) (11.48) is higher than that
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of HBx,Src(p53-) (9.38) in genetic information processing of NGS data. Based on Euclidean clustering,
the omics data of the eight conditions (four genetic factors each for microarray and NGS) were divided
into two cluster groups (Figure 5B). The WT and HBx(p53-) omics data of microarray (MIC) and NGS
were clustered together, and the MIC and NGS omics data of Src(p53-) and HBx, Src(p53-) fish were
clustered together. The results demonstrate that MIC and NGS have consistent biological mechanisms
and the clustering result is in agreement with the histopathologic changes of the four genetic models.

Figure 5. Statistics of system-level meta-z-scores and pathway z-scores for the four genetic fish models.
(A) Meta-z-scores and (B) heatmap of six KEGG systems of the 30 samples with four models and
three diet types in microarray and NGS. WT: blue; HBx(p53-): deep orange; Src(p53-): purple; and
HBx,Src(p53-): green. MIC, microarray; NGS, next-generation sequencing. Red and white denote high
and low meta-z-scores, respectively. (C) Pathway z-score distributions and trends of microarray and
NGS in the four models. For KEGG system, yellow bar: metabolism; light blue bar: genetic information
processing; orange bar: environmental information processing; light purple bar: cellular processes;
light green bar: organismal systems; cyan blue: human diseases. Red and white denote high and low
scores, respectively. For trend column, red and green dots indicate the highest and lowest z-scores,
respectively. The number of fish is for microarray and NGS are listed in Table S1, there are 14 samples
for microarray, 16 samples for NGS.
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To understand which genes and pathways in a system contribute to synergistic mechanisms
of hepatocarcinogenesis, we analyzed pathway enrichment (p-value) of DEGs derived from eight
kinds of omics data (four genetic factors of both MIC and NGS). We then selected 26 significant
pathways (p-value < 0.05) that were consistent in both MIC and NGS (Figure 5C). According to the
z-score profiles of these 26 pathways of four genetic factors, we observed several interesting results.
First, some pathways (e.g., metabolic pathways, and amino sugar and nucleotide sugar metabolism)
consistently increased from WT, HBx(p53-), and Src(p53-) to HBx,Src(p53-) fish. These pathways and
DEGs play key roles in the normal state, steatosis, hyperplasia, and dysplasia toward HCC, and this
result corresponds with H&E stain images and histopathologic change statistics (Figure 3D,H,L,P). The
pathways involving central principles (i.e., protein processing in the endoplasmic reticulum, ribosome
biogenesis in eukaryotes, and RNA polymerase) have high meta-z-scores in the genetic information
processing system. Dysregulation of mRNA translation can be considered a cancer hallmark leading to
aberrant proliferation. In the pathway of ribosome biogenesis, we found most of the genes (e.g., nop56,
dkc1, and emg1) were downregulated and nonsignificant in WT and HBx(p53-), but upregulated in
HBx, Src(p53-) (Supplementary Figure S5).

Second, some pathways (e.g., pyrimidine metabolism, fatty acid metabolism, and steroid
biosynthesis) consistently decreased in WT and HBx(p53-) fish and increased in Src(p53-) and
HBx,Src(p53-) fish. Overexpression of HBx and mutation of p53 in WT fish led to slight hyperplasia,
which caused the proliferation of normal cells and increased the cell numbers in the liver, but
these pathways were inactivated in normal or slight hyperplasia state. Conversely, they activated
serious hyperplasia and HCC state. The pyrimidine metabolism pathway contributed to form cancer
mechanisms [37–39].

Furthermore, several pathways (e.g., glycolysis/gluconeogenesis, insulin signaling pathway, and
insulin resistance) increased in WT and HBx(p53-) fish and decreased in Src(p53-) and HBx, Src(p53-)
fish. Diabetes-related pathways were highly activated in WT fish with obesity diet, but inactivated in
HBx, Src(p53-) fish. Many previous reports demonstrated that insulin resistance is a risk factor for
cancer because it is a major component of metabolic syndrome, but the effect might decrease with the
formation of HCC compared to WT with obesity diet [40]. The involved DEGs in insulin resistance
pathway are listed in Tables S2 and S3.

Finally, some pathways (e.g., toll-like receptor (TLR) and p53 signaling pathways) consistently
decreased in WT, HBx(p53-), Src(p53-), and HBx,Src(p53-) fish. In general, the p53 mutation in
HBx(p53-), Src(p53-), and HBx, Src(p53-) fish inactivated the p53 signaling pathway. Interestingly,
the trend of TLR inflammation was decreased in hepatocarcinogenesis in the zebrafish model. These
results show that global omics data analysis can reveal synergistic mechanisms of hepatocarcinogenesis
based on our method and omics data of zebrafish models with four genetic backgrounds.

2.8. Similarity Estimation among Genes, Pathways, and System Levels of Global Omics Data Analysis

To achieve a quantifiable outcome of similarity between microarray and NGS data in the four
types of fish, we used the Jaccard coefficient to estimate the similarities of gene, pathway, and system
levels. The Jaccard similarity index is defined as (1):

Jaccard =
Si ∩ S j

Si ∪ S j
(1)

where Si and Sj are gene sets of the DEGs, significant pathways, or significant systems selected from
microarray i and NGS j in a type of fish; Si ∩ Sj and Si ∪ Sj denote the intersection and union of DEGs,
pathways, or systems between Si and Sj, respectively. The Jaccard index of system level has the highest
median (0.58); conversely, the Jaccard index of gene level has the lowest median (0.14) (Supplementary
Figure S6). This result implies that the genes selected from the microarray and NGS may be different,
but they could participate in the same pathways or systems. Our method can eliminate the obstacles
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of different platforms (e.g., microarray and NGS) in omics data to identify the biological meanings
reflecting hepatocarcinogenesis using different genetic risk factors and diets.

2.9. Identifying Potential Genes by Global Omics Data Analysis

To identify potential genes contributing to obesity, NASH, and HCC, we further developed
maximum combined score (MCS) and average root combined score (ARCS) based on system-,
subsystem-, pathway-, and gene- level global omics data analysis. We then evaluated the performance
of these two scoring methods by 1960 (obesity) and 3592 (HCC) genes with gene–disease association
score >0 as gold positive sets from the DisGeNET database [41]. Because the positive genes of DisGeNET
are human, finally 828 (obesity) and 1400 (HCC) human genes were mapped into the zebrafish genes
according to orthologues recorded in the KEGG database. Furthermore, we utilized precision to
evaluate the performance of the three scoring systems, MCS, ARCS, and fold change. The results show
that MCS and ARCS performed better than fold change for obesity and HCC (Figure 5). MCS and
ARCS achieved similar performance for obesity (Figure 6A), and MCS showed the best performance
among these methods for HCC (Figure 6B). Among these scoring methods, fold change was the worst
for obesity and HCC genes. We show the top ranked 20 genes of MCS and the corresponding ranks of
ARCS and FC in obesity and HCC, respectively. Among these 20 genes, 8 genes (e.g., gck, scd, and
pik3ca) are related to obesity recorded in DisGeNET (Table S4). Conversely, 7 and 5 genes are recorded
in DisGeNET for the top ranked 20 genes from ARCS and FC, respectively. For the top ranked 20 genes
of MCS, 11 genes (e.g., sqlea, hmgcra, and mvda) are related to HCC (Table S5). In contrast to the MCS, 7
of the top ranked 20 genes from both ARCS and FC are recorded in DisGeNET.

Figure 6. Precision comparison of three scoring methods for obesity and HCC. Scoring methods for
selecting potential genes are maximum combined score (MCS, red), average root combined score (ARCS,
orange), and fold change (FC, blue) for (A) obesity in WT fish and (B) HCC in HBx,Src(p53-) fish with
overfeeding and high-fat diet. Positive sets are selected from DisGeNET database.

There were 14 genes that were top scoring from microarray. These genes might be potential
drug targets for the treatment of NASH, NAFLD, obesity and HCC. We further validate the mRNA
expression levels using qPCR. We compared microarray data (Figure 7A–E) with qPCR (Figure 7F–J)
on 5 of the top 14 genes from WT and different genetic background fish fed normal and obesity diets
(Figure 7A–E).
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Figure 7. Validation of microarray with qPCR for the representative genes. Expression of (A,F) scd,
(B,G) gck, (C,H) acat2, (D,I) pik3ca, and (E,J) aldh7a1 in WT, HBx(p53-), Src(p53-), and HBx,Src(p53-)
fish after eight weeks of normal diet (NOR), overfeeding (diet-induced obesity, DIO), or high-fat diet
(FAT) from (A–E) microarray and (F–J) qPCR analysis. (K) Top 14 genes selected by global omics data
analysis. (L) Among the 14 genes, 5 genes (red) overexpressed in WT diet-induced obesity are related to
glucose and lipid metabolism. The number of fish is 20 for each group, and the number of experimental
replicates for qPCR analysis is 3.

We found that the mRNA expression levels of stearoyl-CoA desaturase (scd), which converts
palmitic acid to monounsaturated fatty acids (Figure 7L), was increased not only in WT after overfeeding
or high-fat diet, but also in HBx(p53-)-NOR and FAT and Src(p53-)-NOR and FAT fish (Figure 7F).
Hepatic SCD has been associated with fatty liver, obesity, and metabolic diseases [42]; here we found
mRNA level of scd was upregulated by over feeding and high-fat diet in WT, HBx(p53-) and Src(p53-)
fish, which might indicates high hepatic scd plays a direct role in the development of fatty liver and
development of metabolic disorders.

The mRNA expression levels of hepatic glucokinase (gck), which catalyzes the initial step of
glucose utilization by liver, was increased in WT after overfeeding or high-fat diet, as well as in
Src(p53-)-NOR and DIO fish (Figure 7G). This result is consistent with humans where the mRNA
expression levels of GCK are associated with fatty liver and triglyceride contents [43]. Increased
glucose uptake will facilitate formation of acetyl-CoA which then can be converted into lipid droplets
by scd (Figure 7L).

The mRNA expression of acyl-Coenzyme a:cholesterol acyltransferase 2 (acat2), which converts
acetyl-CoA to acetoacetyl-CoA and finally produce cholesterol, had increased expression in WT fed a
high-fat diet, as well as in Src(p53-), Src(p53-)-DIO and HBx,Src(p53-) fish (Figure 7H). The direct role of
ACAT2 linked to hepatic steatosis and glucose homeostasis was also proved in the mouse model [44].

The mRNA expression of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
(pik3ca), which is involved in PI3K signaling, was increased in WT fish fed a high-fat diet as well as
overfed Src(p53-) fish (Figure 7I). PI3K/AKT signal increase de novo lipogenesis [45], and PIK3CA
participated in the progression of NAFLD to NASH [46]. Activation of PI3K/Akt pathway is highly
correlated with the development of liver fibrosis [47], this might explain why the upregulation of pik3ca
was not in most of the fish with steatosis.

The expression of aldehyde dehydrogenase 7 family member A1 (aldh7a1), which participates in
glucose, lipid, and amino acid metabolism, had increased expression in overfed and high-fat-diet-fed
WT fish (Figure 7J). The upregulation of mRNA expression for the critical genes identified by microarray
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correlated to the steatosis during early hepatocarcinogenesis revealed by the histopathological diagnosis.
Our global omics data analysis identified genes are connected to glucose and lipid metabolism also
participating in NASH from the WT fish diet-induced obesity model (Figure 7L), and those genes
might be potential drug targets for prevention of NASH, obesity and HCC. Our method discovered the
potential genes in HBx(p53-) and Src(p53-) diet-induced obesity, which might represent the transition
stages from NASH to early HCC (Tables S6 and S7), as well as the genes for HCC from overfed
HBx,Src(p53) fish (Table S8).

3. Discussion

Understanding the mechanisms of the transition from obesity/NASH to HCC is important for
developing biomarkers and therapeutic strategies. We combined the phenotype data of one to three
genetic risk factors with three diet types and cross-platform gene expression data to investigate the
disease process and identify biomarkers or druggable genes using global omics data analysis and
maximum combined score (MCS).

From our previous study, HBx(p53-) transgenic fish developed HCC at 11 months under a normal
diet [6]. In this study, we fed the zebrafish for different diets at 3 months old for two months, and the
sacrificed at the age of 5 months. We observed about 40% hyperplasia and no HCC, which is similar to
what was found previously. Previously we found Src(p53-) transgenic fish developed HCC from 7 to
11 months, and only have hyperplasia at 5 months [6]. In this study, we also found Src(p53-) transgenic
fish developed hyperplasia at 5 months of age, which is similar to previous study.

We have compared all HCCs from different genetic backgrounds and various diets to see how
genetics influence HCC biology (Figure 4). Actually, the extensive diet treatment for 16 weeks for WT,
HBx(p53-) and Src(p53-) promoted HCC formation; however, the HBx,Src(p53-) diet-induced obesity
for 16 weeks reduced the HCC formation, which may due to the self-healing of zebrafish reported from
various transgenic fish lines from our lab and others [6,32,33,48,49]. When we compared the HCC
biology from different models, we saw the HBx, Src(p53-) diet-induced obesity for 8 weeks exhibited
the most intensive HCC characteristics with more hepatocytes developed HCC. The HCCs developed
from the extensive high-fat diet were also combined with steatosis.

We found that a high-fat diet and overfeeding can induce obesity and steatosis in wild-type fish by
increasing the expression of genes involved in fat synthesis, and the change was more significant when
there were no genetic risk factors. In the presence of two genetic risk factors, HBx(p53-) and Src(p53-),
with a normal diet, hepatocytes underwent hyperplasia, and increased hyperplasia was only observed
with prolonged feeding. Overfeeding- or high-fat-diet-induced overexpression of lipogenic factors and
enzymes also increased steatosis measured by H&E stain. However, hyperplasia was already obvious
with the normal diet, and the DIO diet can increase hyperplasia a little in HBx(p53-) fish.

In the HBx,Src(p53-) fish overfed for eight weeks, we observed that hyperplasia increased about
threefold (from 21% in the normal diet to 62% in DIO), and HCC increased about threefold (from 7% in
the normal diet to 23% in DIO). In HBx,Src(p53-) triple transgenic zebrafish, diet-induced obesity did
not increase steatosis but accelerated HCC formation at five months of age, and the tripling enhanced
the chances of getting HCC. In the global omics data analysis, we quantified the six KEGG systems to
more comprehensively investigate the behaviors of the four types of fish between control and obesity
groups regarding traditional pathways or genes. Our method initially offers direct clues for disease
states or treatments. In addition, the pathway and gene-level showed details involving pathway
activation/inactivation and gene upregulation/downregulation. Furthermore, if all three genetic risk
factors were present HBx, Src(p53-) fish underwent earlier onset of liver cancer formation and threefold
increased liver cancer incidence after eight weeks of overfeeding.

The progression from NAFLD to NASH in humans was originally proposed as a “two-hit
hypothesis” [50], in which insulin resistance mediated increase of free fatty acids due to enhanced
lipolysis was the first hit that leads to steatosis. The increased level of fatty acid oxidation enhancing
oxidative stress was the second hit that triggers lipid peroxidation, inflammation, fibrosis, and
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carcinogenesis. Because the two-hit hypothesis is insufficient to explain the complicated mechanisms in
NAFLD/NASH-HCC, the “multiparallel-hits hypothesis” was proposed [51], and has been recognized
as the mechanism of NASH-HCC in humans [52], in which hepatic inflammation was the first cause,
and numerous conditions (including genetic variations, abnormal lipid metabolism, oxidative and/or
endoplasmic reticulum stress (ER stress), mitochondrial dysfunction, altered immune responses, and
imbalance in gut microbiota) act in parallel.

In the molecular levels, complex changes in signaling pathways due to genetic and epigenetic
changes mediate metabolism dysregulation and cell proliferation [53]. The pro-inflammatory cytokines
IL-6 activates IAK/STAT3, phosphatidylinositol 3-kinases (PI3K)/AKT/mTOR, mitogen-activate protein
kinase (MAPK) pathway, and TGF-β and Wnt/β-catenin that regulate proliferation and energy
metabolism in the cell were reported.

The combination of endoplasmic reticulum stress and a high-fat diet (HFD) can lead to HCC
through a number of underlying mechanisms. HFD can produce moderate ER stress, which increases
lipogenesis and hepatic steatosis, while they increase reactive oxygen species (ROS) and oxidative
stress and subsequently cause genomic instability, leading to the death of hepatic cells and the release
of inflammatory factors that stimulate hepatocyte proliferation leading to HCC [52].

Using a mouse model fed with high-fat-non-cholesterol versus high-fat-high-cholesterol, scientists
have found high-cholesterol promotes NASH development. Upregulation of the metabolic genes
(ALDH18A1, CAD, CHKA, POLD4, PSPH, and SQLE) and aberrant expression of cancer-related genes
(ALCAM, ITGA6, DDIT3, MAP3K6, and PAK1) were found in mouse fed with high-fat-high-cholesterol
similar to human NASH-HCCs [54]. Another female mice model fed with Western diet (WD)-induced
NASH increased the expression of genes, including steatosis (SFA, MUFA, MUFA-containing di- and
triacylglycerol), inflammation (TNFα), oxidative stress (Ncf2), and fibrosis (Col1A) via lipidomics and
transcriptomic approach [55]. Our results revealed that pathways of fatty acid metabolism and steroid
biosynthesis are activated during hepatocarcinogenesis which is consistent with previous results. In our
results, we also found glycolysis/gluconeogenesis, insulin signaling pathways, and insulin resistance
pathways were increased in WT and HBx(p53-) DIO fish. Our results also indicated that ribosome
biogenesis is activated during hepatocarcinogenesis, which has not been mentioned in previous studies.
Moreover, we found that genes related to glucose and lipid metabolism are overexpressed in WT
diet-induced obesity, revealing glucose uptake from overfeeding will link to lipogenesis. This finding
is novel and might explain the molecular mechanisms for overfeeding causing NASH.

Based on 26 significantly consistent pathways (p-value < 0.05) in both MIC and NGS (Figure 5C),
some of which are related to immune responses in four genetic background zebrafish, we summarize
the observations as follows: First, toll-like receptor signaling pathway, playing key roles in the immune
system, consistently decreased in WT, HBx(p53-), Src(p53-), and HBx, Src(p53-) fish. We found the
gene expressions of tlr5a and tlr5b were up-regulated in WT, and gene nfkbiaa was up-regulated in
both WT and HBx(p53-). These genes are highly related to the immune response. In addition, several
pathways (e.g., NOD-like receptor signaling pathway and RIG-I-like receptor signaling pathway),
which belong to the immune system based on the KEGG database, have similar trends in omics
data. Second, insulin signaling and insulin resistance pathways were considered to participate in the
regulation of islet endocrine influenced by the immune system [56,57]. They increased in WT and
HBx(p53-) fish and decreased in Src(p53-) and HBx,Src(p53-) fish. Third, the pathway of proteasome
consistently decreased in WT and HBx(p53-) fish and increased in Src(p53-) and HBx,Src(p53-) fish. It
regulates the immune system by degrading immune and inflammatory mediators [58]. Interestingly,
the trend of the proteasome is opposite to the trend of the toll-like receptor signaling pathway. Finally,
the metabolic pathways (e.g., fatty acid degradation) consistently increased from WT, HBx(p53-), and
Src(p53-) to HBx,Src(p53-) fish. Immune responses could be potentially modified by fatty acids, and the
modifications include the organization of lipids in the cells and interaction with nuclear receptors [59].
These results imply that the immune system plays a key role in diet-induced obesity and accelerating
hepatocarcinogenesis in zebrafish.
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Our method has several limitations, challenges, and perspectives. First, MCS may prefer
well-studied genes, since only genes recorded in the KEGG database were considered in this study.
Second, the scores of the pathway (z-scores) and system (meta-z-scores) represent enrichment computed
by significant up- and downregulated genes. Therefore, a high z-score may be caused by downregulated
genes. For example, most DEGs in the steroid biosynthesis pathway in hepatocarcinogenesis (i.e., from
WT to HBx,Src(p53-)) are downregulated (Supplementary Figure S7).

4. Materials and Methods

4.1. Zebrafish Maintenance and Transgenic Zebrafish Lines

The AB zebrafish strain (Danio rerio), Tg(fabp10a:Src(p53-)), Tg(fabp10a:HBx(p53-)), and
Tg(fabp10a:HBx,Src(p53-)) were used in this study. The AB strain was obtained from the Zebrafish
International Resource Center (ZIRC, Eugene, OR, USA), and the other transgenic lines were bred in
our laboratory. All fish were maintained in the Zebrafish Core Facility at the National Health Research
Institute (NHRI) in Taiwan. All experiments involving zebrafish were approved by the Institution
Animal Care and Use Committee (IACUC) of the NHRI (protocol No. NHRI-IACUC-106119-A). The
embryos were cultured in the laboratory and raised at 28 ◦C as described previously [60].

Four types of fish, 3 months old, were treated with 3 feeding methods: normal diet, overfeeding,
or high-fat diet. After 8 weeks of feeding, fish were weighed, and liver tissue from about 20 fish was
collected. The weight changes of each group were measured and recorded weekly. One-third of the
collected liver tissue was taken for RNA extraction, and the resulting mRNA was reverse transcribed
into cDNA and subjected to qPCR and analyzed for expression of marker genes for lipogenic factors,
lipogenic enzymes, and cell cycle/proliferation. One-third of the liver tissue was taken for paraffin
embedding and sectioning, and H&E staining was performed. The stained sections were photographed
and the pathological features of liver tissue were analyzed.

4.2. Feeding Method

Wild-type zebrafish overfed with 12 times the amount of Artemia than those fed with 5 mg
dry weight/day/fish for 8 weeks became obese and had increased expression of pathophysiological
pathways similar to mammalian obesity [36]. We followed the diet-induced-obesity method and fed
wild-type, HBx(p53-), Src(p53-), and HBx, Src(p53-) fish with 12 times the amount of Artemia or a
high-fat diet for 8 weeks. All groups were fed a spoonful of powdered feed (about 0.22 g) at 09:00
every day. Newly hatched brine shrimp were collected into a 50 ml centrifuge tube and placed in a
dark room to settle to the bottom. The volume of the brine shrimp was concentrated to 10 mL, and
the supernatant was aspirated for a total volume of 48.5 mL, shaken well before feeding. The normal
feeding group (NOR) were fed 0.5 mL of Artemia once a day. The DIO groups received 2 mL of Artemia
three times a day. The high-fat-feed group (FAT) were fed with 0.5 mL of Artemia once a day, and one
spoonful of high-fat fish food (about 0.22 g) three times daily. The feeding schedule is listed in Table 1.

Table 1. Feeding Schedule.

Time
Group Normal Diet (NOR) Diet-Induced Obesity (DIO) High-Fat Diet (FAT)

09:00 Powdered feed (0.22g) powdered feed (0.22 g) powdered feed (0.22 g)
11:00 None brine shrimp 2 mL high-fat fish food (0.22 g)

15:00 Artemia 0.5mL brine shrimp 2 mL high-fat fish food (0.22 g)
brine shrimp 0.5 mL

17:30 None brine shrimp 2 mL high-fat fish food (0.22 g)
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4.3. Body Weight Measurement and Liver Specimen Collection

Weekly body weights were measured for 8 weeks and recorded as continuous changes in body
weight. To do this, we took the fish from the tank and anesthetized them with 1X anesthetic solution
(10 mg Tricaine powder, 48 mL ddH2O, 2 mL Tris (1 M, pH 9.5), neutralized to pH 7.0–7.5), picked up
all the fish and drained them with paper towels, then put them into a 200 mL beaker on an electronic
scale and recorded the total weight. Then we put the fish back into the tank, filled with clean water, for
them to recover and be returned to the original fish tank.

Endpoint body weights were measured after 8 weeks of feeding. We immersed the fish from
which liver specimens would be collected into the anesthetic. After they were anesthetized, we drained
the fish with paper towels, then put them into a 200 mL beaker on an electronic scale and recorded
the total weight. After reading the numbers, we placed them in a Petri dish and started collecting the
liver samples by cutting the fish belly with dissecting scissors, removing the liver, removing other
internal organs, and dividing the liver into 3 equal parts. One-third of the liver was placed in a
microcentrifuge tube for RNA extraction, and beads for homogenization (0.5 mm) were added. For
histopathological analysis, one-third of the liver was placed in a microcentrifuge tube to which 10%
formalin had been added, and then paraffin-embedded and sectioned by the NHRI pathological core
laboratory. For protein analysis, one-third of the liver was placed in a microcentrifuge tube containing
a protein extracting reagent and homogenized beads (0.5 mm). After all the fish were processed, the
liver specimens were put in liquid nitrogen and stored at −80 ◦C.

4.4. RNA Analysis of Gene Expression

Liver tissue was ground in a homogenizer and RNA was extracted using the RNAspin Mini
RNA Isolation Kit (GE Healthcare). Reverse transcription PCR (RT-PCR) was performed using a
High-Capacity RNA-to-cDNA™ Kit (Life Technologies). Then 10 µL of 2× RT buffer and 1 µL of 20×
enzyme mix were added to 2 µg of RNA sample, and nuclease-free H2O was added for a final volume
of 20 µL. Samples were incubated in a polymerase chain reactor for the reverse transcription reaction
under the following conditions: 37 ◦C for 60 min, 95 ◦C for 5 min, and finally back to 4 ◦C. The cDNA
was subjected to quantitative PCR or stored at −80 ◦C.

4.5. Quantitative PCR (qPCR)

The resulting first-strand cDNA was used as a template for qPCR in triplicate using the KAPA
SYBR® FAST qPCR Kit Master Mix (2×) ROX Low (Kapa Biosystems, USA) with an ABI PRISM 7900
PCR System. Ten genes (actin, pparg, srebf1, chrebp, fasn, pap, agpat, ccne1, cdk1, cdk2) were detected per
sample. The specific primers used in the qPCR are listed in Table S9. All experiments were performed in
triplicate, and mean values were obtained. Actin was used as internal control. The reaction parameters
were set as follows:

(1) 50 ◦C for 2 min, 95 ◦C for 5 min, 4 ◦C thereafter
(2) 95 ◦C for 10 min
(3) 95 ◦C for 15 sec, 60 ◦C for 1 min (40 cycles)
(4) 95 ◦C for 15 sec, 60 ◦C for 15 sec, 95 ◦C for 15 sec

After normalization to actin as internal control, the expression ratio between experimental
and control groups was calculated using the comparative Ct method. The relative expression ratio
(fold change) was calculated based on ∆∆Ct, which was (Ct(target) − Ct(actin)) of the experimental
group−(Ct(target) − Ct(actin)) of the control group, where fold change = 1.94−∆∆Ct. The fold changes were
calculated considering the qPCR reaction efficiency. At least 3 independent samples were used for the
qPCR, and medians and standard errors were calculated and are presented as median ± standard error.
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4.6. Histopathological Analysis

For histopathological analysis, the tissues were fixed in a 10% formalin solution (Sigma-Aldrich
Inc., St. Louis, MO, USA), embedded in paraffin, sectioned at a thickness of 5 µm, mounted on
Poly-L-lysine-coated slides, and stained with hematoxylin and eosin (H&E). After xylene and ethanol
were used to gradually dewax and rehydrate, the hematoxylin and eosin dye was added, then they
were gradually dehydrated and sealed. The pathological analysis was judged as follows. Normal:
normal cells are arranged neatly, the size of the nucleus is similar, and the cytoplasmic ratio is not
high. Steatosis: a vacuole composed of fatty oil droplets in the cytoplasm of hepatocytes can be seen.
Hyperplasia: there are large and slightly abnormal nuclei with a high nucleus-to-cytoplasm ratio.
Dysplasia: cells that have changed morphology, with larger nuclei and distinct nucleoli, are seen. HCC:
there are large pleural and enlarged nuclei, in which nucleoli can clearly be observed.

4.7. Statistical Analysis

The body weight and qPCR data were analyzed using SPSS 17.0 (SPSS, Inc.) and Prims GraphPad.
The statistical analysis was performed using a two-tailed Student’s t-test. In all statistical analyses,
p-values < 0.05 were considered to be statistically significant and are presented as: * p ≤ 0.05; ** p ≤ 0.01;
*** p ≤ 0.001; and **** p ≤ 0.0001.

4.8. GeneTitan™ Array and RNA-seq for Gene Expression Profiling

In total, 14 and 16 selected RNA samples from 8 weeks of feeding were subjected to GeneTitan
microarray and RNA sequencing (RNA-seq) analysis, respectively. RNA-seq used next-generation
sequencing (NGS) to analyze gene expression of samples. ZebGene 1.1 ST Array Plates (Affymetrix,
USA) and Illumina HiSeq 4000 platform with 150 bp paired-end reads (Illumina, USA) were used
for the whole-genome transcriptome analysis. The raw data of the microarray and RNA-seq have
been submitted to the NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/)
under accession code GSE134496 as SuperSeries. The SuperSeries is composed of two SubSeries as
GSE134494 (microarray) and GSE134495 (RNA-seq).

4.9. Global Omics Data Analysis

For microarray, normalization of gene-level data was performed by the robust multi-array average
(RMA) method [61] in R [23] using the oligo package [62]. For RNAseq of NGS, the reads were aligned
with the zebrafish reference genome (GRCz10/danRer10) [63] using the HISAT package [64] and the
mapped reads were assembled into transcripts using StringTie [65]. Next, the expression levels of all
transcripts were estimated and calculated based on fragments per kilobase of transcript per million
fragments mapped (FPKM) by StringTie and the Ballgown package in R, respectively. The average
mapping rate of reads was 89% (Table S10).

For microarray and NGS analysis, we first identified the differentially expressed genes (DEGs)
with fold change ≥2 using the limma package [66]. Based on these DEGs, the hypergeometric
distribution [67,68] was used for pathway enrichment analysis, and pathways with p-value < 0.05 were
considered significant. Here, the p-value is calculated as (2):

p =
n∑

i=x

(
M
i

)(
N −M
n− i

)
(

N
n

) (2)

where N is the number of genes recorded in KEGG, M is the number of DEGs, n is the number of
genes in the specific KEGG pathway, and i is the number of genes that are DEGs in the specific KEGG
pathway. N and n were obtained from the database for annotation, visualization, and integrated

http://www.ncbi.nlm.nih.gov/geo/
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discovery (DAVID) v6.8 [69]. The p-value of each pathway underwent a z-score transformation using
the standard normal distribution. We then computed the subsystem- and system-level meta-z-scores
of 58 KEGG subsystems and 6 systems: metabolism, genetic information processing, environmental
information processing, cellular processes, organismal systems, and human diseases. The z-score is
defined as (3):

meta− z =

∑n
i=1 zi
√

n
(3)

where Zi is the z-score of the pathway i, and n is the total number of pathways in a subsystem or
system. The meta-z-score reflects the significance (enrichment) of a subsystem/system for a specific
disease state, such as HBx(p53-), Src(p53-), or HBx,Src(p53-) fish with diet-induced obesity.

4.10. Scoring Function for Potential Gene Selection

To identify potential genes for obesity/NASH to HCC, we developed two scores: maximum
combined score (MCS) and average root combined score (ARCS). For gene i involving N pathways,
MCS and ARCS are computed as (4) and (5):

MCS = maxN
x,y3 j=1

{
Zsysx + Zsuby + Zpath j

}
+ SN + SFC (4)

ARCS =

∑N
x,y3 j=1

(
Zsysx + Zsuby + Zpath j

)
+ N ∗ (SN + SFC)

√
N

(5)

where Zsysx and Zsuby are the meta-z-scores of system x and subsystem y, respectively; SN and SFC are
the N pathways and the |log2FC| between control and obesity groups, respectively. Then, each scoring
term is normalized ranging from 0 to 1 by min-max normalization. Therefore, MCS values range from
0 to 5, and the range of ARCS is dependent on N. Zsysx and Zsuby are defined as (6) and (7):

Zsysx3 j =

∑Nx
j=1 z j
√

Nx
(6)

Zsuby3 j =

∑Ny

j=1 z j√
Ny

(7)

where zj is the z-score of pathway j involved in system x and subsystem y; Nx and Ny are the numbers
of pathways of gene j involved in system x and subsystem y. Based on the Zsys and Zsub values of
6 systems and 58 subsystems, Zsysx and Zsuby were normalized from 0 to 1 by min-max normalization.
SN is given as (8):

SN =
N −min{NG}

max{NG} −min{NG}
(8)

where max{NG} and min{NG} are the maximum and minimum involved pathways for 5023 genes
recorded in the KEGG database. SFC is defined as (9):

SFC =
log2FC−min

{
log2FCG

}
max

{
log2FCG

}
−min

{
log2FCG

} (9)

where max
{
log2FCG

}
and min

{
log2FCG

}
are the maximum and minimum |log2FC| values for 5023 genes

recorded in the KEGG database. The schematic diagram is shown in Figure S8.
Furthermore, we utilized precision to evaluate the performance of MCS, ARCS, and fold change

to select potential genes using the positive sets selected from the DisGeNET database. Here, precision
is defined as TP/(TP + FP), where TP and FP are the numbers of true positive and false-positive
genes, respectively.
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4.11. GeneTitan™ Array for Gene Expression Profiling

ZebGene 1.1 ST Array Plates (Affymetrix, USA) were used for whole-genome transcriptome
analysis. Using Transcriptome Analysis Console (TAC) software, differentially expressed genes of
DIO versus control were identified. Expression analysis settings were as follows: gene-level fold
change <−2 or >2, gene-level p-value <0.05, ANOVA method: ebayes. The protein–protein interactions
were analyzed using NetworkAnalyst (http://www.networkanalyst.ca/) and pathway activations was
selected and matched according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

5. Conclusions

Against a normal genetic background, diet-induced obesity will increase the chance of fatty liver
with a low incidence of hyperplasia. Two genetic risk factors together with diet-induced obesity
will increase the chances of having fatty liver and hyperplasia. With three genetic risk factors, the
probability of cancer formation is higher, and diet-induced obesity will accelerate cancer formation
threefold. The genetic background from normal to two genetic risk factors with diet-induced obesity is
a similar process of hepatocarcinogenesis from obesity/NASH, verified by histopathological analysis.
The metabolic and genetic information processing systems are affected significantly as the genetic risk
factors increase in cross-platform data using global omics data analysis. The insulin signaling pathway
plays a key role in the normal genetic background with diet-induced obesity, but it seems to be not
important in two genetic risk factors. Furthermore, we provide a maximum combined score to select
potential genes (i.e., scd, gck, acat2, pik3ca, and aldh7a1) that participate in the obesity/NASH to HCC
process, verified by qPCR. Our approach is useful for the development of biomarkers and therapeutic
targets by considering multiple dimensions. Our zebrafish model and methods provide an explanation
for the synergism between genetic risk factors and diet-induced obesity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/12/1899/s1,
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diet, the number of fish is 20 for each group; Figure S3: Expression of selected markers in various female zebrafish
fed with different diets, the number of fish in WT-NOR is 14, WT-DIO is 14, WT-FAT is 12, HBx(p53-)-NOR is 15,
HBx(p53-)-DIO is 12,HBx(p53-)-FAT is 12, Src(p53-)-NOR is 10, Src(p53-)-DIO is 8, Src(p53-)-FAT is 9; Figure S4:
Expression of selected markers in various male zebrafish fed with different diets, the number of fish in WT-NOR is
6, WT-DIO is 6, WT-FAT is 8, HBx(p53-)-NOR is 5, HBx(p53-)-DIO is 8,HBx(p53-)-FAT is 6, Src(p53-)-NOR is 10,
Src(p53-)-DIO is 12, Src(p53-)-FAT is 11; Figure S5: Expression values of selected differential expression genes
for regulation of ribosome biogenesis pathway in various zebrafish fed with different diets, the number of fish
in WT-NOR, HBx,Src(p53-)-NOR, and HBx,Src(p53-)-NOR is 2, others is 1; Figure S6: Jaccard index boxplot of
microarray and NGS omics data for gene, pathway, and system levels; Figure S7: Expression values of selected
differential expression genes for regulation of steroid biosynthesis pathway in various zebrafish fed with different
diets; Figure S8: Schematic diagram of meta-z score and normalized meta-z score. The number of fish is 14
for Microarray and 16 for NGS; Table S1. Experimental design of microarray and next-generation sequencing
(NGS); Table S2. The DEGs involved in the insulin resistance pathway for four-type fish between normal and
obesity diet (DIO and FAT) in microarray; Table S3. The DEGs involved in the insulin resistance pathway for
four-type fish between normal and obesity diet (DIO and FAT) in NGS; Table S4. Top-ranked 20 genes of MCS
and their corresponding ranks of ARCS and FC for obesity; Table S5. Top-ranked 20 genes of MCS and their
corresponding ranks of ARCS and FC for HCC; Table S6. Comparison of candidate genes selected from microarray
and next-generation sequencing using two scoring methods for HBx(p53-) fish; Table S7. Comparison of candidate
genes selected from microarray and next-generation sequencing using two scoring methods for Src(p53-) fish; Table
S8. Comparison of candidate genes selected from microarray and next-generation sequencing using two scoring
methods for HBx,Src(p53-) fish; Table S9. Primer sequences for lipogenic factors/enzymes and cell cycle/division
related genes; Table S10. Mapping of RNA-seq reads in 16 samples to the reference genome (GRCz10/danRer10).
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