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Abstract. Several autofocus algorithms based on the analysis of image sharpness have been
proposed for microscopy applications. Since autofocus functions (AFs) are computed from
several images captured at different lens positions, these algorithms are considered computation-
ally intensive. With the aim of presenting the capabilities of dedicated hardware to speed-up the
autofocus process, we discuss the implementation of four AFs using, respectively, a multicore
central processing unit (CPU) architecture and a graphic processing unit (GPU) card.
Throughout different experiments performed on 300 image stacks previously identified with
tuberculosis bacilli, the proposed implementations have allowed for the acceleration of the com-
putation time for some AFs up to 23 times with respect to the serial version. These results show
that the optimal use of multicore CPU and GPUs can be used effectively for autofocus in real-
time microscopy applications. © 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.JMI.7.1.014001]
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1 Introduction

In different applications involving microscopy systems, autofocus is a fundamental process for
facilitating the analysis of a sample under study, improving the identification of particles of
interest. A focus measure can be computed from images acquired at different lens positions;
then the best focused position will correspond to where the focus measure of the image is a
maximum.1 This mechanism, used in passive systems, is based on the analysis of the high-
frequency content of a sequence of images acquired at different focal positions and the same
field of view (FOV).2

In recent years, several algorithms have been proposed to determine the best focused image
from a microscopy image stack. As discussed by various authors,3–7 the performance of an auto-
focus function (AF) depends on the microscopy modality and the image content, which has been
classified as high-, medium-, and low-density background.7 A few examples are the following.
Santos et al.3 and Osibote et al.4 determined that the autocorrelation method known as Vollath-4
provides the best performance for analytical fluorescent image cytometry studies and bright-field
images of tuberculosis bacilli, respectively. Liu et al.5 and Kimura et al.6 realized an evaluation of
autofocus methods for the analysis of blood smears and tuberculosis samples, respectively; both
of them established that the variance of pixels was the most accurate method. Later, a comparison
of 13 autofocus measures concluded that both Vollath-4 and mid-frequency discrete cosine trans-
form (DCT) methods performed with the best accuracy for fluorescence images of tuberculosis
bacilli.8 Furthermore, the results achieved by Wu et al.9 for the case of unstained transparent cell
images acquired under a bright-field microscopy modality stated that the metrics known as nor-
malized absolute variance, Vollath-5, and histogram entropy provided reliable focus positions.
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Derivative-based methods such as the well known Laplacian (LAP) and Tenengrad (TEN) have
shown accurate enough results for the analysis of samples imaged under different microscopy
modalities.8,10 Additional comparisons of past and current AFs in different image modalities are
presented in Refs. 11–15.

By contrast, most autofocus algorithms are computationally intensive because they try to
determine the high-frequency content of several images of the same FOV. Hence, their parallel
implementation using dedicated hardware to reduce their processing times becomes necessary.
Lei et al.,16 for example, proposed a dual-core approach to speed-up the autofocus process
of a microscopic system; through the experiments, the authors achieved a maximum speed-
up of around 1.75. Other authors have proposed the use of dedicated hardware architecture
(Field Programmable Gate Array device) for the real-time autofocus process of conventional
optical images;17,18 in particular, according to the experiments reported by Jin et al.,18 the imple-
mented pixel-based autofocus system can process more than 150 frames per second (fps). In
recent years, graphic processing units (GPUs) have played an important role in some microscopy
applications; for example, some authors employed a GPU with 1334 cores to reconstruct 1024 ×
1024 frames, at a rate of 70 fps, in digital holographic microscopy.19 Recently, an autofocus
method for microscopy images of sputum smears, which combines the finding of the optimal
focus distance with an algorithm for extending the depth of field, was proposed.20 Although
the proposal is an efficient low-cost implementation based on an embedded GPU system on
chip architecture (256 GPU cores), the performance evaluation was realized over only 30 tuber-
culosis stacks.

Motivated by the aforementioned results, this paper discusses the parallel implementation of
four AFs to speed-up the computation time in microscopy samples of tuberculosis bacilli, using a
multicore central processing unit (multicore CPU) and a GPU board, respectively. The aim of
this paper is to investigate the capabilities and limitations of such technologies to provide auto-
focused images in close to real-time microscopy applications. For this purpose, in addition to a
comparison between multicore CPU and GPU architectures, we illustrate the way to improve
their efficiency by the use of nested parallelism and Hyper-Q strategies to increase the speed-up
of processing large datasets. We remark that previous works have not employed such strategies
in microscopy applications, whereas previous GPUs implementations have obtained results
based on small datasets. The organization of this document is as follows. Section 2 provides
some characteristics of the tuberculosis image set, a brief mathematical treatment of the selected
AFs, and the specifications of the hardware used in our experiments. In Sec. 3, we describe the
parallelization of AFs under different configurations. Section 4 presents the performance of each
function in terms of accuracy and computational time for both multicore CPU and GPU imple-
mentations, respectively. Section 5 presents a discussion of results, whereas in Sec. 6, some
remarks and conclusions of this research are provided.

2 Materials and Methods

Several experiments were performed based on image stacks to analyze the automatic identifi-
cation of Mycobacterium tuberculosis (TB).8 For this purpose, 300 stacks belonging to 10
patients previously diagnosed at Hospital Universitario Gregorio Marañón were imaged using
a Nikon Eclipse 50i fluorescence microscope and a QImaging Retiga 2000R camera with a
resolution of 1200 × 1600 pixels. Each folder is formed by 20 images acquired at constant focus
positions along the z axis, with a constant step Δz ¼ 3 μm. For research purposes, these image
stacks are available in Ref. 21.

As stated by the authors, the chosen constant step was small enough to be visually differ-
entiable by a human observer. Hence, a single observer determined the optimal focus plane for
each stack, which was used as the reference to evaluate the studied AFs. Figure 1 displays nine
frames of a specific TB stack (stack 68). Note that the fourth image, starting from the top-left
part, corresponds to the focused frame. Additional details about the dataset and the techniques
used for the image acquisition process are described in Ref. 8.

The AFs used in our experiments were executed on a server (server K20) with an Intel®
Xeon® CPU E5-2620 v2 2.10 GHz, 24 hyper-threading cores, 256 GB RAM, using Ubuntu
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14.04 (64 bits) as the operating system. In addition, the server has a video card Tesla K20 with
13 multiprocessors, 2496 CUDA cores and 4 GB RAM.

2.1 Mathematical Description of Autofocus Functions

A desirable focus measure should be effective in terms of accuracy and speed. In this paper, four
AFs, providing a high overall accuracy and a relatively high computational cost, were imple-
mented in different parallel configurations. We remark that the metrics that were selected for this
study have shown promising results under different microscopy modalities for the autofocus
process of biological samples in preliminary studies.10,22

With the aim of presenting the mathematical description of such algorithms, consider an
image g from which we want to compute an AF , and whose intensity levels at coordinates
i; j, for i ¼ 1; : : : ;M and j ¼ 1; : : : ; N, respectively, are represented as gði; jÞ. In the following
description, the operator ⊗ denotes the usual convolution operation, and T denotes matrix
transposition.

Vollath-4 (VOL4). By analyzing the influence of scene brightness and noise on focus mea-
sures, Vollath developed an autofocus measure based on an autocorrelation function, which is
noise insensitive23 and it is expressed as follows:

EQ-TARGET;temp:intralink-;e001;116;178VOL4 ¼
XM−1

i¼1

XN
j¼1

gði; jÞ · gðiþ 1; jÞ −
XM−2

i¼1

XN
j¼1

gði; jÞ · gðiþ 2; jÞ: (1)

Midfrequency-DCT (MDCT). By studying the influence of the DCT coefficients on the focus
measure, the authors proposed a 4 × 4 operator used to extract the central coefficient cð4; 4Þ of
the DCT, associated with a reliable focus.24 The MDCT focus measure can be calculated as

Fig. 1 Representative frames of a tuberculosis stack labeled as 68. Starting from the top-left,
the fourth image corresponds to the focused frame.
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EQ-TARGET;temp:intralink-;e003;116;735MDCT ¼
XM
i¼1

XN
j¼1

½gði; jÞ ⊗ KDCT�2; (2)

where

EQ-TARGET;temp:intralink-;e003;116;681KDCT ¼

2
664

1 1 −1 −1
1 1 −1 −1
−1 −1 1 1

−1 −1 1 1

3
775: (3)

Tenengrad (TEN). The metric estimates the gradient of the image and then sums the square of
all of the magnitudes greater than a given threshold value.25–27 In our implementation, we use
Sobel’s operators and, to avoid the searching for an optimal threshold value, all of the resulting
values are summed, such as

EQ-TARGET;temp:intralink-;e004;116;565TEN ¼
XM
i¼1

XN
j¼1

½gði; jÞ ⊗ S�2 þ ½gði; jÞ ⊗ ST �2; (4)

where S represents the Sobel’s kernel denoted as

EQ-TARGET;temp:intralink-;e005;116;502S ¼
2
4
1 0 −1
2 0 −2
1 0 −1

3
5: (5)

Laplacian (LAP). The algorithm convolves a discrete LAP mask with an input image to
analyze its high-frequency content.28 The metric is expressed as follows:

EQ-TARGET;temp:intralink-;e006;116;420LAP ¼
XM
i¼1

XN
j¼1

½gði; jÞ ⊗ KLAP�2; (6)

where

EQ-TARGET;temp:intralink-;e007;116;357KLAP ¼
2
4
0 1 0

1 −4 1

0 1 0

3
5: (7)

To clarify the process of finding the best focused image by a given AF, let NF be the number
of folders of a dataset and let NI be the number of images inside each folder. First, the intensity
values of each read image gði; jÞ are normalized to the range [0, 1]. Next, the AF is applied to
each pixel of the normalized image ĝði; jÞ and the value is accumulated and saved in a vector ~s.
Finally, the position k of the maximum value of ~s is found and saved in the resulting output
vector of indexes ~r (see Algorithm 1).

3 Parallel Implementations

To accelerate the processing time of AFs, we developed two parallel implementations of the
serial autofocus Algorithm 1: the first one uses a multicore CPU, whereas the second is executed
on a GPU. Notice that in the normalization step of the algorithm we need only pixel-wise
operations, applying an independent parallelism model,29 whereas to obtain the focused image,
we need to accumulate all of the values that are returned by the AFs.

Some particularities of the AFs are described next. For an efficient implementation of
VOL4, the summations in its mathematical expression can be implemented as large sums of
the forms s1 ¼

P
M−2
i¼1

P
N
j¼1 gði; jÞ · gðiþ 1; jÞ and s2 ¼

P
M−2
i¼1

P
N
j¼1 gði; jÞ · gðiþ 2; jÞ; since

s1 must be completed to the M − 1 position [see Eq. (1)], a small sum of the form
s1 ¼ s1 þ

P
N
j¼1 gðM − 1; jÞ · gðM; jÞ can be performed. At the end of the procedure, the result
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is computed as VOL4 ¼ s1 − s2. The rest of the AFs requires a convolution process with a given
kernel. In the following sections, the parallel implementations are detailed.

3.1 Multicore CPU

In a multicore CPU architecture, threads run independently on separate cores; furthermore, these
threads share a physical memory.30 OpenMP is an application programming interface for shared-
memory parallel programming.31 The “M” in OpenMP stands for “multiprocessing,” a term that
is synonymous with shared-memory parallel computing. Thus OpenMP is designed for systems
in which each thread or process can potentially have access to all available memory. OpenMP
provides a set of pragma directives, which are used to specify parallel regions, to manage threads
inside parallel regions, as well as to distribute for-loops in parallel, among others.

For the normalization step of our serial autofocus Algorithm 1, we only use the directive
“#pragma omp for,” while for the AF we use the reduction directive “#pragma omp for reduc-
tion.” Note that, for the case of function VOL4, two reduction directives are necessary: one for
the large sum reductionðþ∶s1; s2Þ and another for the small sum reductionðþ∶s1Þ. Additionally,

Algorithm 1 Serial autofocus.

Input: Parameters NF , NI .

Output: Indices ~r of the best focused images.

1: for f ¼ 1;2; : : : ; NF do

2: for k ¼ 1; 2; : : : ; NI do

3: g ¼ Read_Imageðf ; kÞ

4: //Normalization

5: for i ¼ 1;2; : : : ; M do

6: for j ¼ 1;2; : : : ; N do

7: ĝði ; jÞ ¼ gði ; jÞ∕255.0

8: end for

9: end for

10: //Autofocus function

11: s ¼ 0.0

12: for i ¼ 1;2; : : : ; M do

13: for j ¼ 1; 2; : : : ; N do

14: v ¼ AF½ĝði ; jÞ�

15: s ¼ s þ v

16: end for

17: end for

18: ~sðkÞ ¼ s

19: end for

20: ~r ðf Þ ¼ argmaxk ½~sðkÞ� ∀ k ¼ 1; : : : ; NI .

21: end for
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we use the directive num threadsðNTÞ to specify the number of threads NT to be launched in
our program.

3.2 GPU

Nowadays, the GPU is used for general purpose computation. This parallel computing archi-
tecture contains multiple transistors for the arithmetic logic unit, based on the single instruction
multiple threads programming model, which is exploited when multiple data are managed
from one simple instruction in parallel, similar to single-instruction multiple data model.32,33

A language that is used for developing programs that are executed on a GPU is the compute
unified device architecture (CUDA). CUDA is an extension of the C language that allows
GPU code to be written in regular C. The host processor spawns multithread tasks (kernels)
onto the GPU device. The GPU has its own internal scheduler that will then allocate the kernels
to whatever GPU hardware is present.34

Following the conventional programming model in GPU, once an image is read we create
memory in GPU; then the image is loaded in the GPU through a memory copy from the CPU to
the GPU. In the current application, two kernel functions were implemented: one for the nor-
malization step and another for the AF. For the AF, we implemented a parallel reduction using
the interleaved pair strategy and dynamic shared memory.32 Hence, the size of the data is divided
in thread blocks. In each thread block, a partial sum is computed using shared memory; then this
partial sum is copied back to the CPU memory and summed in the CPU. Note that this last sum
can be computed in parallel in the multicore CPU.

3.3 Nested Parallelism

After parallelization of both the normalization and AFs, it is possible to parallelize the external
for-loops related to the number of folders NF and the number of images inside each folder NI.
For this purpose, nested parallelism, which allows the management of a parallel region within
other parallel regions, can be used. When a thread in a parallel region finds a new parallel
construct, an additional set of threads is launched, and this thread becomes their master.35

To implement nested parallelism, we have developed three different versions of both multi-
core CPU and GPU implementations by parallelizing one of the for-loops in Algorithm 1. The
first version consists of parallelizing the first external for-loop (see step 2 in Algorithm 1), which
iterates over the number of images of each folder; the second one achieves the parallelization
of the second external for-loop (see step 1 in Algorithm 1), which iterates over the number of
folders in the dataset. Finally, the third version consists of the simultaneous parallelization of
both for-loops.

3.4 Hyper-Q

In GPU Fermi architectures, when a CPU thread dispatches work into a CUDA stream, the work
is joined into a single pipeline. Thus when several streams try to execute multiple-independent
kernel functions, these generate false dependencies.36 Indeed, false dependencies are avoided
using Hyper-Q.

Hyper-Q is a feature of NVIDIA GPUs with CUDA capability 3.5 (Kepler architecture) and
higher. This feature adds more simultaneous hardware connections (32 work queues or streams)
between the CPU and GPU, enabling CPU cores to simultaneously run more tasks on the GPU,
maximizing the GPU utilization and, therefore, increasing the overall performance.32 Since this
feature allows several kernel functions to be run in parallel on the GPU, we perform additional
experiments using this capability for the current application.

4 Experimental Results

AFs were computed for each image stack, and the maximum value obtained by each function
was considered the focus position; then the difference with respect to the reference focus point
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was considered the focus error. Figure 2 shows the mean accuracy error obtained by each studied
metric along the tuberculosis dataset. The calculations were executed on a CPU (named as serial
implementation), multicore CPU, and GPU to verify the consistency of results. In other words,
due to the nonassociativity of floating-point operations in a parallel reduction, the floating-point
computations may become nondeterministic and, therefore, nonreproducible.37 According to
this graph, functions MDCT and VOL4 were capable of determining the focus position with the
overall lowest error. Indeed, these results are in accordance with those reported by Mateos-Pérez
et al.8

On the other hand, when we run the VOL4 serial algorithm, the processing time of the image
reading is about 25 s and the processing time of applying both the normalization and the AF is
159 s, giving a total time of around 184 s to process all 300 stacks. The remaining methods
require, respectively, 218.33 s (LAP), 355.62 s (TEN), and 461.72 (MDCT) to complete the
same task.

4.1 Multicore CPU and GPU Implementations

As an initial experiment, the performance of our parallel implementations for AFs was evaluated
without nested parallelism. Hence, Fig. 3 displays the speed-ups of multicore CPU and
GPU implementations, respectively, for a varying number of threads NT . In the first case
[see Fig. 3(a)], we can see that the highest performance was reached by MDCT with

Fig. 2 Mean accuracy error achieved by AFs computed along 300 tuberculosis image stacks.

Fig. 3 Evaluation of speed-ups for the studied AFs running on (a) a multicore CPU and (b) GPU,
respectively.
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NT ¼ 11 (speed-up = 6); function TEN obtained its best performance with NT ¼ 9, while the
remaining functions achieved a speed-up = 4 with NT ¼ 8. We note that the best performance is
reached when NT is near the number of physical cores of the server (server K20 has 12 physical
cores and 24 logical cores).

In the GPU implementation, AFs showed an almost constant behavior for an increasing
number of NT [see Fig. 3(b)], which demonstrates that the heaviest process is executed on
GPU. Notice that MDCT achieved the highest speed-up, followed by TEN; functions LAP and
VOL4 obtained a lower performance compared with the former methods.

4.2 Nested Parallelism Version

To evaluate our parallel implementations using nested parallelism, we executed multicore CPU
and GPU versions by launching a varying number of threads. Specifically, we employed NT2

threads in the second external for-loop, NT1 threads in the first external for-loop, and NT threads
in the inner for-loop (see as reference Algorithm 1); in each case, the best time obtained by every
function and the number of threads employed were recorded. Tables 1 and 2 display the best
execution times and maximum speed-ups achieved for multicore CPU and GPU implementa-
tions, respectively, under nested parallelism.

As seen in Table 1, nested parallelism improves the overall processing time of AFs.
In particular, VOL4 requires only 15.68 s to process the whole TB dataset (equivalent to
383 fps), while LAP takes around 20.42 s to complete the same task (294 fps). Furthermore,
for this configuration, the maximum speed-up is achieved by functions VOL4 and MDCT,
respectively.

By contrast, as depicted in Table 2, the least execution time in the GPU was obtained by LAP,
closely followed by MDCT; however, the maximum speed-up was achieved by this last function.
The aforementioned results are summarized in Fig. 4, where the lowest processing times
achieved by each parallel implementation are compared against the serial version.

Table 2 Processing time (s) for AFs in GPU implementation using nested parallelism.

Method

GPU (NT2,NT1,NT )

Max. speed-upð0; 0; 1Þ ð0;2; 2Þ ð6;0;4Þ ð2;2;12Þ

VOL4 78.43 51.8 40.87 40.57 6

MDCT 65.72 43.41 40.03 39.36 12

TEN 71.29 47.26 41.25 40.32 9

LAP 70.87 46.64 39.45 38.92 6

Note: Bold values represent the best execution time for each case.

Table 1 Processing time (s) for AFs in multicore CPU implementation using nested parallelism.

Method

Multicore CPU (NT2,NT1,NT )

Max. speed-upð0;0;8Þ ð0;10;4Þ ð16; 0;2Þ ð4;5;2Þ

VOL4 51.24 20.17 15.68 15.92 12

MDCT 81.02 54.04 41.68 39.76 12

TEN 77.14 46.93 33.42 33.26 11

LAP 59.5 25.53 20.42 20.7 11

Note: Bold values represent the best execution time for each case.
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4.3 Hyper-Q Version

Until now, the higher performance of multicore CPU implementation with respect to the GPU
version is evident. However, to take advantage of the Hyper-Q feature of Tesla K20 GPU,
we divided the number of folders NF in equal parts as follows: two parts (2P), four parts (4P),
and ten parts (10P), respectively. Thus each part was concurrently launched from a shell script.
Table 3 shows the processing times, speed-ups, and GPU utilization percentage (GPU %) for
function VOL4 with a varying number of folders. Notice that the speed-up increases as the
GPU utilization percentage increases. In a similar way, Table 4 summarizes the maximum
speed-ups for each metric by taking advantage of Hyper-Q. Some remarks on the aforemen-
tioned results are the following: function MDCT reached the maximum speed-up, with 95%
of GPU utilization, followed by TEN. In addition, we found that with nested parallelism the

Table 3 Results of GPU implementation using Hyper-Q, for VOL4 AF.

GPU (NT2,NT1,NT ) NF Time (s) Speed-up GPU (%)

(0,0,1) 2P 41.37 4 45

4P 28.84 6 65

10P 25.20 7 82

(0,2,2) 2P 30.39 6 60

4P 20.12 9 75

10P 22.42 8 85

(6,0,4) 2P 26.01 7 70

4P 20.56 9 85

10P 17.50 11 93

(2,2,12) 2P 28.01 7 65

4P 19.89 9 80

10P 24.84 7 63

Note: Bold values represent the maximum speed-up.

Fig. 4 Computation time to determine the focused positions of 300 stacks, with AFs running on
CPU, multicore CPU-nested, and GPU-nested, respectively.
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GPU utilization is around 50%, while using Hyper-Q this percentage overcomes 90%, obtaining
a better performance.

Finally, with the aim of comparing the best performance for every parallel implementation,
Fig. 5 displays the best results obtained for each method, using nested parallelism and Hyper-Q,
respectively. According to these results, the use of multicore CPU with nested parallelism
provides the best results for the autocorrelation function VOL4. GPU with nested parallelism
is not as competitive as the multicore version. However, the performance of functions based on
convolution masks like MDCT and TEN was considerably improved using GPU and Hyper-Q.
For practical applications and future comparisons, a demo of our parallel implementations is
available in Ref. 38.

5 Discussion

In our first experiment, AFs were executed on multicore CPU and independently on GPU, for a
varying number of threads. According to the experiments, MDCT achieved the maximum per-
formance on multicore CPU (speed-up = 6, with NT ¼ 11), as well as on GPU (speed-up = 7,
with NT ¼ 1). In GPU, AFs showed an almost constant behavior for an increasing number
of NT .

As shown by our results, nested parallelism improves the overall processing time of AFs. In
particular under multicore CPU configuration, VOL4 requires only 15.68 s to process the whole
TB dataset, achieving the maximum speed-up of 12. Furthermore, the best execution time in
GPU was obtained by function LAP; however, the maximum speed-up was achieved by MDCT.

The Hyper-Q feature of Tesla K20 card allowed us to optimize the GPU utilization percent-
age, diminishing the processing time of AFs. In this sense, function MDCT reached a speed-up

Table 4 Maximum speed-up of GPU implementation using Hyper-Q, for each AF.

Method GPU (NT2,NT1,NT ) NF Time (s) Speed-up GPU (%)

VOL4 (6,0,4) 10P 17.5 11 93

MDCT (4,0,2) 10P 20.26 23 95

TEN (2,1,1) 10P 21.33 17 90

LAP (4,0,4) 10P 19.79 11 92

Fig. 5 Computation time to determine the focused image of 300 stacks using different parallel
implementations on multicore CPU and GPU.
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of 23, when the GPU utilization was around 95%. In addition, it was possible to determine that in
nested parallelism the GPU utilization was around 50%, while using Hyper-Q, this percentage
overcame 90%, obtaining a better performance.

6 Conclusions

Throughout this paper, we have compared the parallel implementations of four autofocus algo-
rithms using a multicore CPU and a GPU, respectively. The AFs that were selected for these
implementations have provided in previous studies accurate enough results under different
microscopy modalities, at a relatively high computational cost. For our experiments, a large data
set formed by 300 stacks of Mycobacterium tuberculosis was analyzed.

In the case of multicore CPU without nested parallelism, we observed that the best perfor-
mance is achieved when we adjust the number of launched threads near the number of physical
cores of the CPU. However, the efficiency of multicore CPU and GPU was improved by the use
of nested parallelism and Hyper-Q strategies, respectively. Indeed, these strategies have not been
used in previous works related to microscopy applications.

We found that the use of multicore CPU with nested parallelism provides better results than
the GPU-Nested implementation (specially for the autocorrelation function VOL4). However, a
maximum GPU utilization percentage is achieved using the Hyper-Q feature, reaching a process-
ing rate of 296 fps for function MDCT. The processing times obtained in this study are con-
siderably superior to those reported in the current literature; hence, our parallel implementations
can be useful tools for close to real-time microscopy applications.
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