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What’s new in bone forming tumours of the skeleton?
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Abstract
Bone tumours are difficult to diagnose and treat, as they are rare and over 60 different subtypes are recognised. The emergence of
next-generation sequencing has partly elucidated the molecular mechanisms behind these tumours, including the group of bone
forming tumours (osteoma, osteoid osteoma, osteoblastoma and osteosarcoma). Increased knowledge on the molecular mecha-
nism could help to identify novel diagnostic markers and/or treatment options. Osteoid osteoma and osteoblastoma are bone
forming tumours without malignant potential that have overlapping morphology. They were recently shown to carry FOS and—
to a lesser extent—FOSB rearrangements suggesting that these tumours are closely related. The presence of these rearrangements
could help discriminate these entities from other lesions with woven bone deposition. Osteosarcoma is a malignant bone forming
tumour for which different histological subtypes are recognised. High-grade osteosarcoma is the prototype of a complex
karyotype tumour, and extensive research exploring its molecular background has identified phenomena like chromothripsis
and kataegis and some recurrent alterations. Due to lack of specificity, this has not led to a valuable novel diagnostic marker so far.
Nevertheless, these studies have also pointed towards potential targetable drivers of which the therapeutic merit remains to be
further explored.
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Introduction

Bone tumours are rare and therefore considered difficult to
diagnose and treat. They comprise a heterogeneous group of
tumours, where most subtypes have a distinct clinical and
histological presentation.

Histologically, over 60 different bone tumours are
recognised. Some are difficult to separate as there can be ex-
tensive morphological and even immunohistochemical over-
lap. Distinction is important as these tumours differ in clinical
behaviour and thus in required treatment. In recent years,
many papers have been published unravelling the molecular
background of several bone tumours, mostly using deep se-
quencing techniques. From the molecular point of view, these
tumours can be roughly divided in two main groups, as a
conceptual framework [1]: tumours can either have a simple

or complex karyotype. The group of tumours with a simple
karyotype are usually monomorphic and driven by a specific
mutation or translocation. The tumours with complex karyo-
type are more often pleomorphic, show aneuploidy, with
many copy number alterations and (random) translocations
and mutations.

The group of skeletal tumours that are characterised by
bone deposition contains osteoma, osteoid osteoma,
osteoblastoma and osteosarcoma (Table 1). Osteoma is benign
and composed of mature lamellar bone, has a simple karyo-
type and occurs more often in patients with Gardner’s syn-
drome, that harbour a germline mutation in the APC gene.
Osteoid osteoma and osteoblastoma are histologically identi-
cal, have a simple karyotype and deep sequencing studies
have recently unravelled a recurrent translocation [2]. This is
in contrast with high-grade osteosarcoma, for which a com-
plex karyotype showing aneuploidy, multiple copy number
alterations, (random) translocations and mutations is the hall-
mark [3]. This review will focus on osteoid osteoma/
osteoblastoma and high-grade osteosarcoma, as examples for
simple karyotype, translocation driven versus complex karyo-
type tumours, respectively.
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Osteoid osteoma and osteoblastoma

Novel FOS and FOSB rearrangements were recently found in
osteoid osteoma and osteoblastoma [2]. These tumours account
for 3% and 1% of all primary bone tumours, respectively [4].
These two entities are histologically similar and only slightly differ
in their clinical presentation. At present, they are arbitrarily divided
by tumour size below or above 2 cm in diameter, although the
recent finding show that they share the same molecular alteration
might suggest that they represent the same disease [4–6].

Clinical presentation

Osteoid osteoma and osteoblastoma typically present during
the second decade of life, with men being overrepresented
(male to female ratio 2:1) [4]. Osteoid osteoma is usually
located at the long bones in the lower extremity, but other
commonly described sites involve the spine, upper extremity,
hands, feet and pelvis [4, 5, 7]. The most prominent clinical
symptom of osteoid osteoma is frequent and severe night pain
that responds adequately to nonsteroidal anti-inflammatory
drugs (NSAIDs) [4, 5]. Osteoblastoma is larger in size, and
the majority is localized in the posterior column of the spine
[4, 5, 8], resulting in neurologic symptoms as a recurring sign
[4]. Pain is frequently present, but in contrast to osteoid oste-
oma, it does not respond to administration of NSAIDs [4, 5].
Both osteoid osteoma and osteoblastomas have no malignant
potential, although osteoblastoma can behave as a locally ag-
gressive tumour [4]. For radiologists, the diagnosis of osteoid
osteoma is usually straight forward, showing a characteristic
oval radiolucency (nidus) with surrounding sclerosis, while
osteoblastoma can be accompanied by a more broad differen-
tial diagnosis depending on its location, including aneurysmal
bone cyst, giant cell tumour of bone and osteosarcoma [4, 9].

Histology

Osteoid osteoma and osteoblastoma are histologically indis-
tinguishable [10] (Fig. 1a, b). Both tumours are composed of

irregular trabeculae of woven bone, lined with active osteo-
blasts. In osteoid osteoma, the central area of the lesion (nidus)
is sharply demarcated and surrounded by hyper-vascularized
sclerotic bone. In between the trabeculae, there is loose
vascularised stroma, and small osteoclast-like giant cells are
frequently seen [7, 11]. Osteoblastoma can show slightly more
haphazardly arranged trabeculae [6]. Additional aneurysmal
bone cyst (ABC)-like changes can be present, especially in
larger tumours [4]. The term epithelioid osteoblastoma is re-
served for osteoblastomas with the presence of large osteo-
blasts with an epithelioid appearance. Surrounding cytoplasm
is abundant, and nuclei are hyperchromatic or show prominent
nucleoli [4]. The most important differential diagnosis in-
cludes osteoblastoma-like osteosarcoma, that is distinguished
from osteoblastoma based on the presence of host-bone infil-
tration and lack of differentiation towards the periphery [12].
However, this can be difficult to appreciate in small biopsies
or curettage specimens. Definitive diagnosis is always made
based on radiological and clinicopathological correlation.

Molecular pathology

Before the elucidation of the genetic background of osteoid
osteoma and osteoblastoma, clonal chromosome aberrations
were reported in two osteoblastomas, with structural alter-
ations involving 22q13.1 [13], and only non-recurrent rear-
rangements were found using cytogenetic studies [14]. In
2018, in a quiet genomic background with paucity of somatic
alterations, recurrent FOS and—to a lesser extent—FOSB re-
arrangements were found in both osteoid osteoma and
osteoblastoma using RNA sequencing, demonstrating that
both tumours were similar at the molecular level. In 5 out of
6 cases, FOS rearrangements were present, while the remain-
ing case showed rearrangements involving its paralogue,
FOSB. All FOS breakpoints were exonic and involved exon
4. Rearrangement partners were both introns of others genes
(ANKH, KIAA1199, MYO1B) or intergenic regions [2].
Equivalent to FOS rearranged epithelioid hemangioma [15,
16], stop codons were encountered at, or early after the break

Table 1 Clinical features, radiology, karyotype and molecular pathology of osteoma, osteoid osteoma, osteoblastoma and conventional osteosarcoma

Osteoma Osteoid osteoma Osteoblastoma Conventional osteosarcoma

Clinical
features

• Benign • Benign • Locally aggressive • Malignant

•Mostly found incidentally • < 2 cm in size • > 2 cm in size • Located at metaphysis of long bones

• Located at bone surface • Located in long bones • Located in posterior column
of spine

Radiology Homogenous and sharply
demarcated tumour

Oval radiolucency (nidus)
with surrounding sclerosis

Often lytic lesion , may be
alike aneurysmal bone cyst

Lytic, sclerotic or mixed lesion, often
expanding into surrounding soft tissue

Karyotype Simple karyotype Simple karyotype Simple karyotype Complex karyotype

Molecular
pathology

Can be associated with
Gardner’s syndrome:
germline APC mutation

FOS and to a lesser extent
FOSB translocations

FOS and to a lesser extent
FOSB translocations

Chromothripsis and kateagis
with most often alterations in TP53
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points, leading to truncation of the protein with retention of
the leucine zipper, and therefore its function as a transcription
factor. Functional studies in epithelioid hemangioma demon-
strated that the truncated protein was more resistant to degra-
dation [17]. In the FOSB rearranged osteoblastoma, rearrange-
ment resulted in an in frame fusion connecting PPP1R10 to
FOSB, leading to altered signalling, due to promotor swap-
ping [2]. Strikingly, FOSB fusions were also involved in
pseudomyogenic hemangioendothelioma and atypical epithe-
lioid hemangioma, resulting in promoter swapping [18, 19].
As genetic alterations in these vascular tumours are identical
to those found in osteoid osteoma and osteoblastoma, one can
speculate that a comparable molecular mechanism of tumori-
genesis is operable in osteoid osteoma and osteoblastoma.

These novel molecular findings have provided new tools to
improve diagnostic accuracy, as both fluorescence in situ hy-
bridization (FISH) and immunohistochemical staining can de-
tect FOS rearrangements (Fig. 1c, d). FISH was performed in
an independent cohort and showed in the majority of cases
rearrangements involving FOS and to a lesser extent FOSB
[2]. In a follow-up study, immunohistochemistry showed
strong and diffuse nuclear staining in the majority (79%) of
osteoid osteomas and osteoblastomas, using a FOS antibody
against the N terminus [20]. However, a previously published
small study cohort demonstrated that osteoid osteoma and
osteoblastoma lacked strong nuclear expression of FOS,

indicating variability in sensitivity between different antibod-
ies [21]. In terms of specificity, strong nuclear expression of
FOS has been detected in a subset of other bone forming
tumours and was only rarely present in osteosarcoma [2,
21]. Notably, in mouse models, the c-fos oncogene caused
osteosarcoma, when fused with a highly active promotor and
the v-fos 3’ untranslated region [22]. This is intriguing as in
human tumours FOS and FOSB rearrangements have so far
only been identified in vascular and bone forming tumours
lacking malignant potential [15, 16, 18, 19].

Osteosarcoma

Osteosarcoma is the most common primary malignant tumour
of the bone [23]. The 5-year overall survival for osteosarcoma
patients is 71% and has not improved in the last decades,
clearly indicating that novel therapeutic strategies are needed
[24]. Fortunately, many papers have been published gradually
unravelling the pathogenesis of osteosarcoma, which might
help develop new therapeutic targets.

Clinical presentation

Primary high-grade osteosarcoma occurs most often in young
children and adolescents, but there is a second peak at a later

Fig. 1 Osteoid osteoma and
osteoblastoma. a Osteoid
osteoma. b Osteoblastoma show
identical morphology at
haematoxylin and eosin staining,
with deposition of woven bone by
osteoblast-like tumour cells. c
Fluorescence in situ hybridization
(FISH) showing FOS rearrange-
ment in osteoblastoma. d
Immunohistochemical staining
for FOS in osteoblastoma show-
ing nuclear overexpression in the
tumour cells. Scale bar is 50 μm
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age. In the latter group, osteosarcoma can occur secondary to
radiation or Paget’s disease [25]. Osteosarcoma has a slight
male predominance [26]. Patients with osteosarcoma often
show signs of localised deep pain, especiallymanifest at night,
developed over a longer period of a few weeks to months.
This could also be in combination with limited mobility or
localised warmth. A palpable mass can be present, which is
tender during physical examination [27].

For diagnosis of conventional osteosarcoma, a radiograph
is made in two planes, in which the lesion appears as lytic,
sclerotic or mixed lytic and sclerotic. This lesion often ex-
pands into the surrounding soft tissue, with periosteal reaction
and destruction of cortical bone [28].MRI or CT imaging may
provide additional information, guiding the subsequent biopsy
of the lesion [28].

Histology

The presence of osteoid, the unmineralized extracellular ma-
trix produced by the tumour cells, is the hallmark of osteosar-
coma and visible as a pink dense structure in haematoxylin
and eosin stained sections (Fig. 2a). Mineralization can occur.
Osteosarcoma can arise in the medulla (central) or at the bone
surface. Different osteosarcoma subtypes are recognised,
based on their clinical presentation in combination with histo-
logical and molecular features (Table 2) [26]. High grade cen-
tral osteosarcoma is the most common subtype, and most pa-
pers published over the last decade, as well as this review,
focus on this subtype.

Germline predisposition to osteosarcoma

Certain hereditary syndromes predispose to osteosarcoma,
such as Li-Fraumeni syndrome (mutations in TP53 or, less
frequently, CHEK2), retinoblastoma (mutations in RB1) and
Rothmund-Thomson syndrome (mutations in RECQL4)
[29–31]. Other hereditary syndromes with germline mutations
in RecQ-like helicases, including RAPADILINO syndrome,
Baller-Gerold syndrome, Werner syndrome and Bloom

syndrome, also have an increased risk for osteosarcoma
[32]. Another hereditary syndrome in which a helicase is mu-
tated is ATR-X syndrome (alpha-thalassemia mental retarda-
tion syndrome). Patients with ATR-X syndrome show intel-
lectual disability and skeletal abnormalities. Recently, two pa-
tients have been reported with ATR-X syndrome that devel-
oped osteosarcoma [33, 34].

Molecular alterations in osteosarcoma

High-grade osteosarcoma is characterised by a complex kar-
yotype with many amplifications, deletions and (random)
translocations (Fig. 2b). This complex genome hampers iden-
tification of the driver genes causing genome instability: very
few recurrent alterations have been identified in osteosarcoma.
One mechanism explaining the genomic instability in osteo-
sarcoma is chromothripsis, the shattering of one or a few chro-
mosomes into small fragments that are stitched together in a
random order and orientation [35]. It was first discovered by
Stephens et al. in chronic lymphocytic leukaemia, chordoma
and osteosarcoma [35]: chromothripsis occurs in 3% of all
cancers and in 30% of osteosarcomas. A more recent study
confirmed chromothripsis in osteosarcoma, but showed a
higher percentage—nearly 90%—where tumours with
chromothripsis also frequently harbour amplifications [36].
The discrepancy may be attributed to the uncertain definition
of chromothripsis. Exome sequencing shows a relatively low
mutational burden in osteosarcoma ranging from 0.3–1.2 mu-
tations per mega base; however, there is a pattern of localised
hypermutation called kataegis in 50% of the tumours [3, 37].
These point mutations are non-recurrent, haphazard and can-
not be considered as driver mutations. Further hampering the
identification of driver genes is that no benign precursor of
osteosarcoma is known. This is in contrast with for instance
colorectal cancer, in which a benign precursor can be used to
investigate multi-step progression behind tumorigenesis.
Nevertheless, recent next-generation sequencing studies have
revealed known and novel recurrent genetic alterations in os-
teosarcoma (Table 3). Most genes that were found to be

Fig. 2 High-grade osteosarcoma.
a Conventional osteoblastic
osteosarcoma showing atypical
cells with abundant deposition of
osteoid (haematoxylin and eosin
staining). Scale bar is 50 μm. b
Combined binary ratio
fluorescence in situ hybridization
(COBRA-FISH) showing com-
plex numerical and structural
changes which is characteristic of
high-grade osteosarcoma
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altered are involved in maintaining genomic stability. Among
the most commonly altered genes in osteosarcoma are the
main players in maintaining genome stability: TP53 and RB1.

TP53 and RB1

Mutations in TP53 can be found in germline or can be spo-
radic. Previously, using immunohistochemistry or sequencing
of the DNA binding domain of TP53, mutations were detected
in only 20% of osteosarcomas [44]. Interestingly, the more
sensitive whole genome sequencing studies can detect more
sub clonal mutations and reveal a much higher percentage
(47–90%) of osteosarcomas harbouring TP53 alterations [3,
36–38, 45]. Furthermore, many TP53 alterations involve
structural alterations, most often consisting of translocations
in the first intronic region of TP53, which is 10 kb in length.
These alterations can only be detected with whole genome
sequencing [46].

The secondmost frequently altered gene in osteosarcoma is
RB1 (retinoblastoma 1), involved in blocking cells from en-
tering S phase of the cell cycle [47]. Loss of Rb function in
osteosarcoma therefore leads to a loss in Rb blockade of cell
division. In addition to germline mutations, somatic mutations
in RB1 were identified in 29–47% of osteosarcomas [3, 38].

The importance of TP53 and RB1 in osteosarcoma genesis
is illustrated by the fact that patients with germline mutations
in TP53 and RB1 are highly susceptible to cancer and fre-
quently develop sarcomas. Different in vitro and in vivo stud-
ies confirm the important role of TP53 and RB1 mutations in
sarcoma genesis [48, 49]. For example, homozygous deletion
of TP53 and RB1 in osteogenic differentiated murine MSCs
gives rise to osteosarcoma when injected into mice [49], while

heterozygous deletion of TP53 is sufficient to induce osteo-
sarcoma in a mouse model [48].

Regulators of p53 and Rb activity

MDM2 (mouse double minute 2 homologue) regulates p53
activity by ubiquitinating p53 protein leading to proteasomal
degradation of p53 [50]. Up to 12% of high-grade osteosarco-
mas have amplification of the MDM2 gene at 12q13-15, but
this is higher in low-grade central osteosarcoma and parosteal
osteosarcoma, with around 29% and 67–79% MDM2 ampli-
fication, respectively [41, 51] (Table 2). The CDK4 gene
(cyclin-dependent kinase 4) is located within the same region
at 12q13-15 [52] and regulates Rb activity by phosphorylating
Rb, resulting in deactivation of Rb. CDK4 and MDM2 are
often co-amplified and overexpressed in osteosarcoma.
CDK4 is amplified in 67% of parosteal osteosarcomas, but
rarely in high-grade osteosarcoma (9%) [41, 53]. As the per-
centage of CDK4 and MDM2 amplifications in low-grade
central osteosarcoma and parosteal osteosarcoma are much
higher than in high-grade osteosarcoma, most likely the
CDK4/MDM2 amplified high-grade tumours represent pro-
gression from low grade osteosarcoma [53].

Rb activity is also regulated by p16, which normally in-
hibits both CDK4 and CDK6. P16 is encoded by the
CDKN2A gene at chromosome 9p21.3, that also encodes for
p14. Homozygous deletion of the CDKN2A locus, which is
associated with poor prognosis in osteosarcoma, eradicates
both expression of p16Ink4A and p14ARF, of which the latter
is a negative regulator of MDM2 [38, 54–56]. Therefore, de-
letion of p16 and p14, similar to co-amplification of CDK4
and MDM2, leads to inactivation of both the p53 and Rb
pathway.

Table 2 Osteosarcoma subtypes

Subtype Location Grade Histology

Low-grade central osteosarcoma Medulla Low grade Spindle cells with low-grade nuclear atypia and well-formed
neoplastic woven bone trabeculae, often 12q13 amplification

Parosteal osteosarcoma Surface Low grade Spindle cell proliferation, often with cartilaginous
differentiation, and 12q13 amplification

Periosteal osteosarcoma Surface (typically
underneath
the periosteum)

Intermediate
grade

Predominantly chondroblastic bone-forming sarcoma

Conventional osteosarcoma Medulla High grade High-grade sarcoma in which the tumour cells produce bone.
Tumour cells can be fibroblastic, chondroblast- or
osteoblast-like

Fibroblastic
Chondroblastic
Osteoblastic

Small-cell osteosarcoma Medulla High grade Small cells with scant cytoplasm, associated with variable
osteoid formation; may resemble Ewing sarcoma

Telangiectatic osteosarcoma Medulla High grade Osteosarcoma composed of blood-filled or empty
cystic spaces closely simulating aneurysmal bone cyst

High-grade surface osteosarcoma Surface High grade Similar to conventional osteosarcoma
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Other genome maintenance pathways

In addition to the p53 and Rb pathway, also other pathways
involved in maintaining genome stability can be affected by
mutations, both in sporadic as well as hereditary osteosarco-
ma. For instance, ATRX mutations can be found both as
germline or somatic mutations [57], which is in contrast to
mutations in RecQ-like helicases where only germline muta-
tions have been identified. Around 29% of osteosarcomas
harbour somatic mutations in ATRX [3]. The role of ATRX
mutations in osteosarcoma genesis is largely unknown.
ATRX is involved in chromatin remodelling and plays an im-
portant role in maintenance of chromosome stability [58].
Loss-of-function mutations in ATRX can lead to activation of
the alternative lengthening of telomeres (ALT) pathway, main-
taining the length of chromosome ends [59]. ALT is found in
59% of osteosarcomas, which is much higher as compared
with other cancers such as carcinomas (5–15%) [60].

DNA repair is essential in maintaining genome stability.
For instance, homologous recombination, the DNA repair
pathway in which BRCA plays an important role, is crucial
in maintaining genome stability. A recent whole exome se-
quencing (WES) study revealed a subset of osteosarcomas
resemble features of BRCA mutant tumours [38]. These tu-
mours show loss of heterozygosity, genomic instability and

a mutation signature of substitutions and deletions that is also
found in breast cancers with BRCA1/2 mutations. Around
80% of osteosarcomas show this BRCAness signature [38].
As this signature is linked to defects in homologous recombi-
nation, this vulnerability might be exploited with PARP inhib-
itors based on the principle of synthetic lethality. Indeed, dif-
ferent in vitro studies with osteosarcoma cell lines show that
osteosarcoma cells are sensitive to PARP inhibitors [61, 62].
These results are promising, suggesting a possible new thera-
peutic strategy for osteosarcoma. However, further investiga-
tion on homologous recombination deficiency and PARP in-
hibitor sensitivity in osteosarcoma is needed.

Hormonal pathways

Although the genes that play a role in genome stability are
among the most frequently mutated genes in osteosarcoma
(RB1, TP53, CDK4, MDM2, ATRX), these genes function in
essential cell survival pathways. Therefore, these genes are
difficult to specifically target in the treatment of osteosarcoma.
Fortunately, also mutations in other genes are frequently
found that are easier to target as they are involved in hormonal
pathways. For example, mutations in genes involved in IGF
(insulin-like growth factor) signalling, including the IGF1 re-
ceptor (IGF1R), were identified in around 7–14% of

Table 3 Overview of recurrent alterations found in conventional osteosarcoma

Gene Type of alteration Somatic/germline Function Frequency in sporadic
OS (%)

Literature

TP53 Translocation; deletion;
mutation

Germline (Li-Fraumeni syndrome)
and somatic

Genome stability; cell cycle control 47–90 [3, 36–38]

RB1 Mutation; deletion Germline (retinoblastoma) and
somatic

Genome stability; cell cycle control 29–47 [3, 37, 38]

MYC Amplification Somatic Cell proliferation 39 [39]

CCNE1 Amplification Somatic Cell cycle control 33 [39]

DLG2 Deletion Somatic Cell signalling 29–52 [3, 40]

COPS3 Amplification Somatic Signal transduction 20–39 [36, 37]

AURKB Amplification Somatic Cell cycle 13 [39]

PTEN Mutation; deletion; copy
number alteration

Somatic Cell cycle control 12–50 [36–38]

CDKN2A Deletion Somatic Cell cycle control 15 [38]

ATRX Mutation; deletion Germline (ATR-X syndrome)
and somatic

Genome stability; chromatin
remodelling; ALT

10–29 [3, 33, 34,
36–38]

CDKN2A Mutation; deletion Somatic Cell cycle control 10 [36]

CDK4 Amplification Somatic Regulates RB activity 9–11 [39, 41]

MDM2 Amplification Somatic Regulates P53 activity 5–12 [37, 41]

IGF1R Mutation; amplification Somatic Bone growth and development 5 [36]

AKT Amplification Somatic Cell proliferation; apoptosis 5 [39, 42, 43]

RECQL4 Mutation Germline (Rothmund-Thomson
syndrome)

DNA repair; genome stability 0 [32]

WRN Mutation Germline (Werner syndrome) DNA repair; genome stability 0 [32]

BLM Mutation Germline (Bloom syndrome DNA repair; genome stability 0 [32]
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osteosarcomas, with many of these genes having altered ac-
tivity compared with normal human osteoblasts or mesenchy-
mal stem cells [36, 63]. The IGF signalling pathway is known
to be important in normal bone growth, bone development and
bone metabolism, and it is therefore not surprising that it
might also play a role in osteosarcoma pathogenesis [64,
65]. These findings provide a rationale to explore anti-IGFR
therapy as a treatment strategy for a subset of osteosarcomas.

The oestrogen hormonal pathway is also altered in osteo-
sarcoma. Healthy osteoblasts normally express oestrogen re-
ceptor alpha (ERα), but this is lacking in osteosarcoma [66].
Until recently, the mechanism behind the inactivation of
oestrogen receptor in osteosarcoma was not known. In a re-
cent study, it was found that ERα was hypermethylated in
osteosarcoma, which can be ameliorated by the DNA methyl-
transferase inhibitor DAC [67]. DAC could re-express ERα
and subsequently restored defective osteogenic differentiation
and inhibited proliferation in osteosarcoma cells. This study
illustrates that epigenetic alterations such as hypermethylation
of genes are also important in osteosarcoma genesis.

What is driving osteosarcoma genesis?

Although recent sequencing efforts did not identify specific
druggable osteosarcoma driver genes, they did reveal new and
known recurrent genetic events involved in osteosarcoma that
shed light on its initiation (Table 3).Most of the mutated genes
function in genomemaintenance pathways and the majority of
osteosarcomas show genome instability in the form of
chromoanagenesis [36]. Therefore, it is reasonable to assume
a connection between these specific genetic mutations and
chromoanagenesis, especially chromothripsis.

A main player in maintaining genome stability, TP53, was
linked to chromothripsis in patients with Li- Fraumeni syn-
drome [68]. Furthermore, rats with a heterozygous deletion of
TP53 developed osteosarcomas, with chromothripsis and oth-
er complex structural rearrangements [69]. As cells with aber-
rant TP53 have impaired cell cycle control [70], TP53 loss-of-
function alterations can facilitate chromothripsis by allowing
cell cycle progression despite DNA damage [68]. Thus, cells
with inactive TP53 and DNA damage from chromothripsis
will proliferate uncontrollably. Moreover, mutations in the
DNA binding domain of TP53 can cause a neomorphic
gain-of-function, that could very well contribute to the initia-
tion of chromothripsis itself [71].

However, TP53 alone cannot explain all tumours with
chromothripsis, as is evident from studies that illustrate there
are tumours with functional TP53 with chromothripsis, and
tumours with aberrant TP53 without chromothripsis [72, 73].
Genes functionally similar to TP53 might also be able to ini-
tiate and/or maintain chromothripsis. Whether this is the case
for osteosarcomas needs to be further elucidated.

It is striking that for osteosarcoma, many different genes
have been identified and with each new sequencing study, the
list of potential driver genes is ever-growing. Whether a ge-
netic alteration—in TP53 or other genes—is a cause or con-
sequence of chromothripsis remains unknown. One could ar-
gue whether the identified altered genes in osteosarcoma
should be called “driver events” if these genetic alterations
are the consequence of a single catastrophic event, such as
chromothripsis. Therefore, perhaps the answer to what causes
osteosarcoma could be found by discovering what causes
chromothripsis. Different mechanisms have been proposed
to what causes chromothripsis, such as micronuclei formation
with DNA damage, telomere attrition and chromosome
pulverisation by DNA damaging agents [74, 75].Which event
is the ultimate cause of osteosarcoma, is not yet known.

Conclusion

There is an on-going shift from traditional cancer classifica-
tion based solely on histopathology towards incorporation of
molecular pathology in routine diagnostics, which ultimately
can aid diagnostic decision making. Among the group of bone
forming tumours of the skeleton, the use of deep sequencing
has unravelled the molecular background of osteoid osteoma
and osteoblastoma. The discovery of FOS and FOSB rear-
rangements found in osteoid osteoma and osteoblastoma have
not only given insight in tumorigenesis, but have also provid-
ed the bone tumour pathologist with a novel diagnostic tool to
improve diagnostic accuracy.

For high-grade osteosarcoma, due to its complex genomic
background, no specific, recurrent genetic alteration has been
found that can explain tumorigenesis, or can be used for diag-
nosis or treatment. Even though the number of publications on
drugs that allegedly inhibit osteosarcoma growth has expo-
nentially increased over the past few years, these claims are
often based on in vitro studies including one single cell line
[76]. Most of these publications are from Chinese institutes
and often consist of investigations on the effect of traditional
medicine on osteosarcoma. The remarkable increase of these
studies is most probably the corollary of the convenient tissue
culture properties of osteosarcoma cell lines and obscures
findings of real significance.

Nevertheless, in the last years, several deep sequencing
studies have been published that contribute towards the un-
derstanding of osteosarcoma pathogenesis. These next-
generation sequencing studies have revealed underlying
mechanisms, such as chromothripsis and kataegis, as well as
a number of genes and pathways associated with osteosarco-
ma, especially those involved in genome maintenance (TP53,
RB1, ATRX and homologous recombination) or hormonal sig-
nalling (IGF and ER signalling). The results from these studies
could be the stepping stone towards the development of novel
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diagnostics/prognostic markers or treatment options. Since
most of the alterations that were identified are not recurrent
and involved in crucial processes in the cell such as genome
stability, cell cycle and DNA repair, it will be a huge challenge
for the coming decade to translate these findings into novel
treatment options. In contrast to targeting genes involved in
maintaining genome stability, such as TP53 and RB1,
targeting the hormonal pathways, especially IGF and
oestrogen or targeting DNA repair, for example by PARP
inhibition, seem more promising.
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