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Abstract
Intellectual disability (ID) is a neurodevelopmental condition affecting 1–3%
of the world’s population. Genetic factors play a key role causing the
congenital limitations in intellectual functioning and adaptive behavior. The
heterogeneity of ID makes it more challenging for genetic and clinical
diagnosis, but the advent of large-scale genome sequencing projects in a
trio approach has proven very effective. However, many variants are still
difficult to interpret. A combined approach of next-generation sequencing
and functional, electrophysiological, and bioinformatics analysis has
identified new ways to understand the causes of ID and help to interpret
novel ID-causing genes. This approach offers new targets for ID therapy
and increases the efficiency of ID diagnosis. The most recent functional
advancements and new gene editing techniques involving the use of
CRISPR–Cas9 allow for targeted editing of DNA in   and morein vitro
effective mammalian and human tissue-derived disease models. The
expansion of genomic analysis of ID patients in diverse and ancient
populations can reveal rare novel disease-causing genes.
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Introduction
Intellectual disability (ID) occurs in the developmental period 
before the age of 18 years. ID is a heterogeneous group of  
disorders characterized by significantly impaired intellectual 
functioning and deficits in adaptive behaviors1. It affects 1–3% 
of the world population, is the most common developmental  
disorder, and represents an important socio-economic problem in  
healthcare. However, owing to the heterogeneity of ID, its 
frequency ratio changes worldwide2. Diagnosis of ID is 
also performed with the identification of clinical phenotype  
symptoms such as delayed speech, hypotonia, and seizures3. 
In the past decade, the genetic background of ID was believed 
to be mostly autosomal dominant (de novo mutations) in the  
outbred countries such as the USA and those in Western 
Europe, while in the middle-east countries where inbreeding  
is common, autosomal recessive ID has some preponderance4,5.

Next-generation sequencing (NGS) provided tremendous power 
to sequence personal genomes and detect a large number of 
genetic variants. The discovery of disease-causing variants by 
whole exome or genome sequencing in patients has dramati-
cally changed our perspective on precision medicine6. Through  
NGS methods, now it is possible to find pathogenic  
mutations, including novel mutations, associated with ID7. A 
combined NGS and bioinformatics approach is used to iden-
tify novel ID genes and screen candidate ID genes as well. NGS  
has efficiently expedited ID research and provided new  
strategies at the clinical level in the last few years, as 
shown in Figure 1. Genomics England’s PanelApp database  
(https://panelapp.genomicsengland.co.uk/panels/285/) shows that 
around 1,396 genes cause ID (see Table 1, Extended data).

Etiological classification of intellectual disability
Multiple factors are involved in causing ID. Genetic factors 
include genetic variations such as aneuploidies, copy number 
variations (CNVs), and tandem repeats in specific genes8. DNA 

is liable to mutation, mediating genetic plasticity. The expan-
sion of tandem repeats can cause a range of disorders associ-
ated with ID such as X-linked ID (XLID)9, various ataxias,  
motor neuron disease, and epilepsy. Emerging data suggest that 
tandem repeat polymorphisms (TRPs) can contribute to the  
missing heritability of polygenic disorders10–13. Furthermore, 
various metabolic factors, repeat expansions of nucleotides, and 
mitochondrial DNA variants can also contribute to ID7. Environ-
mental factors such as hazardous chemical exposures, infections 
during pregnancy, and UV radiation are also reported to cause 
ID. In addition to these, lack of nutrition, cultural deprivation, 
childhood diseases such as measles, meningitis, and severe head  
injury can cause malfunction of the nervous system, lead-
ing to ID14. Even though the etiological factors of ID are  
very broad, as shown in Figure 2, in 50% of individuals the 
cause of ID is still unknown, but the most prominent causes are  
genetic15.

Cytogenetic abnormalities
The identification of genetic factors causing ID has advanced in 
terms of number and type with recent developments in cytoge-
netic techniques. The first genetic test used in the investigation 
of ID was karyotyping16 to identify aneuploidies, such as Down’s 
syndrome (trisomy 21) and Edwards syndrome (trisomy 18), and 
large structural re-arrangements such as insertions, deletions,  
and duplications17,18. Karyotyping detects only large dele-
tions or insertions owing to its low resolution. Fluorescence 
in situ hybridization (FISH) is used to detect structural abnor-
malities and numerical changes on chromosomes. Specific 
probes are used in FISH for the analysis of chromosomal aber-
ration19. A number of studies on ID describe the growing  
benefits of using NGS in clinics for diagnostic purposes20.

Chromosomal aberrations
An extra copy of chromosome 21 as a result of an error in cell 
division can cause a trisomy known as Down’s syndrome21. It is 

Figure 1. The number of articles on intellectual disability published in the last seven years identified using the PubMed search terms 
“ID”, “mental retardation”, “next-generation sequencing”, and “exome sequencing”.
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the most frequent form of ID. The clinical features of Down’s 
syndrome include dysmorphic features, seizures, psychomo-
tor slowing, and congenital malformation. These conditions may 
not be present in each affected individual22. Edwards syndrome 
is a trisomy of chromosome 18 characterized by psychomo-
tor and cognitive brain impairment, malformation, and growth 
deficiency in infants23. The occurrence of Edwards syndrome 
is 1 out of 8,000 live births. The mortality rate is very high with 
this condition; only 5–10% of affected children survive after the  
first year of life24. Patau syndrome is a trisomy of chromosome 
13, characterized by malformations of the central nervous sys-
tem (CNS). The occurrence of this syndrome is 1 in 12,000 in 
the general population23. The survival rate is very low in infants 
with trisomy 13, but it depends on the severity of the condi-
tion in infants, i.e. whether or not there are cerebral, cardiac, or  
other congenital malformations25.

Copy number variation
CNVs are small segments of DNA that vary in number. Usu-
ally each individual carries two copies: one that comes from the 
maternal side and one from the paternal side. Variations in copy 
number occur through duplications and deletions of the small 
DNA segments. But not all copy numbers, that are either a dele-
tion or duplication, are pathogenic to humans26,27. The largest 
database for CNVs (DGV) is available online (www.dgv.tcag.
ca)28. Decipher is another database used by clinicians to com-
pare clinical and genetic information for the identification and 
interpretation of pathogenic variants (sequence variants and copy 
number variants) in patients with ID29. CNVs causing de novo 
and inherited mutations have been associated with ID. A study 

on a large cohort reported 118 rare de novo CNVs30. Analysis of  
these reported CNVs and candidate genes pinpointed 10 genes 
with loss of function associated with ID31. CNVs cannot be vis-
ibly detected with a light microscope. Array comparative 
genomic hybridization (CGH) can perform rapid genome-wide 
analysis at a high resolution and detect CNVs, gain or loss, at 
the chromosomal level32. Array CGH analysis of unresolved 
ID cases increased the identification of pathogenic CNVs up 
to 13% in recent years. Phenotypes associated with these 13% 
of cases are congenital defects, primary microcephaly, and  
short stature33. A disorder (Online Mendelian Inheritance 
in Man [OMIM] #612001) with microdeletion on 15q13.3 
shows an ID phenotype with a complex variety of seizures,  
autism, and psychiatric conditions34,35. SNP array is also a new 
technique as compared to array CGH which can detect CNVs36. 
A novel genetic disorder related to ID with a 3q29 microdeletion  
was reported using microarray techniques37.

Whole exome and genome sequencing
Whole exome sequencing (WES) is an efficient technology 
that can increase the diagnostic yield when searching for alleles 
causing rare Mendelian disorders. Exome analysis examines the 
protein’s encoding region, where an estimated 85% of disease- 
causing mutations are believed to occur38. It has been an 
invaluable tool in gene discovery for ID. WES performed 
on three members of a family with autosomal dominant ID  
(MRD44; 617061) showed a heterozygous mutation, a 1 bp  
deletion (c.4466delA, NM_007118) in exon 30 of the TRIO  
gene. This mutation resulted in a framshift and premature  
termination (Gln1489ArgfsTer11) in the GEFD1 domain. A  

Figure 2. Intellectual disability classification. Multiple factors are involved in intellectual disability including genetic inheritance and 
environmental conditions.
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9-year-old girl with autosomal dominant ID was also found 
to carry a de novo heterozygous c.3239A-T transversion  
(c.3239A-T, NM_007118) in exon 19 of the TRIO gene, 
which causes changes in the spectrin repeat domain39. Whole 
genome sequencing (WGS) allows examination of single- 
nucleotide variants (SNVs), indels, structural variants (SVs), and 
CNVs in both the ~1% part of the genome that encodes protein  
sequences and the ~99% of remaining non-coding sequences. 
Therefore, WGS has more reliable sequence coverage with 
more uniformity. It is likely to reveal many novel variants and 
genes and derive new scientific and clinical findings for ID. 
With the rapid drop in sequencing cost and the ability of WGS  
to rapidly produce large volumes of data, it is becoming a  
powerful tool for genomic research.

Inherited mutations causing intellectual disability
Single gene disorders are grouped into different types on the  
basis of inheritance pattern40.

Autosomal recessive intellectual disability
Autosomal recessive ID is a genetically heterogeneous group 
of disorders41. Autosomal recessive ID occurs in syndromic and 
non-syndromic forms. The syndromic type of ID is character-
ized by intellectual problems occurring with a group of other 
phenotypic features42. Non-syndromic ID is characterized by a 
lack of associated pathology. Genes linked with non-syndromic 
ID are being studied to understand the normal variation 
in intelligence43. Distinction in intelligence quotient (IQ)  
is linked with those genes that can also cause large variations in 
intellectual ability when mutated. Homozygosity mapping is 
performed to check the autosomal recessive causes of ID in con-
sanguineous families with affected siblings44. OMIM and SysID 
(http://sysid.cmbi.umcn.nl/) search results show that 399 genes  
can cause autosomal recessive ID (see Table 2, Extended data).

Autosomal dominant intellectual disability
The inheritance pattern of autosomal dominant ID is when an indi-
vidual carries one copy of a mutant allele and one normal allele 
on a gene. Autosomal dominant ID is caused by heterozygous 
mutations in different reported genes and CNVs. Tuberous scle-
rosis, neurofibromatosis, and myotonic dystrophy are autosomal  
dominant disorders linked with ID45. SNP microarray analy-
sis of the methyl binding domain gene on chromosome 2q23.1  
showed that a 200 kb deletion in exon 6 of a female patient was 
associated with autosomal dominant ID46. It is difficult to find 
the estimated frequency of mutations in autosomal dominant 
ID genes. ARID1B, SYNGAP1, DYRK1A, MED13L, KCNQ2, 
CTNNB1, STXB1, KMT2A, PACS1, FOXP1, and SMARCA2 are 
the most commonly mutated autosomal dominant ID genes47,48. 
Some of these genes are essential for neuronal differentiation in 
the developing brain and play important roles in synaptic forma-
tion and transmission49. The outcomes of our OMIM search show  
that in total around 180 genes or loci, as reported in the  
literature, are involved in autosomal dominant ID (see Table 3,  
Extended data).

X-linked intellectual disability
The human X-chromosome comprises 5% of the human genome, 
but an increasing number of genetic diseases are associated with 
the X chromosome; approximately 10–12% of X-chromosome  

genes have been linked with ID50. X-linked recessive fragile X 
syndrome occurs on chromosome Xq27.3 in the FMR1 gene 
at the 5' untranslated region (UTR) owing to the expansion of 
CGG trinucleotide repeats51. Fragile X syndrome is clinically 
characterized as ID; phenotypically, patients show dysmorphic 
facial features and protruded ears. FMR1 encodes for a protein 
that provides RNA stability and plays a key role in brain devel-
opment and neuronal plasticity. Deficiency of the FMRP pro-
tein causes suppression or excitation of GABA that results in 
low synaptic connections, leading to syndromic features in  
patients52. The number of new X-linked ID genes identified has 
increased rapidly over the last few years with the use of NGS.  
More than 140 known X-linked genes have been reported53,54.

Identification of candidate and novel intellectual 
disability genes
Different techniques have been used to identify novel ID-causing 
genes over the past few decades. For the identification of novel 
or candidate genes in affected families, it is necessary to recon-
struct the family pedigree and perform some clinical investigation 
before reaching any conclusion55,56. The introduction of robust 
microarray technologies in research has increased the power of 
identification; SNP arrays can detect small deletions and micro  
duplications in the probands57. NGS has accelerated the speed 
of identification of novel ID-causing genes. NGS technology 
has become very popular over the past 5 years, with a consider-
able number of new ID genes and candidate genes reported. NGS 
can detect SNVs and small insertions/deletions in the whole  
genome.

In vitro and in vivo study of intellectual disability
Biological assays can be used to study any undefined variant and 
its role or pathogenicity. These assays can be used in mutated  
cells and also directly in patient-derived cells58. To identify the 
pathogenicity of candidate ID genes, electrophysiological studies 
of SH-SY5Y neuronal cell lines are a very powerful approach59 
to capture early cortical development with high fidelity, thus 
helping to study genes that are relevant in early cortical develop-
ment and associated with ID60. In vivo studies of candidate ID  
genes provide additional information regarding pathogenicity.  
Different animal models can be used to study ID genes. CRBN 
knockout (CrbnKO) mice have been used to study learning and 
memory tasks. Loss of CRBN results in memory problems, 
learning problems when AMPK activity is accelerated, block-
ing of mTORC1 signaling, and a decreased level of glutama-
tergic synaptic proteins. These findings show that the CrbnKO 
mouse is an ideal animal model to understand the molecular 
mechanisms of learning and memory problems in ID patients61. 
Zebrafish can also be used as a model organism to study the 
function of genes associated with ID. Zebrafish have unique 
features including the rapid development of embryos and easy  
visualization of the nervous system during developmental 
stages, which make them an ideal organism to study the func-
tion of genes. Overexpression comparison can be performed 
between the wild-type PK1A gene and the zebrafish ortholog of 
PK1A. In this case, zebrafish mutants show severe phenotypes 
as compared to the wild-type, and a mutant PK1A gene has been 
reported in patients with epilepsy. These results signify that the 
mutation changes the in vivo function of PK1A62. In addition, the 
TAF1 gene is associated with ID. Functional study of this gene 
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was performed by using a zebrafish knockout model. Severe  
phenotypes were observed during embryogenesis and neurode-
velopment in the zebrafish TAF1 knockout model63. The hetero-
geneity of ID makes it very difficult to validate candidate genes 
as causative ID genes, but in vitro and in vivo studies provide 
grounds for conclusively identifying certain genes. Single-cell 
transcriptomics and quantitative proteomics can also be used to 
improve our understanding of the global changes in the central  
nervous system when the genome-edited organism is available.

CRISPR–Cas9 gene editing tool
The identification of causal genes and their functional analysis 
requires further understanding of disease mechanisms, especially 
for potential therapies, even if we do not have a full understand-
ing of the biological functions. Acknowledging this, clustered 
regularly interspaced short palindromic repeats (CRISPR)–Cas9 
is an RNA control nuclease system that has become essential for 
gene editing and correcting mutated genes. It provides potential 
treatment options for genetic disorders that cause ID (Figure 3). 
This system has been applied recently to mammalian genomes 
to stop the expression of the disease gene or to edit mutated 
genes, thereby correcting the mutation. CRISPR–Cas9 technol-
ogy will possibly cure diseases that have no treatment option  
available, such as trinucleotide repeat expansion diseases  
causing neurological disorders64. CRISPR–Cas9 systems have 

been used on fragile X syndrome caused by the extension of tri-
nucleotide repeats, which results in deteriorated levels of FMR1 
protein and Huntington disease (HD) models. No treatment is avail-
able for these conditions65. Induced pluripotent stem cells (iPSCs)  
of patients with fragile X syndrome in the FRX gene upstream 
of the CGH repeat were targeted with expressed CRISPR–Cas9 
nuclease along with single guide RNA (sgRNA) and resulted in the 
reactivation of the FMR1 protein66. Further studies show that two  
sgRNA-guided methods that flanked the trinucleotide CGG 
repeat produced two double-stranded breaks and the recombina-
tion of the breaks resulted in the deletion of repeats. The deletion 
of repeats resulted in an increased FMR1 protein level67. HD is  
caused by trinucleotide repeat extensions in the coding region of 
the huntingtin gene (HTT)68. The CRISPR–Cas9 system has been  
used recently in the treatment of HD. iPSCs derived from a 
HD patient were corrected by using CRISPR–Cas9 that selec-
tively inactivated the mutant HTT gene without altering the nor-
mal allele of the same gene69,70. HD patient fibroblast cell lines 
were used to show that CAG repeats can be precisely excised  
using CRISPR–Cas9 nickase from the HTT gene71. Strict guidelines 
must be adopted to avoid the exploitation of the safety and secu-
rity weakness in genome editing techniques as well as to reduce 
the risk of off-site editing of genome and epigenetic changes 
with the help of further research. Adopting appropriate biosafety 
levels for genome editing to stop contamination is important  

Figure 3. The CRISPR–Cas9 system used to correct extension repeats in the huntingtin gene (HTT) by using single-guide RNA 
(sgRNA) on both sides of the repeats and Cas9 nuclease, creating nicks and removing the CAG repeats, blocking further extension.
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but so is applying rules to cover the biosecurity of gene editing72. 
Further studies are needed before the application of gene therapy  
to the treatment of these diseases.

Conclusions and the future direction of intellectual 
disability genetics
The prevalence of ID varies from country to country, and it 
is especially low in developed countries as compared to less- 
developed countries73,74. The identification of genes causing ID 
rapidly increased over the past 3 to 5 years owing to the use of 
sophisticated sequencing techniques. The diagnosis of ID patients 
became easy with new massively parallel sequencing methods 
and the help of different human variant databases. The heteroge-
neity of ID makes it difficult for etiological diagnosis; however, 
WES is likely to be used as the first-line test for ID probands. 
NGS improves our understanding of the genetic origin of ID.  
Not all ID-causing genes have been identified yet, but a combined 
approach of sequencing techniques, functional analysis, and bioin-
formatics will help to identify new ID-causing genes. This approach 
will potentially provide a new way of treating ID. Although ID 
genes can be therapeutically targeted using the CRISPR–Cas-9  
system, this method and its application in mammals is still 
emerging, and many regulatory, methodological, and off-target  
effects still need to be understood.

The genomic understanding of ID has primarily come from devel-
oped countries, and our knowledge in developing countries is 
very limited. This is important, as many of these countries have 
a young population and culturally prefer large families, indi-
cating that the burden of ID and other childhood disorders will 
increase before technology is developed enough to treat these 
conditions. Therefore, early diagnosis, education, and genetic 
counseling will be important for families suffering with these con-
ditions. In addition, many of the genes in developing countries  
are likely to have founder effects that may be amenable to diag-
nosis in cultural groups and demographic areas, accelerating  
diagnosis and revealing carrier status to help family planning.
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