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Abstract: Treatment of intracranial disorders suffers from the inability to accumulate therapeutic drug
concentrations due to protection from the blood–brain barrier (BBB). Electroporation-based therapies
have demonstrated the capability of permeating the BBB, but knowledge of the longevity of BBB
disruption (BBBD) is limited. In this study, we quantify the temporal, high-frequency electroporation
(HFE)-mediated BBBD in an in vivo healthy rat brain model. 40 male Fisher rats underwent HFE
treatment; two blunt tipped monopolar electrodes were advanced into the brain and 200 bursts of
HFE were delivered at a voltage-to-distance ratio of 600 V/cm. BBBD was verified with contrast
enhanced T1W MRI (gadopentetate dimeglumine) and pathologically (Evans blue dye) at time points
of 1, 24, 48, 72, and 96 h after HFE. Contrast enhanced T1W scans demonstrated BBBD for 1 to 72 h
after HFE but intact BBB at 96 h. Histologically, tissue damage was restricted to electrode insertion
tracks. BBBD was induced with minimal muscle contractions and minimal cell death attributed
to HFE. Numerical modeling indicated that brief BBBD was induced with low magnitude electric
fields, and BBBD duration increased with field strength. These data suggest the spatiotemporal
characteristics of HFE-mediated BBBD may be modulated with the locally applied electric field.

Keywords: blood–brain barrier disruption; electric field threshold; Evans blue dye; high-frequency
electroporation; focal therapy; gadopentetate dimeglumine; electropermeabilization; numerical
modeling; BBB disruption temporal threshold; transient BBB disruption

1. Introduction

The blood–brain barrier (BBB) is an active and highly selective biological barrier made up by
the complex interactions between brain capillary endothelial cells (BCECs), astrocytes, tight junction
(TJ) proteins, and other supportive cells; together these components regulate molecular transport
across the microvasculature in the central nervous system (CNS) [1,2]. Coupled with molecular efflux
transporters (such as P-glycoproteins and multidrug resistance protein 1) expressed on the surface
of specialized BCECs, the intact BBB acts to maintain brain homeostasis and isolates the CNS from
circulating pathogens. Though effective in this regard, the BBB also hinders transport of therapeutic
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drugs and large molecules, thereby impeding treatment of intracranial malignancies [3,4]. Treatment
options for Parkinson’s disease, Alzheimer’s disease, and brain tumors are limited due to the inability
to accumulate drug concentrations required to achieve a clinically relevant response. Therefore, the
ability to induce predictable, prolonged BBB disruption (BBBD) is critical to the advancement of
modern therapeutics in the treatment of intracranial malignancies.

One potential solution for intracranial drug delivery is convection-enhanced delivery (CED),
which seeks to bypass the BBB by direct therapeutic administration to the brain parenchyma and
target tissue. CED uses pressure-driven flow through an array of catheters to deliver a variety of
potential agents, including nanoparticles (~200 nm) [5], small molecules (<1 kDa) [6], and monoclonal
antibodies [7], to large volumes of brain parenchyma [8]. While effective, CED is limited by the
occurrence of perfusate reflux and by the requirement for lengthy treatment sessions due to relatively
slow infusion rates.

Another approach, transcranial focused ultrasound (FUS) combined with microbubbles, has been
shown to disrupt the BBB through disassembly of TJ proteins occludin, claudin-5, and ZO-1 [9]. While
FUS offers versatile and non-invasive BBBD, BBB recovery typically occurs within a few hours after
FUS [10], potentially limiting practical treatment windows. These drawbacks highlight the need for
alternative approaches for enhanced parenchymal drug delivery.

Irreversible electroporation (IRE) is a well-established focal ablation therapy for pancreatic cancer,
hepatocellular carcinoma, and other cancers [11–16]. IRE offers an attractive alternative to thermal
therapies, as cells are ablated with high intensity (up to 3000 V), short duration (50–100 µs) pulsed
electric fields (EFs). It has been repeatedly observed that if tissues are exposed to EFs above a critical
value, cell death with high demarcation and minimal-to-no thermal necrosis is achieved [17]. Since IRE
is an EF-dependent ablation therapy, modification of pulsing parameters and the electrode configuration
allows for clinically relevant tissue ablation (>3 cm3) with minimal Joule heating effects [18–20] and
preservation of tissue infrastructure such as blood vessels and ducts [21,22]. Preclinical studies in
a spontaneous canine brain tumor model demonstrated safe, reproducible, and clinically relevant
ablations with minimal side effects attributed to IRE therapy [23–25].

In addition to the development of a nonthermal lesion, IRE induces voltage-dependent secondary
volumes of BBBD in cerebral tissues [26–28], demonstrating the potential for using IRE as an effective
intracranial combinatorial therapy to facilitate drug diffusion into the brain parenchyma. Monophasic
IRE using 90 50 µs pulses at 1 Hz with applied voltage-to-distance (V/d) ratios of 200 and 400 V/cm has
succeeded in disrupting the BBB with limited detriment to the viability of the surrounding tissue [26].
Using these parameters, BBBD was achieved at an electric field threshold (EFT) of 330 V/cm, notably
lower than the 500 V/cm EFT for IRE [28]; this delineation points to the possibility of BBBD for targeted
drug delivery without the need for lethal quantities of energy application. More recently, the EFTs for
BBBD and IRE ablation were quantified as a function of pulse number; it was demonstrated that an
increase in the number of pulses decreased the EFT for BBBD [29]. This effect is mirrored in vitro, where
a monolayer of endothelial cells was transiently permeabilized but remained viable [30]. Interestingly,
even application of low-voltage monophasic pulses, with no detectable electroporation of the cell
monolayer, leads to an increase in paracellular passage of small molecules [31].

Pre-clinical studies in our laboratories have found IRE to be effective at both BBB permeabilization
and tissue ablation, but patients required intraoperative neuroparalytics and general anesthesia to
reduce unintended muscle contractions. This could limit the clinical practice of otherwise applicable
surgical approaches, such as intraoperative brain mapping for IRE tissue ablation, that require the
absence of general anesthesia. To improve the versatility of IRE for therapeutic applications, our group
has developed a novel tumor ablation strategy which utilizes bursts of bipolar pulsed EFs (0.5–10 µs)
to nonthermally ablate tumors [32,33]. This second-generation strategy, termed high-frequency IRE
(H-FIRE), reduces the potential for nerve and muscle excitation by applying alternating polarity pulses,
obviating in many cases the need for paralytics and cardiac synchronization [34–36]. Prior to the onset
of electroporation, the high frequency waveforms of H-FIRE penetrate to the intracellular domain more
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efficiently than their low frequency counterparts used in IRE; this phenomenon has been exploited
to target cells with enlarged nuclei, a physical hallmark common in malignant cells, and resulted
in lower lethal EFTs in tumor cells [37,38]. More promising still, these higher frequency waveforms
mitigate electrical heterogeneities in complex tissues, resulting in more predictable ablations in highly
heterogenous tissues such as tumor tissue [39–42].

Our group has observed that H-FIRE, like traditional IRE, induces focal tissue ablation with a
surrounding zone of BBBD that extends centimeters beyond the nonthermal lesion [35,43]. Thus,
in the interest of future H-FIRE human clinical trials, in which H-FIRE-mediated BBBD will target
the peritumoral penumbra of normal appearing brain, we focus our study to quantify the effects of
high-frequency electroporation (HFE, to distinguish it from H-FIRE, an ablative technology) on BBBD
in an in vivo healthy rodent model. Specifically, we seek to elucidate the duration of HFE-mediated
BBBD in vivo. By utilizing a two-needle configuration, the applied EF is non-uniform and generates
a gradient of local EFs across the tissue, enabling investigation of BBBD by electric fields of varied
strength. Prior work has revealed paracellular BBBD with low pulsed EFs [31]; transcellular BBBD with
reversible electroporation [30]; and tissue ablation, which affects both transcellular and paracellular
passage, with irreversible electroporation [23]. We hypothesize that the duration of BBBD with HFE is
dependent on the local EF, likely leading to BBBD through various mechanisms (i.e., TJ disruption,
cell electroporation, cell irreversible electroporation). The data presented here support HFE as a unique
tool for permeating the BBB, with control over the spatiotemporal characteristics through modifications
of the local EFs.

2. Results

HFE treatment was administered across two blunt tipped monopolar electrodes using a custom
bipolar pulse generator at a V/d ratio of 600 V/cm, energized time 100 µs, burst scheme 5-5-5 µs, and
200 bursts. BBB permeability was assessed by intraperitoneal injection of a solution formulated with
gadopentetate dimeglumine and Evans blue dye (Gd-EBD); this solution was administered 1 hour
prior to sacrifice to allow for circulation and clearance of the Gd-EBD solution. Gd and EBD are too
large to permeate the intact BBB; their presence in the brain parenchyma would indicate BBBD. The
temporal BBBD characterization included time points 1, 24, 48, 72, and 96 h post-HFE. Quantification
of EBD fluorescence in intraparenchymal tissue and blood serum further characterized HFE-mediated
BBBD. In all cases, the values reported are in the format mean ± standard deviation.

2.1. High-Frequency Electroporation BBBD Analysis

The sham-operated group showed no Gd-EBD uptake. There was no visible EBD staining present
in the tissue sections. No Gd uptake within the brain parenchyma in post-contrast T1W MRI scans
was detected. Quantification of the sham serum EBD fluorescence (1494 ± 25.5 µg/g, n = 1) and
intracranial EBD fluorescence (0.2 ± 0.03 µg/g, n = 1) further indicated minimal EBD uptake into the
sham brain parenchyma (Table 1). Tissue damage was restricted to the electrode insertion tracks when
H&E-stained sections were examined (Figure 3).

2.1.1. Temporal BBBD Characterization

HFE for treatment groups 1–4 demonstrated BBB permeability to Gd-EBD (Figure 1a). In Figure 1,
a “+” symbol in the T1W Dorsal view denotes the electrode insertion tracks for the sham; the trajectory
of electrode insertion was consistent in all groups. All images in Figure 1 depict representative
scans/tissue sections of BBBD either along the electrode insertion track or in a plane orthogonal to the
electrode tip. Maximal BBBD volume was achieved at 1 h (81.2 ± 7.9 mm3, n = 3) post-HFE, followed
by an exponential decrease at 24 (47.1 ± 15.1 mm3, n = 7), 48 (9.9 ± 1.1 mm3, n = 8), 72 (6.4 ± 1.1 mm3,
n = 8), and 96 h (0.0 ± 0.0 mm3, n = 4), as measured in gross pathological tissue sections (Figure 1b).
A Kruskal–Wallis (KW) test demonstrated that the mean pathological BBBD volume in at least one
group is different from the others (p < 0.0001) within the temporal arm of this study. A post hoc Dunn’s
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demonstrated that the 1 h (p = 0.019) and 24 h (p = 0.0401) groups had BBBD volumes significantly
different than that of the sham group. It should be noted that in the 1 h and 24 h timepoints, contrast
was inadvertently injected into the intestines of 1 rat per treatment group, reducing to sample size of
each group to n = 3 and n = 7, respectively. In T1W MRI, volumetric measurements were as follows:
0.0 ± 0.0 mm3 in the sham group (n = 2), 84.1 ± 8.7 mm3 at 1 h (n = 2), 40.9 ± 5.4 mm3 at 24 h (n = 4),
10.4 ± 1.1 mm3 at 48 h (n = 4), 5.8 ± 1.0 mm3 at 72 h (n = 4), and 0.0 ± 0.0 mm3 at 96 h (n = 2).
A Kruskal–Wallis (KW) test demonstrated that the mean MRI-derived BBBD volume in at least one
group is different from the others (p = 0.0083) within the temporal arm of this study. A post hoc Dunn’s
demonstrated that the 1 h (p = 0.0261) group had a BBBD volume significantly different than that
of the sham group. Notably, there is a strong correlation between the BBBD volumes measured in
both post-contrast T1W MRI scans and tissue sections; the paired-t test demonstrated no statistical
differences (p = 0.8357) between volumetric analysis methods within treatment groups (Table 1).

Table 1. BBBD Volumetric, EBD Fluorescence, and Numerical Results (Mean ± Standard Deviation).

Temporal (h) Pathological
BBBDV (mm3)

MRI BBBDV
(mm3)

Cerebral
[EBD] (µg/g)

Serum [EBD]
(µg/g)

BBBD Temporal
Threshold (V/cm)

sham 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.0 1494.0 ± 0.0 ∞

1 81.2 ± 7.9 * 84.1 ± 8.7 * 18.5 ± 0.29 1318.3 ± 66.8 113.5 ± 8.2
24 47.1 ± 15.1 * 40.9 ± 5.4 10.9 ± 0.45 1393.8 ± 122.0 174.9 ± 37.1
48 9.9 ± 1.1 10.4 ± 1.1 4.0 ± 0.31 1404.0 ± 115.1 432.7 ± 30.8
72 6.4 ± 1.1 5.8 ± 1.0 1.2 ± 0.13 1403.3 ± 145.1 542.5 ± 51.5
96 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.04 1400.5 ± 107.5 ∞

* denotes a p-value < 0.05 for the comparison with the sham group of each column, respectively.

In addition to the volumetric characterization of BBBD, the fluorescence of EBD within the brain
parenchyma and within blood serum was quantified. In all groups, including the sham, the serum
EBD fluorescence was at least 1318.3 ± 61.6 µg/g; KW indicated no significant differences in the serum
EBD for all treatment groups (p = 0.886) for 1 (n = 2), 24 (n = 4), 48 (n = 4), 72 (n = 4), and 96 h (n = 2).
While there was ample systemic EBD, measurements of parenchymal EBD fluorescence in the sham
group (0.2 ± 0.03 µg/g) indicated minimal uptake following electrode insertion. Intraparenchymal
EBD indicated a maximum fluorescence measured at 1 hour (18.5 ± 0.30 µg/g, n = 2), followed by an
exponential decay at 24 (10.9 ± 0.44 µg/g, n = 4), 48 (4.0 ± 0.31 µg/g, n = 4), 72 (1.2 ± 0.13 µg/g, n = 4),
and 96 h (0.3 ± 0.05 µg/g, n = 2) (Figure 1c). It should be noted only a single sham EBD fluorescence
measurement was recorded; the KW test indicated the mean EBD fluorescence of at least one group
was different from that of the rest (p = 0.0089), but a post hoc Dunn’s test failed to reveal statistical
difference between any particular set of groups. This is likely due to a sham sample size of n = 1 for
EBD fluorescence measurements.
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Figure 1. Visualization of long-lived BBBD resulting in significant diffusion of normally impermeant 
Gd-EBD. 200 bursts of HFE were applied across two monopolar electrodes with 4 mm spacing; each 
burst was energized for 100 µs, and a V/d ratio of 600 V/cm was applied. Gd-EBD was administered 
systemically and allowed to circulate for 1 hour prior to sacrifice. (a) Depiction of BBBD, as seen in 
contrast enhanced T1W MRI scans, tissue sections with EBD staining, and subsequent 3D 
reconstruction, in the sham and at timepoints 1 hour, 24 h, 48 h, 72 h, and 96 h post-HFE treatment; a 
“+” symbol in the T1W Dorsal view denotes the electrode insertion track for the sham. Without HFE, 
no uptake of Gd-EBD is seen. All images depict representative scans/tissue sections of BBBD either 
along the electrode insertion track or in a plane orthogonal to the electrode tip. (b) Volumetric 
measurements determined from tissue sections and (c) quantification of intracranial EBD fluorescence 
show an exponential decrease in BBBD following HFE. * denotes a p-value < 0.05 and ** denotes a p-
value < 0.01. 

2.1.2. BBBD with Varied V/d and Burst Number 

In addition to the temporal study, the effect of applied V/d ratio was investigated at the 1 h 
timepoint. Pathological analysis of BBBD volume due to V/d ratios 0 (sham), 600 (Group 1), and 1200 
V/cm (Group 6, H-FIRE protocol, n = 4) indicated at least one group experienced a different BBBD 
volume (KW test p = 0.0048). A V/d ratio of 1200 V/cm (Group 6) resulted in a significant increase in 
Gd-EBD uptake compared to the sham group (p = 0.0332, Dunn’s test), with the H-FIRE protocol 
having a BBBD volume of 113.8 ± 7.1 mm3, as measured and evaluated in tissue sections. 
Quantification of intracranial EBD fluorescence demonstrated more EBD within the brain 
parenchyma of the 1200 V/cm group (25.1 ± 1.27 µg/g, n = 2) than in the 600 V/cm group; however, a KW 

Figure 1. Visualization of long-lived BBBD resulting in significant diffusion of normally impermeant
Gd-EBD. 200 bursts of HFE were applied across two monopolar electrodes with 4 mm spacing; each
burst was energized for 100 µs, and a V/d ratio of 600 V/cm was applied. Gd-EBD was administered
systemically and allowed to circulate for 1 hour prior to sacrifice. (a) Depiction of BBBD, as seen in
contrast enhanced T1W MRI scans, tissue sections with EBD staining, and subsequent 3D reconstruction,
in the sham and at timepoints 1 hour, 24 h, 48 h, 72 h, and 96 h post-HFE treatment; a “+” symbol
in the T1W Dorsal view denotes the electrode insertion track for the sham. Without HFE, no uptake
of Gd-EBD is seen. All images depict representative scans/tissue sections of BBBD either along the
electrode insertion track or in a plane orthogonal to the electrode tip. (b) Volumetric measurements
determined from tissue sections and (c) quantification of intracranial EBD fluorescence show an
exponential decrease in BBBD following HFE. * denotes a p-value < 0.05 and ** denotes a p-value < 0.01.

2.1.2. BBBD with Varied V/d and Burst Number

In addition to the temporal study, the effect of applied V/d ratio was investigated at the 1
h timepoint. Pathological analysis of BBBD volume due to V/d ratios 0 (sham), 600 (Group 1),
and 1200 V/cm (Group 6, H-FIRE protocol, n = 4) indicated at least one group experienced a different
BBBD volume (KW test p = 0.0048). A V/d ratio of 1200 V/cm (Group 6) resulted in a significant
increase in Gd-EBD uptake compared to the sham group (p = 0.0332, Dunn’s test), with the H-FIRE
protocol having a BBBD volume of 113.8 ± 7.1 mm3, as measured and evaluated in tissue sections.
Quantification of intracranial EBD fluorescence demonstrated more EBD within the brain parenchyma
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of the 1200 V/cm group (25.1 ± 1.27 µg/g, n = 2) than in the 600 V/cm group; however, a KW test
determined no statistically significant difference (p = 0.200), likely due to a sham sample size n = 1 for
EBD fluorescence.

We also compared the effects of burst number 0 (sham), 200 (Group 1), and 100 (Group 7, n = 4)
on BBBD volume; a KW test to this effect yielded p = 0.0429, meaning at least one group had a true
mean different from another. A decrease in number of bursts from 200 (Group 1) to 100 (Group 7) had
minimal impact (p > 0.9999, Dunn’s test) on Gd-EBD uptake, with the latter having a BBBD volume
87.0 ± 5.6 mm3, as measured and evaluated in tissue sections. Quantification of intracranial EBD
fluorescence did not vary significantly between the 100-burst group (18.8 ± 0.88 µg/g, n = 2) and the
200-burst group; a KW test determined no statistical differences (p = 0.600), likely due to a sham sample
size n = 1 for EBD fluorescence.

2.2. Numerical BBBD Analysis

A numerical model was constructed to approximate the electric field distribution during
HFE-treatment; to accomplish this, the changes in electrical conductivity with varied local EF needed to
be determined. This conductivity relationship was established by matching the first-burst experimental
and numerical electric currents (Figure 2a). The sigmoidal conductivity response which best fits
Equation (2) corresponds to conductivity values of σ0 = 0.087 S/m and σf = 0.178 S/m (Figure 2b).
This sigmoid was implemented across the 3D reconstructed rat brain domain, and the resulting EF
distribution is depicted in Figure 6e.

Following the approximation of the electric field distribution, numerical methods were
implemented to quantify electric fields corresponding to permeated BBB volumes at various timepoints;
these thresholds will be referred to throughout the text as the BBBD temporal thresholds (BTTs).
The analysis to determine BTTs assumes the measured BBBD volumes are topologically consistent with
computed EF contour. Therefore, a volume integration was implemented to determine the volumes
of tissues exposed to EFs between 25 V/cm and 1000 V/cm in increments of 0.1 V/cm. These values
were then matched to the experimental BBBD volumes from tissue section measurements; the closest
matching values are reported as the BTTs (Figure 2c). The 1 hour timepoint corresponded to the lowest
threshold (113.5 ± 8.2 V/cm, n = 3), followed by higher BTTs in the 24 (174.9 ± 37.1 V/cm, n = 7),
48 (432.7 ± 30.8 V/cm, n = 8), and 72 (542.5 ± 51.5 V/cm, n = 8) h timepoints. In the sham group and the
96 h timepoint group, no BBBD was seen. A KW test (p < 0.001) followed by a post hoc Dunn’s test
demonstrated a statistically significant difference between the BTTs at 1 h and 72 h (p = 0.0005) and at
24 h and 72 h (p = 0.0006).
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3D). These results indicate that HFE treatment, using 600 V/cm and 200 bursts, causes superficial 
lesions limited to the electrode insertion tracks but does not produce regional ablative lesions in brain 
parenchyma. Only moderate heating (<1 °C) occurred as a result of energy deposition (see below). 
This modest temperature increase and the short treatment duration are associated with the lack of 
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Figure 2. Numerical validation and BBBD temporal thresholds. Numerical validation was accomplished
by comparing the (a) electric currents from experimental and numerical approaches. This analysis
resulted in a (b) sigmoidal electrical conductivity response from HFE treatment. BBBD temporal
thresholds were determined as the electric field contours enclosing a volume equivalent to the measured
BBBD volumes from tissue sections for (c) timepoints 1 h, 24 h, 48 h, 72 h, and 96 h after HFE treatment.
*** denotes a p-value < 0.001.

2.3. Histomorphologic Analyses

Histologic changes in the brain were graded using a modified grading scheme to quantify tissue
damage; this scheme is outlined in the Methods section below. In this scheme, grade 1 scoring indicates
superficial tissue damage restricted to the electrode insertion tracks, whereas grade 4 scoring indicates
regional parenchymal tissue necrosis remote from the electrode insertion tracks. The lesions observed
in the histological slides were consistent within each treatment group, and a summary of these results
is given in Table 2. All treatment groups demonstrated superficial lesions due to the mechanical
pressure applied during electrode insertion, as demonstrated in Figure 3. Grade 1 scoring (Figure 3a)
was observed in the sham-operated group; in the Burst100 group (Group 7); and in the immediate
response group, at timepoints 1, 24, and 48 h. Grade 2 scoring was observed in the delayed response
group (72 and 96 h), though there was a varying degree of meningeal inflammation (Figure 3b,c).
Grade 3 and 4 scoring was observed only in the H-FIRE protocol (Group 6), wherein the V/d ratio was
1200 V/cm, leading to H-FIRE ablation of regional parenchyma (Figure 3d). These results indicate
that HFE treatment, using 600 V/cm and 200 bursts, causes superficial lesions limited to the electrode
insertion tracks but does not produce regional ablative lesions in brain parenchyma. Only moderate
heating (<1 ◦C) occurred as a result of energy deposition (see below). This modest temperature increase
and the short treatment duration are associated with the lack of detectable tissue damage attributable
to thermal necrosis.

The trend test showed a positive correlation between histological grade and time elapsed following
treatment (p < 0.0001). A separate statistical analysis was conducted by placing groups into 4 categories;
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the sham group, immediate response (1–48 h and Burst100), delayed response (72–96 h), and the H-FIRE
protocol. A Fisher exact test revealed differences among these categories (p < 0.0001).
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Table 2. Histologic grade assignment by treatment group.

Category Survival (h) Grade 1 Grade 2 Grade 2a Grade 2b Grade 3a Grade 4

sham sham, n = 2 2 0 0 0 0 0

Immediate
response

Burst100, n = 2 2 0 0 0 0 0
1, n = 2 2 0 0 0 0 0
24, n = 4 4 0 0 0 0 0
48, n = 4 4 0 0 0 0 0

Delayed
response

72, n = 4 1 1 2 0 0 0
96, n = 4 0 0 2 2 0 0

H-FIRE H-FIRE, n = 2 0 0 0 0 1 1

A Fisher exact test revealed differences among the categories (p < 0.0001). The trend test showed a positive correlation
between histological grade and time elapsed following treatment (p < 0.0001). “n” represents the number of rats
examined using light microscopy with H&E staining.

2.4. Secondary Electrical, Thermal, and Accelerometry Measurements

2.4.1. Electrical Impedance Spectroscopy for Monitoring Changes in Tissue Impedance

Previously, changes in tissue impedance have been proposed as an indicator of treatment outcome
for electroporation-based therapies, as they provide information about ablation size and extent of
permeabilization; here, we employ electrical impedance spectroscopy to measure changes in tissue
impedance. Tissue electrical impedance was recorded over a frequency range of 10 kHz to 1 MHz
for treatment Groups 1 (600 V/cm) and 6 (1200 V/cm). Here, we present the changes in the real part
of electrical impedance prior to and after HFE treatment (Figure 4a) at 20 kHz. A baseline Re (Z) of
7764.2 ± 962.3 Ω and 7257.0 ± 1198.0 Ω was recorded for Groups 1 and 6, respectively. After HFE,
tissue impedance measured 6428.4 ± 1033.6 Ω and 4993.9 ± 239.1 Ω for treatment Groups 1 and 6,
respectively. A t-test for non-pooled variance did not demonstrate a significant difference (p = 0.2030)
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in the changes in tissue impedance before and after treatment between the 600 V/cm group (−1335.73 Ω)
and the 1200 V/cm groups (−2263.16 Ω). The changes in tissue impedance in response to pulsing,
for both the 600 V/cm group (p = 0.0287) and 1200 V/cm group (p = 0.0012), is significantly different
from 0.

2.4.2. Fiber Optic Temperature Sensing for Monitoring Joule Heating Effects

To delineate the HFE-mediated BBBD from thermal mechanisms, Joule heating effects due to HFE
treatment are monitored using a fiber optic temperature sensor. Fiber optic thermal measurements
taken for treatment Group 6 (1200 V/cm) showed a temperature rise below <1 ◦C for all treatments.
The average of the temperature profiles indicated a maximum temperature rise of 0.55 ± 0.18 ◦C
immediately adjacent to the electrode—the theoretical location for maximal temperature rise. An overlay
of the experimental and numerical temperature profile (Figure 4b) demonstrated good agreement
between the theoretical and observed data. A mixed effects statistical model was used to establish
whether the difference between experimental temperature profile and numerical temperature profile is
0; no significant difference was detected (p = 0.9903).

2.4.3. Accelerometry Measurements for Muscle Excitation

HFE employs bipolar pulsed EFs to mitigate muscle excitation relative to traditional monopolar
pulsed EFs; therefore we utilized an accelerometer to quantify muscle contractions associated with
HFE treatment. In every treatment group, muscle contractions associated with HFE were negligible.
Accelerometry was unable to detect gross movement attributed to the HFE treatment for treatment
groups with applied V/d ratios of 600 V/cm, though an applied V/d ratio of 1200 V/cm resulted in
a measured acceleration of 0.077 ± 0.027 gs (Figure 4c). Visible muscle excitation was restricted to
hemifacial contractions and contractions behind the ear. No subjects experienced cardiac arrhythmias
or adverse effects due to treatment.
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Figure 4. Secondary impedance, thermal, and accelerometry measurements. (a) Electrical impedance
measurements at 20 kHz before and after HFE indicated a statistically significant change in
impedance from baseline for an applied voltage-to-distance ratio of 1200 V/cm (p = 0.0012) and
for 600 V/cm (p = 0.0287). (b) Joule heating effects immediately adjacent to the electrodes were minimal
(∆Tmax = 0.55 ◦C). (c) Acceleration was not detected at an applied voltage-to-distance ratio of 600 V/cm
but was detected at 1200 V/cm (accel = 0.077 g).

3. Discussion

Treatment of intracranial tumors and other CNS disorders (Parkinson’s disease and Alzheimer’s
disease, for example) often rely on intraparenchymal drug delivery for therapeutic efficacy; this process
is complicated when molecular agents are unable to permeate through the BBB and often results in
ineffective treatment. The ability to produce focal and transient BBBD would provide a therapeutic
window for enhanced drug delivery. Here, we demonstrate that high frequency electroporation (HFE)
can open the BBB for up to 3 days post-HFE treatment. To the best of our knowledge, this is the first
study to investigate the duration of HFE-mediated BBBD in vivo and to numerically quantify BTTs at
various timepoints.

To achieve focal BBBD, we used two monopolar electrodes to create a non-uniform EF distribution.
This allowed us to study BBBD as a result of varied local EFs (Figure 6e) with very high EFs (>1000 V/cm)
immediately adjacent to the electrodes and very low EFs (<100 V/cm) millimeters away. Gd-EBD was
administered systemically via IP injection 1 h prior to sacrifice; this allows sufficient time for the solution
to flow and diffuse into areas of BBB permeation. It was assumed here that the distribution of capillaries
and blood vessels was uniform throughout the rodent brain and the Gd-EBD solution circulated
uniformly throughout the rodent brain. At an applied V/d ratio of 600 V/cm, the 1 h BBBD volume
was 81.2 ± 7.9 mm3 based on the data generated by evaluation of fixed/stained tissue sections. Finite
element analysis was subsequently implemented to map the computed EF distribution to the measured
BBBD volume in tissue sections. We determined that a BTT of 113.5 ± 8.2 V/cm closely matched the
BBBD volume measured at the 1 hour time-point. Interestingly, regions of tissue exposed to this local
EF did not sustain BBBD for durations longer than 1 h. On the contrary, the 72 h time-point BBBD
volume measured 6.4 ± 1.1 mm3 with a numerically determined BTT 542.5 ± 51.5 V/cm; at preceding
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timepoints up to the 72 h mark, tissues exposed to this EF demonstrated BBBD. Measurements at 24
and 48 h showed intermediate results, consistent with this trend. It should be noted that we consider it
probable that the small size, n= 2, of the sham group constrained our capacity to detect a statistically
significant difference from sham for both 48 h and 72 h. Previous studies have indicated no BBBD in
sham groups due to electrode insertion [26,43]; therefore, we determined the number of sham rats
to be n = 2 in order to minimize the animals sacrificed in this study. Within the context of this study,
we observed that the duration of BBBD was dependent on the local EF. The corollary is that the EF
distribution can be modified to produce pockets of BBBD with controlled durations of permeation;
as such, a desired therapeutic window can be programmed using numerical models of the local EF
distribution. In future studies, alternate electrode configurations, such as flat plate electrodes for
creating a uniform EF distribution, will be used to quantitatively describe and verify the relationship
between the local electric field and the duration of BBBD.

In addition to spatial characterization of BBBD, EBD was used to measure to extent of newly
permeable molecular uptake by measurement of EBD fluorescence within the brain parenchyma and
within blood serum. In every group, EBD fluorescence from serum was at least 1318.3 ± 61.6 µg/g,
more than two orders of magnitude higher than intraparenchymal EBD fluorescence; therefore, we
assume EBD uptake to the brain was not limited by circulating EBD. Tissue damage associated with
electrode insertion was expected to contribute to uptake of EBD, and the sham group did show a slight
(0.2 ± 0.03 µg/g) uptake of EBD into the brain. In HFE-treated groups, there was a detectable increase
in the intraparenchymal EBD fluorescence at 1, 24, 48, and 72 h, but not 96 h; these data further indicate
the transient nature of HFE-mediated BBBD, which, given our chosen set of pulse parameters, resolves
within 96 h. Though this data does not provide information on the spatial or CNS compartmental
distribution of EBD, this data is agreement with our results from MRI and gross pathology. These
results are also comparable to previously observed BBBD measured 96 h after application of traditional
IRE. More specifically, a large BBBD volume was observed in healthy rats within 1 hour following
monophasic IRE [27]; though these volumes were not quantified, follow-up scans taken 4 days after
treatment showed limited BBBD, which is comparable to our findings. The slightly longer BBBD
duration resulting from traditional IRE may be attributable to differences in the amount of energy
applied, as our bursts of bipolar pulses had an amplitude of 240 V, roughly four times lower than the
1000 V pulse amplitude previously used [27]. Differences in tissue response to HFE waveforms, which
target intracellular components more efficiently than monophasic IRE [33], could be causing BBBD in
a manner which is mechanistically different than monophasic IRE, thereby producing shorter-lived
BBBD at the benefit of mitigating muscle/nerve excitation.

For clinical application of HFE-mediated BBBD, tissue ablation may not be desirable. In this study,
H&E staining was used to verify that nonlethal BBBD was achieved. No tissue damage was observed
proximate to the electrode insertion track up to 48 h after treatment, as indicated by histologic grade 1
scoring (Table 2 and Figure 3a). However, 72 h after HFE administration, signs of an inflammatory
response, with varying degrees of meningeal infiltrates, were observed (Table 2 and Figure 3b,c).
The H-FIRE protocol, 1200 V/cm, designed to ablate parenchymal tissue did indeed lead to necrosis,
even far removed from the electrode insertion tracks (Table 2 and Figure 3d). Just as was previously
demonstrated for traditional IRE, we have shown HFE with a V/d ratio of 600 V/cm can induce BBBD,
and this is associated with minimal tissue damage. Our raising of the voltage resulted in a substantial
increase in BBBD volume but also presented with remote parenchymal tissue necrosis consistent with
H-FIRE-mediated cell death. These findings are consistent with prior studies that used intracranial
IRE and H-FIRE; the degree of BBBD and cell death can be manipulated by proper selection of pulse
parameters such as burst number and applied voltage [26,43]. Given that we observed inflammatory
infiltrates within the brain parenchyma at later timepoints, it appears that HFE-induced BBBD is
also associated with induction of a sterile inflammatory response similar to what has been observed
with focused ultrasound-induced BBBD [44]. Theoretically, additional BBBD could be observed in
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association with maturation of this inflammatory response. Future studies examining the tissue effects
of HFE over longer periods of time will be required to further characterize this response.

Blood–brain barrier disruption can, in the short term, also be mediated by hyperthermia [45].
To delineate potential thermal impacts on the measured BBBD in this study, a FOT sensor was adhered
to the tip, at the theoretical location of the highest temperature gradient. Unfortunately, since the
diameter of the FOT sensor was larger than that of the electrodes used here, these sensors imposed
an additional mechanical disruption of tissue upon electrode/FOT insertion. Therefore, we chose to
measure temperature for only n = 2 each for 1200 V/cm and 600 V/cm. Since there was a negligible
temperature increase at 600 V/cm, we report the ∆T only for Group 6 (1200 V/cm). On average,
the maximum ∆T was 0.55 ± 0.18 ◦C; this ∆T is well below temperatures known to cause thermal
coagulative necrosis [46]. Since the electric field decreases exponentially away from the electrode, so
too will the Joule heating from HFE. This means any temperature effects should drastically diminish
away from the electrodes and result in temperature rises far below what was measured in locations
with BBBD.

Accelerometry measurements at a V/d ratio of 600 V/cm did not reveal detectable movement;
however, at 1200 V/cm, hemifacial contractions and detectable movement suggest higher voltages
are likely to lead to muscle excitation. To counteract the effects of HFE on excitable tissues like
muscle and nerves, higher frequency waveforms, or shorter pulse durations (<2 µs), could be used
as opposed to 5 µs pulses [47]; as previously demonstrated, longer pulse durations typical of IRE
(100 µs) are more likely to induce muscle/nerve excitation [32]. On the contrary, shorter pulse durations
require a higher voltage to achieve a similar ablation in healthy tissue if the other pulsing parameters
are maintained; in malignant cells, H-FIRE selectivity seems to benefit from using higher frequency
waveforms [38,48–50]. The relationship between pulse width, cell kill, and tissue excitation has been
modestly investigated [34,51], so future efforts to find the optimal pulsing parameters may prove
beneficial for H-FIRE therapy. Future applications may utilize a current cage configuration to control
or limit the zone of muscle/nervous stimulation, applying a precedent wherein a current cage was
used to reduce the volume of tissue exposed to a 5 V/cm muscular excitatory threshold, instead of a
two needle configuration [52]. We did not study the effects of HFE on nervous stimulation outside of
muscle excitation, but they are interesting to consider. Specifically, vasodilation mediated by nerve
stimulation [53] may have an effect on observed or experienced accumulation and clearance of Gd-EBD
or therapeutic agents, respectively. Since HFE mitigates nervous stimulation, vasodilation effects may
be reduced relative to traditional IRE, leading to more stable, predictable BBBD dynamics; HFE-induced
nervous stimulation, vasodilation, and BBBD dynamics will be the focus of future studies.

Finally, electrical impedance measurements at 20 kHz show significant changes in tissue impedance
before and after HFE/H-FIRE treatment, regardless of the applied voltage. In the H-FIRE protocol
(1200 V/cm), a significant difference in tissue impedance from baseline was recorded (−2263.16 Ω),
as expected. Previously, impedance changes before and after treatment have been proposed as a
metric by which to assess ablation outcome [54,55]. Our histological analysis suggests tissue ablation
resulting from 1200 V/cm treatment, consistent with a large decrease in our electrical impedance
measurements. On the contrary, the 600 V/cm treatment (Group 1) did not demonstrate regional
tissue ablation, though electrical impedance measurements were also significantly different from
baseline (−1335.73 Ω). Although the mean change in tissue impedance is higher in the irreversible
electroporation protocol than in the reversible electroporation protocol, the means were not statistically
different from each other.

One limitation in our approach to numerical analysis is the assumption that the observed BBBD
volume is topologically consistent with the computed EF contour enclosing the same volume of tissue.
It is likely that CSF fluid flow pathways and other local variations in tissue electrical properties alter
the boundaries of the experimental EFD. Our observations suggest that the measured boundaries
of the BBBD zone will follow slight deviations from the boundaries of the isovolumetric computed
field domain. This concern, associated with tissue impedance variability, was one of the factors that
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originally motivated the creation of H-FIRE [33]. The use of high frequency waveforms has been shown
to effectively mitigate the differences in tissue impedance relative to low frequency IRE pulses [33,41].
In addition, the quantification of the sigmoidal relationship between conductivity and local EF, a
relationship typically characterized from a multitude of data points, was, in our study, quantified
using only two voltage conditions. While the experimental voltage and current data match well with
those numerically computed, further characterization is needed to accurately quantify this complex
relationship. Conductivity data reported here serves only as an approximation for rat brain tissue
electrical response to HFE.

The approach we took to quantify BBBD volume relied on systemic circulation of the Gd-EBD
solution for one hour prior to sacrifice. For example, at the 24 h time point, the Gd-EBD solution
was administered IP 23 h after HFE; 1 hour after that IP injection, the animal was sacrificed and then
either transported for MRI BBBD characterization or necropsied prior to brain tissue preservation.
One limitation for this method of characterizing BBBD is that it does not quantify the dynamics of Gd
clearance or recovery of the BBB. Furthermore, investigation of the variability in BBB permeability
using molecules of different sizes or configurations was not included in this study. While the BTTs
determined in this study describe BBBD pertaining to Gd (~950 Da) and EBD (which forms complexes
with albumin measuring ~70 kDa), these thresholds may vary depending on the size and mobility
of the molecule/drug in question. Some agents of interest include the chemotherapeutic anti-cancer
drug methotrexate (~450 Da) and carbidopa (~225 Da), a BBB-impermeable drug used in mitigating
the symptoms of Parkinson’s disease. Future studies to investigate BBB permeability to molecules of
varying sizes and the clearance of these molecules are of utmost importance.

HFE demonstrates potential as a unique tool to selectively permeate the BBB. By modifying
the pulsing parameters and the electrode configuration, HFE can be used to selectively open the
BBB with spatiotemporal control of the therapeutic window. Ultimately, we foresee a treatment
regimen wherein high-frequency pulses are used to ablate a tumor core, while the tumor margins
are subjected to a combination of H-FIRE selective cell kill and HFE-BBBD-mediated exposure to
precisely targeted chemical, biomolecular, or immunological agents centimeters from the solid mass [56].
HFE-induced BBBD alone is a promising development for the prospect of improved patient outcomes
from those suffering from glioblastoma multiforme. Combinatorial therapy, including the selective
use of HFE-mediated BBBD, would constitute a highly selective yet grossly effective therapy for
brain tumor elimination. As evidenced in recent studies demonstrating a robust adaptive and innate
immune response to tumors following electroporation-based therapies [57,58]; HFE now may evolve as
a potential therapy not only targeting early stage tumors, but also late-stage and metastasized cancers.

4. Materials and Methods

4.1. Assurances and Surgical Procedures

The study was performed in accordance with the principles of Guide for the Care and Use
of Laboratory Animals and was approved by the Institutional Animal Care and Use Committee
(IACUC#16–156). Study animals were adult male Fischer rats, weighing between 170 and 215 g.
Prior to surgery (craniectomy), rats were premedicated with a subcutaneous (1 mg/kg) injection of
buprenorphine (Buprenoprhine SR-LAB; Zoopharm, Windsor, CO, USA), anesthetized using isoflurane
induction (3%–4%:95% isoflurane:oxygen mixture), and then maintained with isoflurane (2–3.5%:95%
isoflurane:oxygen mixture) delivered via nosecone. The dorsum of the head from the intercanthal
area to the cranial cervical region was clipped and prepared for aseptic surgery. Anesthetized rats
were instrumented in a small animal stereotactic headframe (Model 1350M; David Kopf Instruments,
Tujunga, CA, USA). A unilateral rostrotentorial surgical approach to the skull was performed and
a 5 mm × 2.5 mm rectangular, parietal craniectomy defect was created in the skull of each rodent
using a high-speed electric drill (Dremel 3000 Series; Mount Prospect IL, USA) with a 2.4 mm diameter,
round burr. Following completion of the craniectomy, two blunt-tipped stainless steel electrodes
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were advanced into the brain using the micromanipulator arm of the stereotactic frame according
to stereotactic coordinates referenced to the location of the rostral electrode (bregma 4 mm caudal,
3.5 mm lateral, at a depth of −4 mm relative the surface of the dura). Upon placement of the electrodes,
secondary electrical, thermal, and accelerometry measurements (see below) were recorded and HFE
treatment commenced.

Following HFE pulse delivery and secondary measurements, the electrodes were retracted, the
craniectomy defect covered with bone wax (Ethicon), and the skin incision closed with 4-0 monocryl
interrupted skin sutures (Ethicon, Somerville, NJ, USA). Rats were recovered from anesthesia and
monitored until their predetermined survival endpoints.

4.2. High-Frequency Electroporation and Parameter Selection

A custom-built bipolar pulse generator (EPULSUS-FBM1-5, Lisbon, Portugal) [59] was used to
deliver bursts of bipolar pulsed EFs to the output stainless steel electrodes (φ = 0.45 mm, 4 mm
center-to-center spacing, 1 mm electrode exposure). This generator consisted of two unipolar Marx
generators capable of producing voltage waveforms in a bipolar manner with pulse risetimes of 100 ns
and a maximum voltage/current output of 5kV/50A. Voltage and current waveforms were recorded
using a WaveSurfer 3024z oscilloscope (Teledyne LeCroy, Chestnut Ridge, NY) with a 1000 × high
voltage probe (Enhancer 3000, BTX, Holliston, MA) and 10 × current probe (2877, Pearson Electronics,
Palo Alto, CA), as seen in Figure 5a. A single burst of bipolar pulses consisted of 10 cycles, each with a
5 µs positive phase, a 5 µs intra-pulse delay, and a 5 µs negative phase (5-5-5 µs) for a total energized
time of 100 µs per burst delivered at 1 Hz (Figure 5b). Unless stated otherwise, the applied V/d ratio
and number of bursts were 600 V/cm and 200 bursts, respectively.
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two blunt tipped monopolar electrodes (ϕ = 0.45 mm, 4 mm spacing, 1 mm exposure) using a custom-
Figure 5. Experimental setup and voltage/current recording. HFE treatment (a) was delivered across
two blunt tipped monopolar electrodes (φ = 0.45 mm, 4 mm spacing, 1 mm exposure) using a
custom-built high-frequency pulse generator. The 5-5-5 µs voltage and current waveforms (b) were
recorded using a WaveSurfer 3024 z oscilloscope with a 10 × Pearson current probe and a 1000 × high
voltage probe.

BBBD was investigated at timepoints 1, 24, 48, 72, and 96 h after HFE treatment (Table 3). Groups
1–5 comprised the temporal characterization arm of this study, in which a total of 200 bursts were
applied at a V/d ratio of 600 V/cm. In addition to the temporal study, the effect of applied V/d ratio and
number of bursts was investigated at the 1 hour timepoint. Group 6 was used for the investigation of
BBBD due to increasing the V/d ratio from 600 (group 1) to 1200 V/cm (group 6), while maintaining
other pulsing parameters; this group represents the H-FIRE protocol. Group 7 was used for the
investigation of BBBD due to a decrease in number of bursts from 200 (group 1) to 100 bursts (group 7),
while maintaining all other pulsing parameters. Groups 1, 5, 6, and 7 consisted of n = 4; groups 2,
3, and 4 consisted of n = 8; and the sham group consisted of n = 2. The sham group underwent the
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craniectomy surgical procedure and had the monopolar electrodes inserted into the brain, but with no
pulsing administered.

Table 3. Experimental matrix; HFE-mediated BBBBD was investigated 1–96 h post-HFE.

Group Time-Point (h) Voltage/Distance Ratio (V/cm) Number of Bursts

sham § 1 0 0

1 * 1 600 200

2 † 24 600 200

3 † 48 600 200

4 † 72 600 200

5 * 96 600 200

6, H-FIRE * 1 1200 200

7, Burst100 * 1 600 100
† represents (n = 8); * represents (n = 4); § represents (n = 2).

4.3. Magnetic Resonance Imaging and Gd-EBD BBB Disruption Volumetrics

To assess BBB permeability, anesthetized rodents received an IP injection of a solution (Gd-EBD)
formulated with 0.1 mmol/kg of gadopentetate dimeglumine (Gd; Magnevist; Bayer, Whippany, NJ,
USA) and 75 mg/kg of 2.5% Evans blue dye (EBD; Sigma; St. Louis, MO, USA). Gd and EBD are too
large to permeate the intact BBB, meaning their presence in the brain parenchyma would indicate
BBBD following HFE treatment. In all cases, the Gd-EBD solution was administered 1 h prior to
sacrifice; for example, at the 24 h time point, the Gd-EBD solution was administered IP 23 h after
HFE. Specifically, in the 1 h timepoint, Gd-EBD was administered 5 min prior to HFE treatment and
imaged 1 h post-HFE. This provided enough time for Gd-EBD to circulate systemically and permeate
in regions of BBBD. Anesthetized rats were then euthanatized by IP pentobarbital (0.5 mL) overdose
(Fatal Plus, Vortech Pharm, Dearborn, MI, USA) at predetermined timepoints. Brain MRI images were
obtained immediately (<10 min) after euthanasia on a Philips 1.5T scanner (Intera, Philips Healthcare,
Andover, MA, USA) equipped with an 8-channel head coil. T1-weighted spin echo was obtained using
the following parameters: TR = 450 ms, TE = 15 ms, FOV = (40 mm)2, slice thickness = 2.0 mm.

Following MRI, BBBD volumes were quantified as regions of contrast enhancement in T1W scans.
3D reconstruction of BBBD regions was implemented using Osirix (Osirix MD, Bernex, Switzerland);
a Gd threshold intensity was determined based on prior studies that utilized reference tubes of known
Gd concentrations [26].

4.4. Histomorphologic Analyses of Gd-EBD Treated Rodents

Following MRI imaging, the brain of each rodent was removed. The brains of half of the rats in each
treatment group were immersion-fixed in 10% neutral buffered formalin solution. Following fixation
for 48 h, the brain of each rodent was placed in an adult rodent matrix slicer (Ted Pella Inc., Redding,
CA, USA) and serially sectioned in the transverse plane at 2 mm intervals. Each transverse brain slice
was digitally photographed (Nikon D5100, Nikon, Japan) and paraffin embedded individually in a
tissue cassette. The positions of the transverse sections at which the EBD was first and last visible (the
anterior/rostral and posterior/caudal limits of the z-plane of the BBB disruption) were co-registered to
the corresponding channels of the brain matrix and recorded. Transverse brain sections containing EBD
within these defined rostral and caudal limits were serially sub-sectioned in the transverse plane at 10
µm thickness and 200 µm intervals using a microtome and mounted on positively-charged microscope
slides. Digital photomicrographs (Nikon Eclipse Ni-E, Nikon, Japan) of the intraparenchymal EBD
were obtained from all intervening transverse sections using a charge-coupled device camera with a
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fixed aperture (Nikon DS-Fi1c, Nikon, Japan). The volume of EBD resulting from the transverse image
stack from each rat was calculated using a Cavalieri estimator on a commercial image analysis system
(Stereo Investigator; MBF Bioscience, Williston, VT, USA).

Brain sections within the region of EBD uptake from each rat were stained routinely with
hematoxylin and eosin (H&E) and examined using light microscopy for evidence of treatment-associated
brain injury. Histologic changes in the brain were reviewed independently by three investigators
blinded to the treatments groups and graded using a modification (Table 4) of a previously reported
system for evaluation of catheters for treatment of central nervous system disease [60]. The grading
scores reported (Table 2) are the highest grade assigned for each observation.

Table 4. Modified histological grading scheme [60].

Score Criteria: Brain Parenchyma Changes

0 No lesions apparent

1 Superficial cerebral contusion, edema, electrode tracks, +/- hemorrhage; lesions limited to
electrode tracks

2 Superficial cerebral contusion, edema, electrode tracks, +/- hemorrhage, inflammation;
lesions limited to electrode tracks

3 Parenchymal hemorrhagic necrosis/ablation localized to electrode tracks/tips

4 Regional parenchymal hemorrhagic necrosis/ablation (necrosis around and remote from
needle tracks)

Criteria: Meningeal Changes *

a Mild meningeal inflammatory infiltrates; limited locally to electrode insertion areas

b Moderate meningeal inflammatory infiltrates; meningeal involvement throughout
surgical site

c Severe meningeal inflammatory infiltrates; diffuse meningitis extending beyond surgical
field

* could accompany any Grade 0–4 lesion.

4.5. Quantification of Evans Blue Dye

Brain tissue and blood samples were processed using a previously described dye extraction
method [61]. Briefly, blood samples were centrifuged for 10 min at 10,000 × g at 4 ◦C. The supernatants
were aspirated and mixed (1:3 v/v) with 50% trichloroacetic acid (TCA; dissolved in 0.9% saline,
Sigma; St. Louis, MO, USA). This solution was then centrifuged (10,000 × g for 10 min at 4 ◦C).
The resulting supernatant was collected, diluted with 50% TCA (1:300 v/v), and then again in 95%
ethanol (1:3 v/v). The brain samples were homogenized in 50% TCA (1:3 w/v) using a steel-bead
homogenizer (Beadblaster, Thomas Scientific, Swedesboro, NJ, USA), centrifuged (10,000 × g for
10 min at 4 ◦C), and the supernatants collected and diluted with 95% ethanol (1:3 v/v) prior to
spectrophotometric determination of EBD fluorescence. The final TCA extracted supernatants were
loaded onto a 96-well plate in duplicate (30 µL/well), and EBD fluorescence of blood and brain tissues
was determined using a spectrophotometer (620 nm excitation/680 nm emission; SpectraMax Plus,
Molecular Devices, San Jose, CA, USA).

4.6. Numerical Determination of BBBD Temporal Thresholds

To determine BTTs, a numerical model was constructed using COMSOL Multiphysics v5.4
(COMSOL Inc., Stockholm, Sweden). BTTs were determined numerically as the EF contour which
encloses the same volume of tissue as the BBBD volume from gross pathological tissue sections. This
analysis assumes the measured BBBD was topologically consistent with computed EF contour.
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A realistic tissue domain was defined through 3D reconstruction of a rat brain from a T1W MRI
scan (Figure 6a–c) using 3D Slicer 4.10 (Slicer, https://www.slicer.org/) [62]. The final domain, including
the brain and two monopolar electrodes, consisted of 298,218 tetrahedral elements resulting from an
“extra fine” mesh setting within COMSOL (Figure 6d). After mesh generation, the electric potential
distribution was modeled using Equation (1).

∇ · (σ∇φ) = 0 (1)

In Equation (1), σ represents the electrical conductivity as a function of the electric field, E, andφ is
the electric potential. Since σ(E) for rat brain tissue has not been previously characterized, experimental
voltage and current waveforms collected in this study were used to generate an approximate electrical
conductivity curve of rat brain tissue using a methodology previously implemented by Sel et al. [63];
physiologic temperature was recorded as T = 32.2 ◦C. In total, an n = 30 V/I recordings from the
600 V/cm group and an n = 2 V/I recordings from the 1200 V/cm group were used for this analysis.
A parametric study was implemented across two parameters fitted to a sigmoidal tissue response
(Equation (2)). Parameters σ0 (0.05–0.15 S/m) and σf (0.05–0.35 S/m) were varied until the electric
current predicted from the numerical model closely matched the first-burst experimental voltage
and current. The remaining parameters, A (0.003) and Edel (1,750 V/cm), were held fixed as these
parameters did not significantly alter the predicted voltage and current values from the numerical
model. A sigmoidal tissue response has previously been used to represent changes in tissue conductivity
due to electroporation [63]; the sigmoid in Equation (2) was used in this study.

σ(E) = σ0 +
σ f − σ0

1 + e−A·(E−Edel)
(2)

Here, σ0 represents the tissue conductivity at an un-electroporated state; σf represents the
electroporated tissue conductivity; A the slope of the sigmoid transition region; and Edel the
accompanying transition range. Following the characterization of rat brain tissue conductivity,
an electric potential boundary condition (φ = 240 V) and a grounding boundary condition was
applied on either electrode. All remaining external boundaries were assumed as electrically insulating
(dφ/dn = 0). It should be noted that only two voltages were investigated in this study; therefore,
the resulting sigmoidal conductivity data serves only as an approximation of the electrical tissue
response to HFE.

Thermal dissipation and Joule heating effects were calculated using a modified bioheat equation
(Equation (3)):

ρc
∂T
∂t

= ∇ · (k∇T) −ωbρbcb(T − Tb) +
σ · |E|2 · p

τ
(3)

where ρ is the tissue density; c the specific heat; k the thermal conductivity; and ωb the distributed
blood perfusion coefficient. In this study, Tb, ρb, and cb were 32.2 ◦C, 1050 kg/m3, and 3617 J/(kg·K),
respectively. The terms p and τ represent the duty cycle normalization terms, which allow for HFE
thermal contributions to be represented as a continuous heat source rather than a periodic heat source,
as the latter would require drastic changes in solver time-stepping. Here p is the burst on-time
(100 × 10−6 s) and τ is the period of burst delivery (1 s). Additional parameter values used in this
model are represented in Table 5.

https://www.slicer.org/
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Figure 6. 3D numerical reconstruction and BBBD temporal threshold analysis. The 3D numerical
reconstruction process is as follows: from a (a) T1W MRI scan (Group 1), a (b) region selection tool
was used to highlight the brain and BBBD. The brain region was (c) reconstructed in 3D, electrodes
placed, and (d) meshed for numerical analysis. (e) The resulting electric field distribution was used to
determine BBBD temporal thresholds as the EF contours which enclose the same volume of tissue as
the BBBD volumes from gross pathological tissue sections.

Table 5. Electrical and thermal values for the numerical model.

Material Parameter Value Units

Brain tissue

Density, ρ 1046 kg/m3

Specific heat, c 3630 J/(kg·K)
Thermal conductivity, k 0.51 W/(m·K)

Blood perfusion
coefficient,ω 1.75 × 10−3 1/s

Insulation

Density, ρ 1190 kg/m3

Specific heat, c 1470 J/(kg·K)
Thermal conductivity, k 0.18 W/(m·K)
Electrical conductivity, σ 2.5 × 1014 S/m

Stainless steel

Density, ρ 7850 kg/m3

Specific heat, c 475 J/(kg·K)
Thermal conductivity, k 44.5 W/(m·K)
Electrical conductivity, σ 4.0 × 1014 S/m

Material properties were attained from the IT’IS database (https://itis.swiss).

4.7. Secondary Electrical, Thermal, and Accelerometry Measurements

4.7.1. Electrical Impedance Spectroscopy for Monitoring Changes in Tissue Impedance

Brain tissue impedance changes were monitored using a Gamry Reference 600 potentiostat
(Gamry, Warminster, PA, US). Following stereotactic placement of the blunt-tipped electrodes and
prior to HFE treatment, baseline brain tissue electrical impedance was measured between 10 kHz
and 1 MHz at 10 points per decade. Immediately (<5 s) after HFE treatment, a secondary impedance

https://itis.swiss


Cancers 2019, 11, 1850 19 of 23

sweep was conducted, with the same bandwidth and resolution, in order to record changes in tissue
impedance. Here, we report the changes in the real part (Re) of the complex tissue impedance at
20 kHz. This frequency was selected to reflect changes in extracellular tissue impedance.

4.7.2. Fiber Optic Temperature Sensing for Monitoring Joule Heating Effects

Changes in tissue temperature, due to Joule heating effects, were monitored for the H-FIRE
protocol (Group 6) and HFE protocol (Group 1) using a general-purpose STB fiber optic temperature
(FOT) probe (LumaSense, Santa Clara, CA, USA). Because the diameter of the FOT probe was larger
than that of the electrodes used here, these probes imposed an additional mechanical disruption of
tissue upon electrode/FOT probe insertion; therefore, data collection was limited to Group 1 and 6.
The FOT probe was attached along the length of a single blunt-tipped monopolar electrode and
stereotactically guided into the brain tissue; temperature was recorded at a frequency of 2 Hz using a
Luxtron m3300 Biomedical Lab Kit (LumaSense, Santa Clara, CA, USA). The experimental thermal data
was compared to thermal changes predicted by the numerical model for further numerical validation.

4.7.3. Accelerometry Measurements for Muscle Excitation

A 6-axis gyroscope/accelerometer (InvenSense MPU-6050, San Jose, California, USA), configured
to an acceleration sensing range ± 4 g, was sutured to the flank of each rat at the thoracolumbar
junction using 4-0 monocryl suture (Ethicon, Somerville, NJ, USA). Accelerometry was recorded at
30 Hz for groups 1, 2, and 6. Given the minimal acceleration observations from these treatment groups,
no further accelerometry measurements were collected.

4.8. Statistical Analysis

The analysis was performed using SAS software (SAS Inc, Cary, NC). We deemed the threshold
for declaration of statistical significance to be p < 0.05. A KW test was used to compare the pathological
BBBD volumes across treatment groups. The temporal characterization arm, the V/d ratio comparison,
and the burst number comparison were analyzed separately due to differences in the energy delivered
in each treatment group. A KW test was also used to compare the brain and blood EBD across the
treatment groups. In cases where the KW test showed significance, Dunn’s test was used for pairwise
comparison between the treatment groups and the sham group. To evaluate the consistency of our two
BBBD metrics, the difference between BBBD volumes measured from pathological tissue sections and
from MRI (VPath-VMRI) was taken; a paired-t test was used to determine whether the difference was
statistically different from 0.

Numerical validation was only conducted for two electric potentials; due to the small sample
size (n = 2) in the H-FIRE protocol (1200 V/cm), we did not perform the goodness of fit test for this
validation. The comparison was done qualitatively.

Histologic grade was assigned by 3 reviewers. The highest grade was recorded for each observation.
Fisher’s exact test was used to examine the association between treatment group and grade level.
For the purposes of this test, treatment groups were further grouped into four categories: the sham
group, the immediate response (1–48 h and Burst100), the delayed response (72–96 h), and the H-FIRE
protocol. We also performed the linear trend test to assess whether the histologic grade is higher with
increased time following treatment.

To compare whether the pre- and post- impedance measurements are the same for group 1
(600 V/cm) and the H-FIRE protocol (group 6, 1200 V/cm), a paired-t test was used. To further compare
the pre-post change between 600 V/cm and 1200 V/cm, a two-sample t-test was used.

Comparison between the numerical and experimental Joule heating was accomplished by taking
the difference between the temperature profiles (∆Tnum−∆Texp). The mixed effects model was used to
statistically evaluate whether this difference diverged from 0. Random intercept was used to account
for the correlated structure.
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5. Conclusions

Predictable, focal blood–brain barrier disruption (BBBD) was achieved using high frequency
electroporation (HFE). Muscle contractions and tissue damage due to HFE treatment at a voltage to
distance ratio of 600 V/cm were minimal. MR imaging and gross pathological evaluation confirmed
uptake of the Gd-EBD solution at all timepoints earlier than 96 h. After 72 h there was a noticeable
decrease in detection of the Gd-EBD solution, indicating transient BBBD. Numerical modeling
demonstrated a high correlation between the duration of BBBD and a corresponding BBBD temporal
threshold. These data indicate that HFE induces BBBD at low electric fields and that the application of
higher local electric fields can be utilized for longer duration (~3 days) of BBBD.
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