
ARTICLE

MUC1-C regulates lineage plasticity driving
progression to neuroendocrine prostate cancer
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Mehmet Samur1, Masaaki Yamamoto1,6, Yan Zhang1, Ning Zhang1, Deli Hong1, Takahiro Maeda4,
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Neuroendocrine prostate cancer (NEPC) is an aggressive malignancy with no effective tar-

geted therapies. The oncogenic MUC1-C protein is overexpressed in castration-resistant

prostate cancer (CRPC) and NEPC, but its specific role is unknown. Here, we demonstrate

that upregulation of MUC1-C in androgen-dependent PC cells suppresses androgen receptor

(AR) axis signaling and induces the neural BRN2 transcription factor. MUC1-C activates a

MYC→BRN2 pathway in association with induction of MYCN, EZH2 and NE differentiation

markers (ASCL1, AURKA and SYP) linked to NEPC progression. Moreover, MUC1-C sup-

presses the p53 pathway, induces the Yamanaka pluripotency factors (OCT4, SOX2, KLF4

and MYC) and drives stemness. Targeting MUC1-C decreases PC self-renewal capacity and

tumorigenicity, suggesting a potential therapeutic approach for CRPC and NEPC. In PC tis-

sues, MUC1 expression associates with suppression of AR signaling and increases in BRN2

expression and NEPC score. These results highlight MUC1-C as a master effector of lineage

plasticity driving progression to NEPC.
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Castration-resistant prostate cancer (CRPC) often pro-
gresses to a more aggressive form with neuroendocrine
features (CRPC-NE) in association with resistance to

androgen receptor (AR) pathway targeted therapy1–4. Hallmarks
of neuroendocrine prostate cancer (NEPC) include (i) loss of AR
axis, p53 and RB signaling, (ii) activation of the neural BRN2
transcription factor (TF) and (iii) increased stemness associated
with induction of the epithelial-mesenchymal transition (EMT)
and SOX2 expression5–7. NEPC has also been linked to the
upregulation of MYCN and the Polycomb Repressive Complex 2
(PRC2) component EZH2 (refs. 8–12). The incidence of NEPC is
increasing with the widespread use of AR-targeted agents, such as
enzalutamide (ENZ), for CRPC treatment3,4. Patients diagnosed
with NEPC have a median overall survival of <1 year3,4. In this
regard, there are presently no effective targeted agents for the
treatment of this disease, emphasizing the need for identifying
druggable effectors that drive lineage plasticity to NEPC
development.

Mucin 1 (MUC1) is a heterodimeric protein that is aberrantly
overexpressed in diverse human carcinomas and contributes to
hallmarks of the cancer cell, including EMT, stemness, anti-
cancer drug resistance, epigenetic reprogramming, and immune
evasion13–16. The upregulation of MUC1 as found in approxi-
mately 90% of PCs is associated with Gleason grades ≥7,
aggressive disease and increased risk of recurrence17–19. In
addition, MUC1 expression has been linked to (i) early bio-
chemical failure and PC-related death20, and (ii) bone metastases
in CRPC21. These findings have supported the potential impor-
tance of MUC1 in advanced PC; however, there is no known link
between MUC1 and PC progression.

MUC1 consists of two subunits; that is (i) an N-terminal highly
glycosylated subunit (MUC1-N), which is shed from the cell
membrane, and (ii) an oncogenic C-terminal transmembrane
subunit (MUC1-C)13–16. MUC1-C consists of a 58 aa extra-
cellular domain, a 28 aa transmembrane region and an intrinsi-
cally disordered 72 aa cytoplasmic tail14. In cancer cells, MUC1-C
associates with receptor tyrosine kinases, such as EGFR among
others, at the cell membrane and contributes to activation of their
downstream pathways14,16. MUC1-C is imported into the
nucleus, where it interacts directly with TFs, including MYC and
p53, and thereby regulates their transactivation functions16,22,23.
MUC1-C is also involved in epigenetic reprogramming by acti-
vating (i) DNA methyltransferases (DNMTs), (ii) components of
PRC1/2, including EZH2, and (iii) the NuRD chromatin remo-
deling complex, further supporting a role for MUC1-C in gene
regulation, including the repression of tumor suppressor genes
(TSGs)15,16,23,24.

There is no known association for MUC1-C with BRN2,
neuroendocrine differentiation or lineage plasticity in PC. The
present studies demonstrate that MUC1-C suppresses AR axis
signaling in PC cells and drives expression of the BRN2 neural TF
by a previously unreported MYC-dependent mechanism. We also
show that MUC1-C (i) activates the BRN2 pathway in association
with induction of MYCN, EZH2, and NE markers linked to
NEPC progression, (ii) suppresses the p53 pathway, (iii) induces
the OCT4, SOX2, KLF4 and MYC (OSKM) pluripotency factors
and (iv) drives stemness. In support of clinical relevance, we
report that targeting MUC1-C in vitro and in PC tumor xenograft
models inhibits BRN2 signaling, the NE phenotype, self-renewal
capacity and tumorigenicity.

Results
MUC1-C expression is linked to to androgen independence
and self-renewal. C4-2B prostate cancer cells were previously
generated from androgen-dependent LNCaP cells selected in vivo

under conditions of androgen ablation25. Here, C4-2B cells were
selected for long-term culture in phenol red-free medium and
charcoal-stripped serum to assess the potential for MUC1-C
involvement in supporting androgen-independent (AI) growth.
In contrast to LNCaP and C4-2B cells, the selected androgen-
independent LNCaP cells (designated LNCaP-AI) proliferate
under these androgen-depleted conditions (Fig. 1a). AR expres-
sion was decreased in LNCaP-AI, as compared to C4-2B and
LNCaP, cells (Fig. 1b). AR axis signaling was also downregulated
in LNCaP-AI cells as evidenced by (i) decreases in PSA/KLK3 and
NKX3.1 mRNA (Supplementary Fig. 1a, b) and protein (Fig. 1b),
and (ii) resistance to treatment with the antiandrogen enzaluta-
mide (ENZ) (Supplementary Fig. 2), which distinguish CRPC
with NE features (CRPC-NE) from prostatic adenocarcinoma26.
As examined by phase contrast microscopy, the LNCaP-AI cells
exhibit distinct patterns of growth with the formation of clusters
compared to that found for C4-2B cells (Supplementary Fig. 3a).
Staining with H&E further demonstrated that C4-2B cells have
dense round or oval nuclei with diffuse chromatin and the
absence of distinct nucleoli (Supplementary Fig. 3b, left panels).
In contrast, the LNCaP-AI cells were found to have larger irre-
gular nuclei, visible nucleoli and occasional giant cells with
smudgy chromatin, similar in part with morphologic features
identified in certain small cell carcinomas of the prostate27

(Supplementary Fig. 3b, right panels). We also found that LNCaP
and C4-2B cells have low levels of MUC1-C expression and that
MUC1-C is significantly upregulated in LNCaP-AI cells (Fig. 1c,
left and right). To investigate the functional significance of these
observations, we established LNCaP-AI cells expressing a tet-
inducible control shRNA (LNCaP-AI/tet-CshRNA) or a MUC1-
CshRNA (LNCaP-AI/tet-MUC1shRNA). Treatment with dox-
ycycline (DOX) resulted in downregulation of MUC1-C in
LNCaP-AI/tet-MUC1shRNA, but not LNCaP-AI/tet-CshRNA,
cells (Fig. 1d). DOX treatment of LNCaP-AI/tet-MUC1shRNA
cells was also associated with inhibition of growth (Fig. 1e),
invasion (Fig. 1f), colony formation (Fig. 1g) and tumorsphere
formation (Fig. 1h), supporting the notion that MUC1-C is of
importance for the malignant phenotype of these cells.

MUC1-C induces BRN2 and NE differentiation. To search for
further evidence linking MUC1-C with the AI phenotype, RNA-
seq was performed on control and DOX-treated LNCaP-AI/tet-
MUC1shRNA cells. Analysis of the data using the MSigDB
Hallmark Gene Set showed that MUC1-C plays a significant role
in suppression of the AR response (Fig. 2a) and that silencing
MUC1-C is associated with induction of PSA/KLK3, NKX3.1 and
TMPRSS2 expression (Fig. 2b). Suppression of AR signaling in
LNCaP-AI cells was associated with upregulation of (i) BRN2, a
neural TF and driver of the NE phenotype7 (Fig. 2c, d), and (ii)
MYCN and EZH2 (Fig. 2d), which have been linked with pro-
gression to CRPC with neuroendocrine features (CRPC-NE)8–12.
Silencing MUC1-C in LNCaP-AI cells resulted in the down-
regulation of BRN2 mRNA levels (Fig. 2e) and decreases in
BRN2, MYCN and EZH2 protein (Fig. 2f). Silencing MUC1-C
also suppressed achaete-scute homolog 1 (ASCL1), aurora kinase
A (AURKA) and synaptophysin (SYP) expression (Fig. 2g), which
have been linked to progression of CRPC to NEPC8.

MUC1-C induces BRN2 by a MYC-mediated mechanism. BRN2
is repressed by an AR-mediated mechanism in PC cells7.
Accordingly, one explanation for the observation that MUC1-C
drives BRN2 expression is that MUC1-C suppresses AR and
in turn AR-mediated repression of the BRN2 gene. Indeed, AR
occupancy on the BRN2 promoter was decreased in LNCaP-AI,
as compared to LNCaP, cells (Fig. 3a). Additionally, while
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performing these experiments, we detected MUC1-C occupancy
on the BRN2 promoter, invoking the possibility that MUC1-C
directly activates BRN2 expression. MUC1-C activates MYC
expression in certain cancer cells28–30. In addition, the MUC1-C
cytoplasmic domain binds directly to the MYC HLH-LZ region
and, as a result, MUC1-C forms a complex with MYC on the
promoters of MYC target genes23. Along those lines, we identified
putative MYC binding sites in the BRN2 promoter (Fig. 3b). ChIP
studies performed on chromatin from LNCaP-AI cells

demonstrated that MUC1-C and MYC occupy (Fig. 3c, left) and,
as evidenced by re-ChIP analysis, form a complex on this region
of the BRN2 promoter (Fig. 3c, right). We also found that
silencing MUC1-C decreases MYC occupancy (Fig. 3d), con-
sistent with involvement of MUC1-C in enhancing MYC trans-
activation complexes23. Functional studies performed with a
BRN2 promoter-luciferase reporter (pBRN2-Luc) demonstrated
suppression of activity by (i) mutating the distal, but not prox-
imal, MYC binding site (Fig. 3e), and (ii) silencing MUC1-C or
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Fig. 1 MUC1-C drives AI and self-renewal capacity. a LNCaP (blue circles), C4-2B (green triangles) and LNCaP-AI (red squares) cells were cultured in
androgen-depleted medium for 10 days, seeded at 2 × 104 cells/ml and then monitored for cell growth. Cell number (mean of three biologic replicates) was
determined by trypan blue staining. b Lysates from LNCaP, C4-2B and LNCaP-AI cells were immunoblotted with antibodies against the indicated proteins.
c LNCaP, C4-2B and LNCaP-AI cells were analyzed for MUC1-C mRNA levels by qRT-PCR using primers listed in Supplementary Table 1. The results
(mean±SD of four determinations) are expressed as relative mRNA levels compared to those obtained for LNCaP cells (assigned a value of 1)(left). Lysates
were immunoblotted with antibodies against the indicated proteins (right). d LNCaP-AI cells stably expressing a tet-CshRNA or tet-MUC1shRNA were
treated with vehicle or 500 ng/ml DOX for 7 days. Lysates were immunoblotted with antibodies against the indicated proteins. e LNCaP-AI/tet-CshRNA
(blue circles) and LNCaP-AI/tet-MUC1shRNA (red squares) cells seeded at 2 × 104 cells/ml in androgen-depleted medium were treated with vehicle
(open symbols) or 500 ng/ml DOX (closed symbols) for the indicated times. Cell number (mean±SD of three replicates) was determined by trypan blue
staining. f LNCaP-AI/tet-MUC1shRNA cells treated with vehicle or 500 ng/ml DOX for 7 days were assayed for invasive capacity in matrigel coated
transwell chambers. Results (mean ± SD of five determinations) are expressed as the relative invasive capacity compared to that obtained with the control
cells (assigned a value of 1). g LNCaP-AI/tet-CshRNA and LNCaP-AI/tet-MUC1shRNA cells seeded at 500 cells/well in six-well plates were treated with
vehicle or 500 ng/ml DOX. Colonies were stained with crystal violet on day 14. The results are expressed as the colony number (mean±SD of three
determinations) per well. h LNCaP-AI/tet-CshRNA and LNCaP-AI/tet-MUC1shRNA cells seeded at 5 × 103 cells/well in ultra-low attachment six-well
plates were treated with vehicle or 500 ng/ml DOX for 14 days. The results are expressed as the tumorsphere number (mean±SD of three determinations)
per well. *p < 0.05 (unpaired Mann–Whitney U test). Dot plots are represented by open circles in the bar graphs. Source data are provided as a Source
Data file.
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MYC (Fig. 3f). Silencing MYC in DOX-treated LNCaP-AI/tet-
MYC shRNA cells also decreased BRN2 expression (Fig. 3g),
further supporting a model in which MUC1-C drives BRN2 by a
MYC-mediated mechanism. By extension, targeting MYC in
LNCaP-AI cells with the BET bromodomain inhibitor JQ1 also
decreased BRN2 mRNA and protein levels (Supplementary
Fig. 4a, b).

Silencing MUC1-C downregulates BRN2 and self-renewal.
MUC1-C, and not AR, is constitutively expressed in the AI DU-
145 cells31 and NEPC tumor-derived NCI-H660 cells32 (Fig. 4a),
consistent with an inverse relationship between MUC1 and AR in
PC cell lines33 (Supplementary Fig. 5). Accordingly, DU-145 cells
expressing tet-CshRNA or tet-MUC1shRNA were studied for
effects of MUC1-C silencing on gene expression patterns. As
found in the LNCaP-AI cell studies, (i) analysis of the DU-145
RNA-seq data showed that silencing MUC1-C is associated with
upregulation of the Hallmark Androgen Response pathway
(Supplementary Fig. 6a, b), and (ii) silencing MUC1-C or MYC in
DU-145 cells resulted in downregulation of BRN2 (Fig. 4b, c;
Supplementary Fig. 5c). We also found that (i) MUC1-C and
MYC form a complex on the BRN2 promoter (Fig. 4d, left and
right) and (ii) silencing MUC1-C decreases MYC occupancy

(Fig. 4e). Moreover, silencing MUC1-C in DU-145 cells resulted
in inhibition of growth (Fig. 4f), invasion (Fig. 4g) and colony
formation (Fig. 4h), consistent with dependence on MUC1-C for
driving the NE phenotype and self-renewal.

MUC1-C drives pathways associated with lineage plasticity.
Lineage plasticity in PC has been linked to suppression of the p53
and RB pathways and to induction of SOX2 expression5–7,34.
Analysis of our RNA-seq data showed that silencing MUC1-C in
LNCaP-AI and DU-145 cells is highly correlated with upregula-
tion of the Hallmark p53 pathway gene set (Fig. 5a, left and right).
MUC1-C drives the phosphorylation and inactivation of
RB28,29,35,36, the main binding partner of E2F and key regulator
of E2F activity37. Alterations in RB1 are found at high frequencies
in advanced PCs and are associated with poor survival4. Addi-
tionally, E2F is elevated in NEPC and activates target genes, such
as PEG10, linked to NEPC progression38. Here, silencing MUC1-
C in LNCaP-AI and DU-145 cells was significantly associated
with downregulation of E2F target genes (Fig. 5b, left and right),
indicating that, in addition to p53, MUC1-C contributes to reg-
ulation of the RB-E2F axis. BRN2 is necessary for SOX2
activation in neural development39 and in CRPC cells7. In a gain-
of-function model, we found that overexpression of MUC1-C in
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LNCaP cells increases BRN2 and SOX2 expression at the mRNA
(Fig. 5c) and protein (Fig. 5d) levels. Additionally, and like BRN2,
we found that silencing MUC1-C in LNCaP-AI cells results in the
downregulation of SOX2 expression (Fig. 5e, f), supporting a
MUC1-C→MYC→BRN2→SOX2 pathway. SOX2, MYC, KLF4,
and OCT4 collectively dedifferentiate fibroblasts to induced
pluripotent stem cells (iPSCs) in a manner that is potentiated by
p53 and RB suppression40. Having demonstrated that MUC1-C
induces SOX2 and regulates MYC28,29, we found that silencing
MUC1-C in LNCaP-AI and DU-145 cells decreases expression of
the four OSKM pluripotency factors (Fig. 5f, g). Previous findings
from BRN2 knockdown and rescue experiments demonstrated
BRN2 induction of SOX2 and NE marker expression7. In concert
with those results, we silenced BRN2 and found downregulation
of the NE-associated ASCL1 marker8 (Fig. 5h). By contrast,

silencing BRN2 had no apparent effect on MYCN (Fig. 5h), which
as shown above is driven by MUC1-C signaling. In addition,
silencing BRN2 was associated with suppression of SOX2, but not
MYC, KLF4 or OCT4 expression (Fig. 5h), indicating that, like
MYCN and EZH2, MUC1-C also drives these pluripotency fac-
tors by BRN2-independent mechanisms.

Targeting MUC1-C inhibits PC tumorigenicity. To extend these
experiments to in vivo models, mice bearing established LNCaP-
AI/tet-MUC1shRNA tumors were fed DOX to assess effects of
MUC1-C on growth and gene expression patterns. DOX treat-
ment was associated with marked inhibition of tumor growth
(Fig. 6a). In addition, and consistent with the in vitro results, we
found downregulation of (i) MUC1-C, BRN2, MYCN and EZH2,

4
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and (ii) ASPC1, AURKA and SYP expression (Fig. 6b, left).
Silencing MUC1-C was also associated with suppression of MYC,
SOX2, KLF4 and OCT4 (Fig. 6b, right), supporting the associa-
tion of MUC1-C signaling with induction of the OSKM plur-
ipotency factors and LNCaP-AI tumorigenicity. The MUC1-C
cytoplasmic domain (CD) includes a CQC motif that is an
Achilles’ heel for targeting MUC1-C function14 (Fig. 6c). Cell-
penetrating peptides, such as GO-201 and GO-203, that selec-
tively target the MUC1-C CQC motif are effective in blocking
MUC1-C homodimerization and nuclear localization41–44

(Fig. 6c). MUC1-C peptide inhibitors were first evaluated in
human PC xenograft models using GO-201 and CP-1, an iden-
tical control peptide with the exception that the critical CQC
motif is mutated to AQA41. GO-201 was shown to be effective
against human prostate, breast, pancreatic and esophageal squa-
mous cell carcinoma tumor xenograft models at different dose-
dependent schedules, whereas CP-1 had no apparent effect on
tumor growth or histology30,41,45,46. GO-201 and GO-203 both
contain the CQCRRKN sequence, block MUC1-C dimerization
and have similar dose-dependent activity in vitro and
in vivo28,42,47,48. In addition, treatment of tumors with GO-203
encapsulated in nanoparticles (GO-203/NPs) has demonstrated
dose-dependent activity49. Here, in vitro treatment of LNCaP-AI

cells with GO-203 was associated with suppression of growth
(Fig. 6d) and downregulation of (i) the MUC1→BRN2 pathway,
(ii) MYCN, EZH2 and NE marker expression, and (iii) plur-
ipotency factors (Fig. 6e, left and right). These findings were
supported by GO-203/NP treatment of LNCaP-AI tumors
growing in nude mice, which also resulted in inhibition of growth
(Fig. 6f), decreases in expression of MUC1-C-driven NE markers
and OSKM effectors of pluripotency (Fig. 6g, left and right).

In extending these studies, we found that treatment of DU-145
cells with GO-203 in vitro is similarly associated with inhibition
of growth (Fig. 7a) and suppression of MUC1-C-induced NE
markers and pluripotency factors (Fig. 7b, left and right).
Moreover, GO-203/NP treatment of DU-145 xenografts resulted
in suppression of tumorigenicity (Fig. 7c) and MUC1-C-induced
signaling (Fig. 7d, left and right), confirming the findings in the
LNCaP-AI model. These responses to targeting MUC1-C
occurred in the absence of apparent changes in morphology,
which may require longer periods of treatment for differentiation
of that phenotypic characteristic. We also studied NCI-H660
NEPC cells, which constitutively express MUC1-C and BRN2 at
higher levels than that found in DU-145 cells (Fig. 7e). Consistent
with the LNCaP-AI and DU-145 models, targeting MUC1-C with
GO-203 resulted in inhibition of NCI-H660 cell growth (Fig. 7f)
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and suppression of MUC1-C signaling pathways linked to NE
differentiation (Fig. 7g, left) and pluripotency (Fig. 7g, right).

MUC1 expression correlates with BRN2 and the NEPC score.
In extending these findings to PC tissues, we found that MUC1 is
amplified in 29.9% (32/107) of a NEPC enriched CRPC cohort9,

compared to 6.0% (9/150) in the SU2C CRPC cohort with
minimal NEPC50 and 1.8% (6/333) in the TCGA primary pros-
tate adenocarcinoma cohort51 (Fig. 8a). MUC1 expression was
also significantly increased in CRPCs compared to localized,
hormone-naïve PCs (Fig. 8b). Further analysis showed that
MUC1 high CRPC tumors associate with decreased AR, KLK3
TMPRSS2, HERC3, and NKX3-1 expression levels (Fig. 8c).
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These studies were extended by analysis of a comprehensive
genomic and transcriptomic dataset generated from 429 patients
with advanced prostate cancer4. The results showed that MUC1
expression significantly associates with decreases in PSA/KLK3
(Fig. 8d) and increases in BRN2 (Fig. 8e), providing support for
the central premise that MUC1-C is upregulated in PC progres-
sion in association with downregulation of AR signaling and
induction of the BRN2 pathway. BRN2 overexpression in CRPC
cells drives SOX2, induces NE markers and enriches for an NEPC
gene signature7. Here, we found that MUC1 is also significantly
associated with SOX2 expression (Fig. 8f) and the NEPC score
(Fig. 8g), an RNA-based NE expression signature4, supporting a
MUC1-C→BRN2→SOX2 pathway in driving NE differentiation
in advanced prostate cancers.

Discussion
NEPC is a lethal form of PC that is increasing in incidence in
association with the development of resistance to AR pathway
inhibitors1,2,4,52,53. The limited options for treating patients with
de novo or treatment-related NEPC have emphasized the need
for identifying druggable targets. The present studies uncover a
previously unrecognized role for the MUC1-C oncoprotein in
driving the lineage plasticity of PC to CRPC and NEPC. Evidence
in support of MUC1-C functioning in lineage switching emerged
in part with the generation of a model in which AR-dependent

LNCaP cells were selected for growth under androgen-
depleted conditions. The resulting LNCaP-AI cells were found
to have upregulation of MUC1-C expression in association
with suppression of AR axis signaling. In addition, findings
that MUC1-C contributes to induction of (i) the BRN2
neural TF39, and (ii) MYCN, EZH2 and selected NE markers
(ASCL1, AUROKA and SYP), which have been associated with
progression to NEPC8,12, provided further support for the notion
that MUC1-C drives NE differentiation in PC. To address a
potential concern that the effects of MUC1-C on lineage
switching are limited to the LNCaP cell model, we studied DU-
145 cells isolated from a patient with metastatic CRPC31. Unlike
LNCaP cells, DU-145 cells constitutively express MUC1-C in the
presence of low to undetectable levels of AR, consistent with an
inverse relationship between MUC1 and AR in PC cell lines.
Silencing of MUC1-C in this model also resulted in suppression
of BRN2, MYCN, EZH2, and NE markers, suggesting that tar-
geting MUC1-C represents an approach for attenuating pro-
gression to the NE lineage. To further address that contention,
experiments were performed with NCI-H660 cells, which were
derived from a patient with NEPC and have high levels of MUC1-
C expression. Targeting MUC1-C in this model also suppressed
BRN2, MYCN, EZH2, and NE markers, consistent with the
premise that MUC1-C is sufficient to drive lineage plasticity of
PC to CRPC-NE and NEPC.
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A reciprocal interaction between AR and MUC1-C was first
identified with the demonstration that AR occupies the MUC1
promoter and represses MUC1 transcription in LNCaP cells54. A
negative interplay between AR and MUC1-C in PC cells was
further supported by the finding that enforced upregulation of
MUC1-C is associated with suppression of AR axis signaling55.
The present work provides insights into the role of MUC1-C in
PC progression by showing that MUC1-C drives the BRN2 gene.
AR represses BRN2 activation7. Therefore, MUC1-C-mediated
downregulation of AR expression and/or transactivation function
provided a mechanistic explanation for MUC1-C indirectly
contributing to induction of BRN2 mRNA and protein. However,
the observation that MUC1-C occupies the BRN2 promoter
invoked the possibility for a direct effect. MUC1-C activates the
inflammatory TAK1→IKK→NF-κB p65 pathway and, by bind-
ing directly to NF-κB p65, promotes activation of NF-κB p65
target genes, including (i) ZEB1 and thereby EMT, (ii) EZH2 with
increases in H3K27me3, and (iii) DNMT1/3b with alterations in
DNA methylation patterns16 (Fig. 9). By extension, the induction
of EMT and upregulation of EZH2 and DNMTs have been
associated with progression to NEPC9,56. In the present studies,
targeting NF-κB p65 genetically or with the BAY-11-7085 inhi-
bitor had no effect on BRN2 expression. In addition to NF-κB,
MUC1-C activates the MYC pathway, binds directly to the MYC
HLH/LZ domain and promotes occupancy of MYC on its target
genes23,28,29. In this respect, we identified an E-box as a MYC
binding site that functions in activating the BRN2 promoter.
Moreover, we found that (i) MUC1-C and MYC are detectable on
the BRN2 promoter, and (ii) targeting MUC1-C→MYC signaling
results in suppression of BRN2 promoter activation and BRN2

expression. These findings collectively supported at least two
mechanisms for MUC1-C induced BRN2 expression; that is
indirectly by repression of AR signaling and directly by MYC-
mediated BRN2 activation (Fig. 9).

NEPC emerges with resistance to AR pathway inhibitors and is
associated with activation of gene programs that confer EMT, the
CSC state and NE differentiation1,2,52,53. In this regard, MUC1-C
drives EMT, epigenetic reprogramming and the capacity for self-
renewal of human breast and lung cancer cells15,16. MUC1-C also
suppresses the p53 and RB pathways22,28,35,57, which cooperate to
suppress PC lineage plasticity and anti-androgen resistance34.
Here, in the LNCaP-AI and DU-145 cell models, MUC1-C
induced gene expression patterns were significantly associated
with (i) downregulation of the AR response, (ii) suppression
p53 signaling, and (iii) activation of the E2F Targets gene set in
support of regulating the RB-E2F axis37. In addition, we found
that MUC1-C induces the MYC→BRN2→SOX2 pathway, inva-
sion, self-renewal and tumorigenicity, supporting a role for
MUC1-C in conferring PC stemness. Having shown that MUC1-
C drives MYC and SOX2, we also found MUC1-C induction of
KLF4 and OCT4, which collectively as the Yamanaka OSKM
pluripotency reprogramming factors confer lineage plasticity and
dedifferentiation of fibroblasts40. How MUC1-C induces KLF4
and OCT4 will require subsequent investigation. Nonetheless,
these findings are of potential relevance for MUC1-C-induced PC
progression in that suppression of the p53 and RB pathways,
which can function as repressors of pluripotency, enhances effi-
ciency of the OSKM pluripotency factors in inducing lineage
plasticity of somatic cells40,58. Lineage plasticity in cancer
includes in part dedifferentiation with the reacquisition of stem
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cell features2,59,60. Stemness contributes to cancer progression
and treatment resistance, and thus understanding how cancer
cells acquire plasticity is of critical importance. To our knowledge,
the present work supports a previously unrecognized role for
MUC1-C in driving dedifferentiation of PC cells (Fig. 9). Lineage
plasticity has also been used to describe transdifferentiation,
which involves fate switching to another differentiated cell
type2,59,60. Using this definition, the present results lend further
support to a role for MUC1-C in promoting transdifferentiation
of androgen-dependent PC cells to androgen-independent PC
cells with NE features (Fig. 9). Along these lines, additional
investigation will be needed to more precisely define whether
MUC1-C contributes to phenotypic plasticity of PC cells by
driving pluripotency, dedifferentiation, transdifferentiation or the
interconnectivity between these states61.

Ectopic expression of MUC1 in 3Y1 fibroblasts was found
to be sufficient to induce anchorage-independent growth and

tumorigenicity, consistent with an oncogenic function62. Sub-
sequent work demonstrated that MUC1-C is an oncoprotein,
which confers multiple hallmarks of the cancer cell, including
EMT, the CSC state, epigenetic reprogramming, drug resistance
and immune evasion15,16. Clearly, the upregulation of MUC1
expression per se is not a transforming event. Along these lines,
MUC1 is highly expressed in the lactating mammary gland,
which (i) occurs in association with suppression of the EMT
program to preserve epithelial integrity and differentiation63,64

and (ii) upon remodeling during involution rarely progresses to
breast cancer. In cancer cells, MUC1-C is upregulated by auto-
inductive circuits resulting from interactions with proin-
flammatory TFs, such as NF-κB p65 and STAT3, which are
activated by stress and drive the EMT program65,66. These find-
ings provide support for the notion that MUC1-C contributes to
cancer progression, at least in part, in association with the
response to stress and inflammation, activation of an EMT
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program and induction of pluripotency, as would occur in non-
cancerous cells to promote wound healing and maintain tissue
homeostasis15,16,66. Viewed in this way and given the association
of prostatitis with EMT67,68 and prostate cancer69, prolonged
activation of MUC1-C in settings of chronic inflammation and, in
turn, the induction of stemness and reprogramming could hold
important implications for PC progression and treatment. In this
respect and of potential clinical relevance, targeting MUC1-C in
PC cells with the GO-203 inhibitor, which blocks MUC1-C
homodimerization and nuclear localization42–44, phenocopied the
effects of MUC1-C silencing, including downregulation of (i)
MYC→BRN2 signaling, (ii) MYCN, EZH2 and NE markers, and
(iii) the OSKM pluripotency factors. Treatment with GO-203 was
also associated with inhibition of self-renewal and tumorigenicity,
indicating that this agent is active in targeting MUC1-C-induced
stemness. GO-203 has been evaluated in early phase clinical trials
and, based on an acceptable safety profile and evidence of anti-
tumor activity, is being further developed to target MUC1-C
expressing cancers, such as CRPC and NEPC. The short half-life
of GO-203 necessitated daily intravenous delivery, which is a
challenging schedule in the clinic. Accordingly, GO-203 has been
encapsulated in polymeric NPs (GO-203/NPs) and, based on the
dose-dependent anti-tumor activity of this formulation, is under
development for more convenient weekly administration49. Other
work has demonstrated that the MUC1-C extracellular domain is
druggable with antibody-based approaches, including antibody-
drug conjugates (ADCs) and potentially chimeric antigen recep-
tors70. The present findings lend support for the contention that
these MUC1-C-targeted agents could enable therapeutic strate-
gies for attenuating PC progression to NEPC and for treating this
aggressive disease.

Methods
Cell culture. Human LNCaP (ATCC), C4-2B25 and DU-145 (ATCC) cells were
cultured in RPMI1640 medium (Corning Life Sciences, Corning, NY, USA) con-
taining 10% heat-inactivated fetal bovine serum (FBS; GEMINI Bio-Products, West
Sacramento, CA, USA). LNCaP-AI cells were established by culturing C4-2B cells
in phenol red-free RPMI1640 medium (Thermo Fisher Scientific, Waltham, MA,
USA) containing 10% charcoal-stripped FBS (Millipore Sigma, Burlington, MA,
USA) for over 6 months. Human NCI-H660 NEPC cells (ATCC) were cultured in
RPMI1640 medium with 5% FBS, 10 nM β-estradiol (Millipore Sigma), 10 nM
hydrocortisone, 1% insulin-transferrin-selenium (Thermo Fisher Scientific) and

2 mM L-glutamine (Thermo Fisher Scientific). Cells were treated with the MUC1-C
inhibitor GO-203 (refs 42–44), the AR pathway inhibitor enzalutamide (ENZ; Santa
Cruz Biotechnology, Dallas, TX, USA) and the BET bromodomain inhibitor JQ1.
Cell growth and viability were assessed by 0.4% trypan blue (Thermo Fisher Sci-
entific) exclusion. Authentication of the cells was performed by short tandem
repeat (STR) analysis. Cells were monitored for mycoplasma contamination using
the MycoAlert Mycoplasma Detection Kit (Lonza, Rockland, ME, USA).

Tetracycline-inducible gene silencing. MUC1shRNA (MISSION shRNA
TRCN0000122938; Sigma), MYCshRNA (MISSION shRNA TRCN0000039642;
Sigma) or a control scrambled shRNA (CshRNA; Sigma) was inserted into the
pLKO-tet-puro vector (Plasmid #21915; Addgene, Cambridge, MA, USA).
BRN2shRNA (MISSION shRNA TRCN0000019330; Sigma) was inserted into the
pLKO-puro vector. The viral vectors were produced in 293T cells35. Cells trans-
duced with the vectors were selected for growth in 1–3 μg/ml puromycin. For tet-
inducible vectors, cells were treated with 0.1% DMSO as the vehicle control or
doxycycline (DOX; Millipore Sigma).

Quantitative reverse-transcription PCR (qRT-PCR). Total cellular RNA was
isolated using Trizol reagent (Thermo Fisher Scientific). cDNAs were synthesized
using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Grand Island, NY, USA). The cDNA samples were amplified using the Power
SYBR Green PCR Master Mix (Applied Biosystems) and the CFX96 Real-Time
PCR System (BIO-RAD, Hercules, CA, USA)24. Primers used for qRT-PCR are
listed in Supplementary Table 1.

Immunoblotting. Total lysates prepared from subconfluent cells as described24

were subjected to immunoblot analysis using anti-AR (H-280, 1:100 dilution; Santa
Cruz Biotechnology), anti-PSA (5365, 1:1000 dilution; Cell Signaling Technology,
Danvers, MA, USA), anti-NKX3.1 (83700, 1:1000 dilution; Cell Signaling Tech-
nology), anti-β-actin (1:100,000 dilution; Sigma), anti-MUC1-C (HM-1630-
P1ABX, 1:400 dilution; Thermo Fisher Scientific, Waltham, MA, USA), anti-EZH2
(5246, 1:1000 dilution; Cell Signaling Technology), anti-MYCN (9405, 1:1000
dilution; Cell Signaling Technology), anti-BRN2 (12137, 1:1000 dilution; Cell
Signaling Technology), anti-MYC (ab32072, 1:1000 dilution; Abcam, Cambridge,
MA), anti-SOX2 (3579, 1:1000 dilution; Cell Signaling Technology), anti-ASCL1
(GTX129189, 1:1000 dilution; GeneTex, Irvine, CA, USA), anti-AUROKA (ab1287,
1:4000 dilution; Abcam), anti-SYP (MA5-16402, 1:200 dilution; Thermo Fisher
Scientific), anti-KLF4 (12173, 1:1000 dilution; Cell Signaling Technology) and anti-
OCT4 (2750, 1:1000 dilution; Cell Signaling Technology).

Chromatin immunoprecipitation (ChIP) assays. Soluble chromatin was pre-
cipitated with anti-MUC1-C (HM-1630-P1ABX, 1:50 dilution), anti-AR (H-280,
1:50 dilution), anti-MYC (ab56, 1:50 dilution); Abcam) or a control non-immune
IgG (Santa Cruz Biotechnology). The precipitates were analyzed by qPCR using the
Power SYBR Green PCR Master Mix and the ABI Prism 7300 sequence detector
(Applied Biosystems). Data are reported as relative-fold enrichment24. Primers
used for ChIP qPCR are listed in Supplementary Table 2.
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Fig. 9 Proposed model for MUC1-C in driving PC lineage plasticity. MUC1-C activates the MYC gene, binds directly to the MYC HLH/LZ domain and
contributes to induction of MYC target genes, including CDK4 with phosphorylation of RB28,29,35. MUC1-C also promotes inactivation of RB by MYC/BMI1-
mediated suppression of CDKN2A/p16 (ref. 36). In the present studies, we found that MUC1-C induces MYC occupancy on the BRN2 promoter with
induction of BRN2 expression. In turn, BRN2 induces SOX2 expression7. In addition to MYC and SOX2, we show that MUC1-C drives KLF4 and OCT4
(OSKM), which are collectively sufficient for inducing pluripotency and dedifferentiation of somatic cells40. MUC1-C also suppresses the p53 signaling
pathway and CDKN1A/p21. In addition to MYC, MUC1-C activates the inflammatory TAK1→IKK→NF-κB p65 pathway and, by binding directly to NF-κB
p65, promotes activation of NF-κB p65 target genes65, including (i) ZEB1 and thereby EMT and stemness, and (ii) EZH2 with increases in H3K27me3
(refs. 16,35). In this way, MUC1-C integrates activation of the MYC and NF-κB p65 pathways with suppression of p53 and regulation of the RB-E2F axis to
drive PC lineage plasticity with dedifferentiation and pluripotency.
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Invasion assays. Cell invasion assays were performed in transwell chambers
(3406; Sigma) precoated with matrigel66.

Colony formation assays. Cells were seeded in 6-well plates for 24 h and then
treated with DOX every 4 days. After 9–14 days, the cells were stained with 0.5%
crystal violet (LabChem, Zelienople, PA, USA) in 25% methanol. Colonies >25 cells
were counted in triplicate wells.

Tumorsphere formation assays. Cells (5 × 103) were seeded per well in 6-well
ultra-low attachment culture plates (Corning Life Sciences) in DMEM/F12 50/50
medium (Corning Life Sciences) with 20 ng/ml EGF (Millipore Sigma), 20 ng/ml
bFGF (Millipore Sigma) and 1% B27 supplement (Gibco). Cells were treated with
vehicle or 500 ng/ml DOX for 10–14 days. Tumorspheres were counted under an
inverted microscope in triplicate wells.

Promoter-reporter assays. Cells were transfected with (i) an empty pGL3-basic
vector, (ii) pBRN2-Luc (pGL410-BRN2p, Plasmid #110733; Addgene), (iii)
pBRN2-Luc in which the E-box element CAAGTG at position −575 to −570 was
mutated to AAAGCC (MUT1), (iv) pBRN2-Luc in which the E-box element
CAGATG at position −511 to −506 was mutated to AAGACC (MUT2), and (v)
SV-40-Renilla-Luc in the presence of Lipofectamine 3000 Reagent (Invitrogen). At
48 h after transfection, cells were lysed using passive lysis buffer (Promega,
Madison, WI, USA). Luminescence was detected with the Dual-Luciferase Reporter
Assay System (Promega).

Mouse tumor model studies. Six- to 8-week old male nude mice (Taconic Farms,
Germantown, NY, USA) were injected subcutaneously in the flank with 3 × 106

tumor cells in 100 μl of a 1:1 solution of medium and Matrigel (BD Biosciences). In
certain studies, the mice were castrated at least 3 days before cell inoculation. When
the mean tumor volume reached 100–150 mm3, mice were pair-matched into
groups and (i) treated with vehicle or GO-203/NPs (15 mg/kg IV weekly)49 or (ii)
fed without or with DOX (625 ppm, daily). Tumor measurements and body
weights were recorded twice each week. Mice were sacrificed when tumors reached
>1000 mm3 as calculated by the formula: (width)2 × length/2. These studies were
conducted in accordance with ethical regulations required for approval by the
Dana-Farber Cancer Institute Animal Care and Use Committee (IACUC) under
protocol 03-029.

RNA-seq analysis. Total RNA from cells cultured in triplicates was isolated using
Trizol reagent (Invitrogen). TruSeq Stranded mRNA (Illumina, San Diego, CA, USA)
was used for library preparation. Raw sequencing reads were aligned to the human
genome (GRCh38.74) using STAR. Raw feature counts were normalized and dif-
ferential expression analysis using DESeq2. Differential expression rank order was
utilized for subsequent Gene Set Enrichment Analysis (GSEA), performed using the
fgsea (v1.8.0) package in R. Gene sets queried included those from the Hallmark
Gene Sets available through the Molecular Signatures Database (MSigDB).

Statistical analysis. Each experiment was performed at least three times from
distinct samples. Data are expressed as the mean ± SD. The unpaired
Mann–Whitney U test and Student’s t-test were used to determine differences
between means of groups. A p-value of <0.05 denoted by an asterisk (*) was
considered statistically significant.

Analysis of human PC datasets. Data were pre-processed, RMA-normalized, and
log2-transformed4,65. A quantile-quantile plot was used to assess for data normality.
Data analysis was performed using the cBioPortal Cancer Genomic and Oncomine
websites9,50. GSE32269 was downloaded from Gene Expression Omnibus (GEO).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The RNA-seq data have been deposited in the GEO database under accession code
GSE139335. The TCGA-PRAD, SU2C-CRPC and NEPC cohorts referenced during the
study are available from the cBioPortal (http://www.cbioportal.org/ and https://www.
cbioportal.org/study/summary?id=prad_su2c_2019) and from the GEO database under
accession code GSE32269. The source data underlying Figs. 1–6 and Supplementary
Figs. 1–4 are provided as a Source Data file. All other data supporting the findings of this
study are available within the article and its supplementary information files and from
the corresponding author upon reasonable request. A reporting summary for this article
is available as a Supplementary Information file.
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