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A B S T R A C T

The analysis of longitudinal neuroimaging data within the massively univariate framework provides the op-
portunity to study empirical questions about neurodevelopment. Missing outcome data are an all-to-common
feature of any longitudinal study, a feature that, if handled improperly, can reduce statistical power and lead to
biased parameter estimates. The goal of this paper is to provide conceptual clarity of the issues and non-issues
that arise from analyzing incomplete data in longitudinal studies with particular focus on neuroimaging data.
This paper begins with a review of the hierarchy of missing data mechanisms and their relationship to likelihood-
based methods, a review that is necessary not just for likelihood-based methods, but also for multiple-imputation
methods. Next, the paper provides a series of simulation studies with designs common in longitudinal neuroi-
maging studies to help illustrate missing data concepts regardless of interpretation. Finally, two applied ex-
amples are used to demonstrate the sensitivity of inferences under different missing data assumptions and how
this may change the substantive interpretation. The paper concludes with a set of guidelines for analyzing
incomplete longitudinal data that can improve the validity of research findings in developmental neuroimaging
research.

1. Introduction

A number of neuroimaging techniques, including structural and
functional magnetic resonance imaging (s/fMRI), have been employed to
collect data that enable researchers to study the relation between neu-
robiology, cognition, and behavior. These techniques result in thousands
of voxels per experimental unit, or participant, and are typically analyzed
in a massively univariate framework, that is, by fitting the same statistical
model to each voxel (Friston et al., 1995). More recently, neuroimaging
data has been collected under repeated measures study designs, providing
researchers with the opportunity to study empirical questions about
neurodevelopment. The analysis of longitudinal neuroimaging data re-
mains within the massively univariate framework where a growth model
is fit to the repeated measures of each voxel. Thus, while the analysis of
longitudinal neuroimaging data is relatively new, the field has the op-
portunity to exploit decades of methodological developments in long-
itudinal data analysis. One advantage of a longitudinal study designs over
cross-sectional designs is that by collecting measures from study partici-
pants over multiple occasions, or waves, the analyst can test theories
about development that do not conflate cohort effects with temporal

effects (Skrondal and Rabe-Hesketh, 2004; Diggle et al., 2002). An all-to-
common feature of longitudinal studies, regardless of the substantive
area, is that some measures for some participants will go uncollected.
That is, some participants may miss one or more waves of data collection
intermittently throughout the study while others may dropout of the
study altogether. How to obtain valid inferences for key model para-
meters in the presence of missing data has been a major focus in statistics
for more than 40 years. The statistical literature uses the term incomplete
data interchangeably with missing data in the context of longitudinal
studies. The pioneering work of Rubin (1976) and Little (1976) in-
troduced the issues associated with analyzing incomplete data and their
impact on parameter estimates. More than forty years later, the analysis
of incomplete data has grown into a prolific, currently active literature in
statistics (e.g.,Mealli and Rubin, 2015; Seaman et al., 2013). When pre-
sented with missing data, the researcher must make assumptions about
the reason(s) why the data went uncollected and realize that valid in-
ferences rest on how those assumptions are operationalized. However, as
we will make clear later in this paper, the nature of the missing data
depends on the data that went uncollected, leaving the researcher unable
to explicitly test the validity of those assumptions. As a result, there is no
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empirical way to determine which missing data assumption is correct
(Molenberghs et al., 2008), making the assessment of multiple assump-
tions, often referred to as sensitivity analysis, even more critical. While
attention to missing data and an awareness of appropriate methods
analyzing incomplete data are critical for valid inferences, its import may
not be fully understood across the developmental psychology field. Jelicić
et al. (2009) conducted a systematic review of studies with developmental
samples and showed that 82% used methods that place overly strict as-
sumptions about the missing data. For example, many of those studies
chose to omit subjects with missing data completely (i.e., list-wise dele-
tion or complete case analysis), which may result in unacceptable levels
of bias when generalizing to the intended population and reduces statis-
tical power. These deletion methods also negate the effort from both re-
searchers and study participants in collecting the available data. Indeed,
opting to discard collected data when best practice indicates their use
would very likely contravene our obligations under ethical guidelines for
the use of human subjects. Misunderstanding and/or ignorance of the
statistical issues associated with analyzing missing data could also con-
tribute to discrepancies observed between datasets acquired across dif-
ferent laboratories and prevent replication efforts — a problem that has
recently received noticeable attention and concern in the fields of neu-
roscience and psychology more broadly (Gorgolewski and Poldrack,
2016). Initial intuition often suggests it is better to remove those study
participants who have missing data because there is no way of knowing
what the missing values could have been. To many researchers, the
treatment of missing data is seen as “making up” data, akin to waving a
magic wand. And we agree that missing data is a theoretically challenging
aspect of applied data analysis. With that, given that the analysis of
longitudinal neuroimaging data is relatively new, we believe that it is
much more difficult to reverse misconceptions than it is to properly in-
troduce concepts from the beginning. Therefore, rather than rush through
the statistical aspects of missing data and simply provide a list of tools
that a researcher might employ when presented with missing data, the
goal of this paper is to provide conceptual clarity of the issues (and non-
issues) that arise from analyzing incomplete data in longitudinal studies.
Although there are three general methods for analyzing incomplete data
undergoing active development, (a) likelihood-based (including Baye-
sian), (b) multiple imputation, and (c) weighting, we focus on likelihood-
based methods because (a) we believe it illustrates the issues of analyzing
incomplete data clearly and (b) it is embodied in multiple imputation
techniques. At the end of the paper, we offer further explanation for our
choice of focusing on likelihood-based methods. Furthermore, we limit
the paper to issues with missing outcome data (e.g., missing f/sMRI
scans). To achieve this goal, the paper proceeds as follows. In Section 2,
we review key contributions in the statistical literature on the relationship
between likelihood-based inference and missing data. While notationally
intensive and general, this section is required to foster an understanding
of the statistical underpinnings that enable us to obtain valid inferences in
the presence of incomplete data. We do not assume the reader is already
familiar with this notation and devote space to translating much of the
notation into plain English. In Section 3, we provide a set of simple si-
mulations in an effort illustrate the statistical concepts covered in the
previous section, focusing on how estimates change as a function of the
missing data mechanism and how the data are analyzed. For Section 4, we
re-analyze two longitudinal neuroimaging datasets, one fMRI and one
sMRI, to demonstrate the sensitivity of inferences under different missing
data assumptions and how this may change the substantive interpreta-
tion. Finally, in Section 5, we provide a discussion of the results and
present three guidelines for analyzing incomplete longitudinal neuroi-
maging data.

2. Missing data

In order to review the concepts of missing data, particularly as they
relate to longitudinal studies, some notation must be introduced.
Recent literature (e.g., Mealli and Rubin, 2015; Seaman et al., 2013)

has observed that the notation used to express concepts about missing
data has shifted from that which was introduced by Rubin (1976) into
something less precise, possibly creating confusion for readers. Given
this, we do our best to adhere the notation of Rubin (1976) and Mealli
and Rubin (2015) to review key concepts of analyzing longitudinal data
with dropout. For simplicity, we consider the balanced repeated mea-
sures study. For participant i=1, 2, …, N, there is an intent to collect
j=1, 2, …, n repeated measurements of the response variable of in-
terest. Thus, let Yi be a vector for participant i's n longitudinal out-
comes, and = …Y Y Y Y( , , , )N1 2 be a vector for n ·N observations of all
outcomes in the sample.1 Let us assume (again for simplicity) that each
observation Yij in Yi is a continuous unknown real number that can take
a value from the range of possible values (as defined by the sampling
and measurement instrument) known as the sample space Ω. Finally, let
Xi be an n× p matrix containing fixed covariates and the variable or
variables that define how observations relate to the passage of time,
where p is the number of covariates and time-defining variables. The
goal of such a hypothetical study is to obtain correct inferences for the
vector of unknown parameters θ that govern the conditional multi-
variate density fY(Y|X, θ) — that is, we estimate θ in order to learn
something about how time, and our covariates in X relate to the out-
come Y. Although the study intends to collect n repeated measures from
the N participants, there will be those participants in the study who fail
to provide all n responses. Therefore, let Ri be participant i's length n
vector of observed-data indicators where Rij=1 if Yij is observed (i.e.,
taking a valid value in the sampling space Ω) and Rij=0 if Yij is missing
(and so has the potential to take any value in Ω). The vector

= …R R R R( , , , )N1 2 is the pattern of observed and missing measure-
ments for each participant at each measurement occasion. Given the
vector of observed-data indicators Ri, the vector Yi can be partitioned
into two ordered subvectors: those responses that are observed and
those responses that are missing, denoted as Yi,(1) and Yi,(0), respec-
tively. This partitioning enables us to be explicit about our handling of
the observed outcomes and the unobserved outcomes. The missing data
mechanism is the statistical model for the observed-data indicators,
fR(R|Y, X, Z, α). That is, missing data, R, may depend on the outcome of
interest Y, the covariates of interest X, as well as a distinct set of cov-
ariates not related to Y, indicated by Z. Additionally α is the set of
parameters that govern this relation, a set of parameters that are dis-
tinct from the parameters that govern the relation between Y and X
(that is, θ). In the broad context of a statistical analysis, this means we
now have a probability statement governing the outcome of interest Y
as well as a probability statement governing the pattern of missing data
indicators, R. Still following the notation of Rubin (1976), let ri be a
generic value of Ri and ri be a particular sample realization of Ri.
Likewise, let yi,(1) be a generic value for Yi,(1) and yi,(1) be a sample
realization of Yi,(1). Clearly, there is no sample realization of Yi,(0) as it
contains the data that went unobserved for this particular sample so we
only speak of the generic version, yi,(0). Whether or not we can obtain
correct inferences for θ using only Yi,(1), that is, ignoring Ri, depends
upon the nature of the missing data mechanism. The remainder of this
section provides an overview of the hierarchy of missing data me-
chanisms and their association with likelihood-based methods.

2.1. Missing data hierarchy

2.1.1. Missing completely at random
One can think of missing responses that are missing completely at

random, or MCAR, to be a random sample of the outcome vector Yi, or
equivalently, those who complete the study without any missing data
are a random sample of the complete data vector. Stated more techni-
cally, missing data are MCAR when the probability that responses are

1 You can also consider Y★ as an N× nmatrix where the outcomes for each participant
occupies a row.
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missing, =R ri i, is independent of the observed responses obtained,
=Y yi i,(1) ,(1), the responses that were intended to be obtained but were

not, Yi,(0) = yi,(0), and the set of covariates, Xi. In other words, missing
data are MCAR when Ri is independent of Y(1), Y(0), and Xi, stated
probabilistically as:

= = = = =R r Y y Y y X Z R r Z( | , , , , ) ( | , ).i i i i i i i i i i i,(1) ,(1) ,(0) ,(0)

(1)

Note that Eq. (1) is a statement about the realized missing data, not
about the missing data mechanism itself. Mealli and Rubin (2015) in-
troduced the term missing always completely at random, or MACAR,
which provides specific language for a missing data mechanism that
will always produce missing data that are missing completely at
random.

= = = = =R r Y y Y y X Z R r Z( | , , , , ) ( | , ).i i i i i i i i i i i,(1) ,(1) ,(0) ,(0)

(2)

Notice that ri and yi,(1) in Eq. (1) are replaced by ri and yi,(1) in Eq. (2) to
signify that any realization of Ri will be missing completely at random.
Thus, Eq. (1) defines data that are MCAR and Eq. (2) defines the
MACAR missing data mechanism.

2.1.1.1. Covariate-dependent missingness. Little (1995) distinguished
between MCAR as stated above and missingness that is conditionally
independent of Yi given some set of covariates Xi, which he referred to
as covariate-dependent missingness. Covariate-dependent missingness can
be stated probabilistically as

= = = = =R r Y y Y y X Z R r X Z( | , , , , ) ( | , , ).i i i i i i i i i i i i,(1) ,(1) ,(0) ,(0)

(3)

This is to say, if data are missing because of a covariate associated with
Y, if that covariate is included in the model for Yi, then the parameter
estimates based on Yi,(1) will be unbiased. It is important to note that
the subset of covariates that Ri depends on must be included in the
model for Yi. If those covariates are not included in the model then Yi
remains dependent on Ri. Equally important to consider is that the
model fit without the covariate (or covariates) would also suffer from
omitted variable bias.

2.1.2. Missing at random
Compared to MCAR, the assumption of missing at random, or MAR, is

a less restrictive assumption in that the missing data can depend on
Yi,(1). Given the realized available data, =Y yi i,(1) ,(1) and Xi, the prob-
ability of obtaining the missing data =R ri i does not vary with possible
values of yi,(0) or with possible values of the parameter vector α (Rubin,
1976; Mealli and Rubin, 2015). The MAR assumption may be stated
probabilistically as

= = = =
= = =

R r Y y Y y X Z
R r Y y Y y X Z

( | , , , , )
( | , , , , )

i i i i i i i i

i i i i i i i i

,(1) ,(1) ,(0) ,(0)

,(1) ,(1) ,(0) ,(0) (4)

for all α, yi,(0) and y i,(0) . This equality says that the realized missing data
may depend on the set of observed responses Yi,(1) and covariates Xi,
but is free of dependence on the unobserved responses Yi,(0). The
missing data mechanism is missing always at random, or MAAR, if we
replace =R ri i in Eq. (4) with Ri= ri and =Y yi i,(1) ,(1) with Yi,(1) = yi,(1)
(Mealli and Rubin, 2015).

2.1.3. Missing not at random
Finally, when missing data depend on the data that went un-

collected, Yi,(0), the data are said to be missing not at random, or MNAR.
Data that are missing not at random can be defined probabilistically if
we replace the equality in Eq. (4) with an inequality,

= = =
= = =

R r Y y Y y X Z
R r Y y Y y X Z

( | , , , , )
( | , , , , )

i i i i i i i i

i i i i i i i i

,(1) ,(1) ,(0) ,(0)

,(1) ,(1) ,(0) ,(0) (5)

for some α, and some y yi i,(0) ,(0) . Like the definitions above, sub-
stituting =R ri i in Eq. (5) for Ri= ri and =Y yi i with Yi= yi defines the
missing not always at random mechanism, or MNAAR (Mealli and Rubin,
2015).

2.2. Likelihood-based inference

Remaining in the context of longitudinal studies, recall that we seek
to obtain correct inferences for the vector of unknown parameters θ
that govern the conditional multivariate density fY(Y|X, θ). This is often
done by finding the values of θ with the maximum likelihood Lθ(θ|y, X)
or its logarithm, ℓθ(θ|y, X). When missing data are present, however,
y(1) may not provide sufficient information about Y to obtain valid es-
timates of θ. Thus, we would be naive to only consider y without also
considering r, which may provide necessary information about Y. That
is, when presented with incomplete data, we must consider the joint
distribution of the available data, y(1), and the missing data indicators,
r, f y r X Z( , | , , , )Y R, (1) and the log-likelihood y r X( , | , , ), (1)
(Rubin, 1976; Kenward and Molenberghs, 1998) — in other words, it
may be the case that valid estimates of θ can only be obtained by es-
timating θ and α jointly. How we specify the likelihood, using ℓθ or ℓθ,α
depends on our assumptions about the missing data mechanism. Rubin
(1976) showed that when the missing data are MAR (with MCAR as a
special case), the missing data mechanism is non-informative or ignor-
able. When missing data are MNAR, however, the missing data me-
chanism is informative or nonignorable.

2.2.1. Ignorable mechanisms
2.2.1.1. Missing completely at random. When missing data is assumed to
be the result of an MACAR mechanism, the missing data indicator is
(conditionally) independent of the responses. Thus, the joint
distribution of the observed data can be factorized as

=f f fy r X Z y X r X Z( , | , , , ) ( | , ) ( | , , )Y R Y R, (1) (1) (6)

with log-likelihood

= +y r X Z y X r X Z( , | , , , ) ( | , ) ( | , , )., (1) (1) (7)

Thus, when interest is in values of θ and α is merely a vector of nuisance
parameters, we can obtain valid inferences of θ by working with ℓθ
exclusively, and no longer need to worry about α or ℓα. Furthermore,
when missing data are missing completely at random, analysis using the
data from just the set of participants who completed the study, y c( ), and
dropping all observations from participants who did not complete the
study (commonly referred to as complete-case analysis) is suitable,
although this approach is inefficient and so has reduced statistical
power (Jennrich and Schluchter, 1986; Kenward and Molenberghs,
1998; Laird, 1988).

2.2.1.2. Missing at random. When missing data are assumed to be the
result of an MAAR mechanism, we can still ignore the model for R.
Unlike MCAR, however, y(1) and r are not independent (Rubin, 1976;
Mealli and Rubin, 2015). That is, the joint distribution of the observed
data under MAR cannot be reduced beyond

=f f fy r X Z y X r y X Z( , | , , , ) ( | , ) ( | , , , ).Y R Y R, (1) (1) (1) (8)

To conceptualize this issue, consider stratifying our sample based on
observed outcomes up to, but not including occasion t. The unrealized
cross-sectional distribution of outcomes at occasion t for those in a
given stratum who are missing the observation at occasion t,

= <f y(y | )j t j t,(0) ,(1) , is assumed to equal to the realized cross-sectional
distribution of outcomes at occasion t for those in the stratum who have
an observed outcome at occasion t, = <f y(y | )j t j t,(1) ,(1) (Molenberghs and
Fitzmaurice, 2009). This further suggests that when missing data are
the result of a MAAR mechanism, those individuals with a complete set
of responses, y c( ) do not make up a representative sample of the
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population. Thus, when missing data are MAR, unlike the MCAR case
above, any analysis conducted with only those participants with
complete data may results in biased parameter estimates (Wang-Clow
et al., 1995). Although the marginal distribution of y(1) may not equal
the marginal distribution of Y under MAR, we can partition the log-
likelihood for Eq. (8) as

= +y r X Z y X y r X Z( , | , , , ) ( | , ) ( | , , , )., (1) (1) (1) (9)

Note that Eq. (9) is distinct from the MCAR log-likelihood Eq. (7) in that
α is conditional on y(1). Again, though, if our interest is in θ, ℓα need not
concern us. We can then make correct inferences about θ from ℓθ when
the asymptotic covariance matrix for θ is computed from the observed
information matrix rather than the expected information matrix
(Jennrich and Schluchter, 1986; Kenward and Molenberghs, 1998;
Laird, 1988). It is important to realize that the assumption of a MAR
rests on the data that were unobserved and therefore cannot be
empirically verified.

2.2.2. Nonignorable mechanisms
When missing data are the result of a missing not always at random,

(nonignorable) mechanism, the probability of nonresponse depends on
the outcomes that were not collected. This means that likelihood-based
inference regarding θ that ignores the model for R when missing data
are MNAR will be biased (Wang-Clow et al., 1995). When the missing
data are assumed MNAR, nearly all standard methods of longitudinal
analysis using only ℓθ are invalid. To obtain valid estimates of θ, one
must model the response vector y(1) and the missing-data mechanism r
jointly. There are three main families of MNAR models that differ based
on how this joint distribution is factorized, (a) pattern-mixture models,
(b) selection models, and (c) shared-parameter models. Each approach
has a particular set of assumptions and theoretical strengths.

2.2.2.1. Pattern-mixture models. The pattern-mixture model (Little,
1993, 1994) specifies the marginal distribution of r and the
conditional distribution of y(1),

=f f fy r X Z r X Z y r X Z( , | , , , ) ( | , , ) ( | , , , , ).Y R R Y, (1) (1) (10)

That is, the pattern-mixture model stratifies the population based on the
pattern of missing data and separate models are fit for each stratum.
Stratification may be of substantive interest if it is not meaningful to
consider non-response as missing data. For example, in the biostatistics
literature, Y may be a quality of life measure and R=0 for survivors
and R=1 for individuals who died before time j (Little, 2009).

2.2.2.2. Selection models. While the selection model has led to
substantial development in the statistical literature to deal with
attrition, the model's roots (and name) can be traced back to the
econometrics literature for dealing with selection bias in non-
randomized studies (e.g., Heckman, 1976). The selection model
factorizes the joint distribution between r and y(1) through models for
the marginal distribution of y(1) and conditional distribution of r given
y(1):

=f f fy r X Z y X Z r y X Z( , | , , , ) ( | , , , ) ( | , , , ).Y R Y R, (1) (1) (1)

(11)

Selection models provide a natural way of factoring the model where fY
is the model for the data in the absence of missing responses and fR is
the model for the missing data mechanism that determines what part of
Y are observed. Because fY is unconditional, model parameters in θmay
be interpreted in the same fashion as a model for fY with an ignorable
missing data mechanism; an element of great appeal when θ contains
the substantive parameters of interest to the researcher.

2.2.2.3. Shared-parameter models. Introduced by Wu and Carroll

(1988), the shared-parameter model assumes the missing data are
subject to random-coefficient-based missingness (Little, 1995). That is,
the missing data are a function of one or more random coefficients such
as a random intercept or slope rather than a function of the unrealized
measures. The shared parameter model assumes r and y(1) are
independent conditional on those shared parameters. Consider the set
of random coefficients ν with a given parametric form,

=f f fy r X Z y X Z r X Z( , | , , , , ) ( | , , , , ) ( | , , , ).Y R Y R, (1) (1)

(12)

Here, both fY and fR are unconditional given the random effects ν.

3. Illustrations

To help connect the concepts of missing data reviewed in the pre-
vious section, consider a hypothetical study that was designed to un-
derstand if rates of cortical thinning in regions associated with impulse
control from ages 12 to 17 differed for those children who had been
diagnosed with ADHD before age 12 from those who had not been di-
agnosed. The study was able to recruit 200 12-year-old children to be
followed for 5 years. At baseline, half of the 200 participants had been
diagnosed with ADHD whereas the other half had not been diagnosed
with ADHD. Furthermore, 50 children in each of the two groups had
one or more siblings at the time of recruitment while the other 50
children in each group had no siblings by age 12. The study design
included three waves of data collection, at ages 12, 14.5, and 17. For
each study participant, define the following data elements:

• CTi=(CTi1, CTi2, CTi3)′ is the cortical thinning complete-data vector
for child i (one can think of this as the data that is possible to observe,
though elements are sometimes missing).
• AGEi=(12, 14.5, 17)′ is the age vector that corresponds to CTi.
• WAVEi=(0, 1, 2)′ is the wave vector that corresponds to the data
collection wave.
• ADHDi is a baseline binary variable where ADHDi=1 for ADHD
diagnosis before age 12 and 0 otherwise.
• SIBi is a baseline binary variable where SIBi=1 for children who
have siblings by age 12 and 0 otherwise.

Using this hypothetical study, we simulated longitudinal data from
a known cortical thinning population model and a variety of known
missing data mechanisms. While the cortical thinning population model
was the same for all simulations, we considered four missing data
mechanisms that span MCAR, MAR, and MNAR. Elements of the gen-
erated data were used to highlight when complete-case analysis and
available data analysis result in correct inference about the population
parameters for cortical thinning. It is important to note that the ex-
amples provided here are not exhaustive but are meant to highlight the
following key issues:

1. When missing data are covariate-dependent, both the complete-case
analysis and available data analysis are unbiased when the correct
analytical model is specified.

2. When missing data are covariate-dependent, omission of that cov-
ariate in the analytical model results in two forms of bias, (a) bias
due to the non-independence of the missing data indicator and the
outcome, and (b) omitted variable biased.

3. When missing data are due to, in part, a variable unrelated to the
outcome, that variable is not required to be included in the analy-
tical model.

4. When missing data are due to the observed outcomes, complete-case
analysis produces biased point estimates.

5. When missing data are due to unobserved outcomes, neither com-
plete-case analysis nor available data analysis produce unbiased
estimates.
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3.1. Population model for cortical thinning

For these illustrations, we define cortical thinning (in mm) between
age 12 and 17 to differ based on ADHD diagnosis but not based on
having or not having siblings. Let the participant-level population
model for the repeated measures outcome CTi be expressed using
mixed-effects model notation (Laird and Ware, 1982),

= + + + + +CT WAVE( ADHD ) .i i i i i i1 1 2 3 2 (13)

with generating values: β1= 5.5 ; β2=−1.75 ; β3= 0.75 ;. This model
indicates that the average level of the cortical thickness at age 12 is
5.5 mm and decreases by 1.75mm every 2.5 years for the non-ADHD
group, and by 1mm every 2.5 years for the ADHD group. Because this is
a mixed-effect model, participants are able to deviate from these po-
pulation averages. The participant-specific deviation in the intercept is
indicated by ζ1i and participant-specific deviation in the slope is in-
dicated by ζ2i. The terms (ζ1i, ζ2i) are generated from a mean-zero
multivariate normal distribution where ψ11= 1.25 defines the variation
in the participant-specific intercepts around the population intercept (in
standard deviates), ψ22= 0.5 defines the variation in participant-spe-
cific slopes around the population slope (in standard deviates), and
ρ21=− .3 defines the correlation between the participant-specific in-
tercepts and slopes (i.e., participants with thicker initial cortical mea-
surements tend to decrease in thickness faster). The term ϵi is a vector of
residuals distributed from a mean-zero normal distribution with stan-
dard deviation σ=1. Note that all of the parameters in Eq. (13) were
contained in θ in Section 2.

Now that we have defined the population model, we focus on a
general model for the missing data mechanisms. We define additional
elements for participant i:

• ri is the vector of observed-data indicators where rij=1 indicates
CTij is observed and rij=0 indicates CTij is missing.
• CTi,(1) is the subvector of observed elements of CTi.
• CTi,(0) is the subvector of missing elements of CTi.

For simplicity (and without loss of generality) we constrain the
possible patterns of ri to be patterns that describe dropout: (1, 1, 1)′, (1,
1, 0)′, and (1, 0, 0)′. Given this constraint, let d be a discrete random
variable whose values, di= k indicate the wave of dropout with di= C
for those participants who completed the study. Thus, possible reali-
zations for CTi,(1), CTi,(0), ri and di are defined in Table 1. We now il-
lustrate how the nature of the missing data mechanism determines what
information must be included in the analysis and what information may
be ignored to obtain unbiased population parameters. Because the il-
lustration assumes data are collected in waves, or at discrete times, a
convenient model for a missing data mechanism that describes dropout
is the discrete-time survival model,

= =
+ w

d k d k( | ) 1
1 exp( ( ))i i

i (14)

where the probability of participant i dropping out after wave k given
they did not drop out prior to wave k is governed by wi . The vector wi
includes discrete elements of time/wave and other characteristics that

define the missing data mechanism. Whether the missing data me-
chanism is MCAR, MAR, or MNAR depends on what those other char-
acteristics are. Note that the parameter vector α is the same α from
Section 2.

3.2. Independent mechanisms

As explained in Section 2.1.1, MACAR mechanisms are the only
mechanisms where independence between y and the dropout pattern, r,
is assumed. We provide two examples from the MACAR family: (a)
covariate dependent missingness and (b) auxiliary variable-based
missingness. For each example, we consider estimation bias and effi-
ciency. Bias is assessed by comparing the average parameter estimates
over 1000 replications to the generating values. Efficiency is evaluated
based on the 95% coverage rate of the estimates of the 1000 replica-
tions — the rate at which the 95% confidence intervals contain the
generating value.

3.2.1. Covariate-dependent dropout
The first missing data mechanism we specify is a covariate-depen-

dent one where the probability of dropping out at a given wave is de-
termined by a parameter for that wave as well as a parameter for the
probability specific to those participants who had been diagnosed with
ADHD by age 12. The missing data mechanism is defined as:

= =
+ + +

d k d k( | ) 1
1 exp( ( WAVE WAVE ADHD ))i i

i1 2 2 3 3

(15)

where α1 is the log odds of dropping out between waves 1 and 2 for
participants who had not been diagnosed with ADHD before age 12; α2
is the log odds of dropping out between waves 2 and 3 for those par-
ticipants who had not been diagnosed with ADHD before age 12 given
they did not drop out previously; and α3 is the increase of the log odds
of dropping out at each wave for participants who had been diagnosed
with ADHD before age 12. This model describes the probability of
dropping out to be not only a function of time, but of ADHD diagnosis.
To illustrate the impact of this dropout process, we simulated missing
data under Eq. (15) using three sets of parameters. The generating
values α1=−2.197 and α2= 1.735 were consistent across all three sets
of parameters. The parameter α1=−2.197 results in 10% of partici-
pants in the non-ADHD dropping out after wave 1 and α2= 1.735 re-
sults in 15% of the remaining 90% of participants dropping out after
wave 2, leaving 75% of the non-ADHD group with complete cases. The
generating values for α3 increased for each set of parameters (referred
to as M1, M2, and M3) so that participants diagnosed with ADHD would
have incrementally higher probabilities of dropping out after each wave
as compared to those participants who were not diagnosed with ADHD:
(0.201, 0.620, 1.100). That is, the three values of α3 were set so that
participants in the ADHD group would be 5%, 15% and 25% more
likely to drop out after each wave than participants in the non-ADAD
group.

Table 2 provides the average percent observed data for both ADHD
groups at each wave over 1000 replications. Notice that the percentage
of observed data from those who were not diagnosed with ADHD,
ADHD=0, is the same for each of the three sets of missing data
parameters. This is because α1 and α2 did not change between M1 and
M3. The effect of α3 becomes apparent looking to the percentage of
observed data for those who had been diagnosed with ADHD before age
12. Two analyses were performed for each set of missing data para-
meters. The first analysis relied on only those participants who had not
dropped out, referred to as complete-case analysis. The second analysis
utilized the available data from every participant regardless of when
they dropped out. Not shown here for space considerations, both ap-
proaches were unbiased under the three missing data mechanisms.
Fig. 1a and b plot the estimated standard errors for β3 — the difference
in linear change for the ADHD group — under M3 revealing that, on

Table 1
Missing data patterns.

CTi,(1) CTi,(0) ri di

(CTi1, CTi2, CTi3)′ – (1, 1, 1)′ C
(CTi1, CTi2)′ (CTi3) (1, 1, 0)′ 2
(CTi1) (CTi2, CTi3)′ (1, 0, 0)′ 1

Notes: CTi,(1) is the vector of participant i's observed cortical thickness measures. CTi,(0) is
the vector of participant i's missing cortical thickness measures. ri is the vector of parti-
cipant i's observed score indicators. di is an indicator for when participant i dropped out
where di= C indicates study completion.
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average, the standard errors for the complete-case analysis were slightly
higher than the standard errors estimated using the available data.
Fig. 1c and d plot the 1000 point estimates for β3 and their 95% con-
fidence intervals for the available data analysis and complete-case
analysis under M3, respectively. The red points and black line segments
indicate those replicates where the 95% CI did not contain the gen-
erating value. Despite the complete-case analysis producing higher
standard errors, the 95% coverage rate for both analyses were 0.95
meaning that the complete-case and available data standard errors were
well estimated.

A follow-up simulation was conducted to illustrate the consequence
of omitting a covariate from the analytical model for which the missing

Table 2
Average percent of observed data at each wave over 1000 replications, by ADHD.

Missing data
mechanism

ADHD=0 ADHD=1

WAVE1 WAVE2 WAVE3 WAVE1 WAVE2 WAVE3

M1, α3= 0.201 100 90 76 100 88 72
M2, α3= 0.620 100 90 77 100 83 62
M3, α3= 1.100 100 90 76 100 75 50

Fig. 1. Standard errors, point estimates, and 95% confidence intervals (CI) for β3 under M3 over 1000 replications: (a) available data standard errors, (b) complete-case standard errors,
(c) available data point estimates and 95% confidence intervals, and (d) complete-case point estimates and 95% confidence intervals. Red points and black segments indicate those 95%
CIs that did not contain the generating value of 0.75.

T.H. Matta, et al. Developmental Cognitive Neuroscience 33 (2018) 83–98

88



data depends. For this, we generated data under the population model,
Eq. (13), and imposed the missing data mechanism from the previous
example. Instead of fitting the correct model, a knowingly misspecified
model for CT was fit to the available data, one that omits ADHDi.

= + + + +CT WAVE( ) .i i i i i1 1 2 2 (16)

Table 3 reveals bias in the slope parameter, β2, the slope variance ψ22,
and the correlation between the random intercepts and slopes, ρ21,
compared to their generating values. However, much of this bias should
not be attributed to the dependence between CTi and ri, but instead,
attributed to the omission of ADHD, often referred to as omitted variable
bias. Because we ignore ADHDi, β2 under the misspecified model is the
completely pooled linear change for the entire sample, (−1.75+−1)/
2=1.375. This pooling extends to the linear slope variance component
and the covariance, resulting in a standard deviation of 0.625 and
correlation of 0.22. Given these pooled estimates, only the slope para-
meter exhibits bias due to the missing data under M2 and M3. Analysis
of the available data under the most extreme missing data mechanism,
M3, where the overall proportion of completers for the ADHD partici-
pants was half that of the non-ADHD group, resulted in 4.2% bias due to
the dependence between CT and r. The bias for M3 is closer to the
generating value of β2 because there were fewer participants in the
ADHD group resulting in less information to pool towards the gen-
erating value of β3.

3.2.2. Auxiliary variable dropout
Another potential missing data mechanism is one where dropout is

determined by an auxiliary variable — a variable that is not associated
with the outcome measure. For this example, the probability of drop-
ping out increased for those participants with one or more siblings at
the start of the study, perhaps due to scheduling difficulties for parents
with larger families. That is, the auxiliary variable is SIBi because it is
independent of the population model for CTi. Using the discrete-time
survival model from above, we define the dropout process as

= =
+ + +

d k d k( | ) 1
1 exp( ( WAVE WAVE SIB ))i i

i1 2 2 3 3

(17)

where the values for α1, α2, and α3 are the same as in Section 3.2.1.
What is different is that instead of α3 corresponding from ADHDi, it now
corresponds to SIBi. Because of our study design, the proportion of
missing data at each wave by group is equivalent (within replication
variance) to that of Table 2. Note that this is not quite an example of a
MACAR mechanism as defined in Eq. (2) because dropout is still de-
pendent on time (WAVE). We know cortical thinning is independent of
having one or more siblings but the probability of dropout is not. As
seen in Table 4, because CTi and SIBi are independent, we can ignore
SIB in our model for CTi and obtain the corrected point estimates. Al-
though the rate of attrition varies, at times drastically, between the two
groups, Table 4 confirms that (a) ignoring SIBi in the model for CTi
resulted in correct point estimates for parameters for CTi, and (b) both
available data and complete-case approaches worked equally well for
obtaining those point estimates. Furthermore, with the the most severe
missing data condition, coverage rates for both analyses were within
1%.

3.3. Ignorable and non-ignorable mechanisms

Like the two examples above, we use Eq. (14) to simulate a MAAR
and a MNAAR missing data mechanism. The MAAR and MANAR
missing data mechanisms are inherently different from the two
MACAR-family missing data processes used above, however, as they
specify the probability of missing to be a function of CTi. For the re-
maining two examples, rather than use CTij directly, we use

=CT CT CTjij ij , a mean-centered transformation at each wave. A
missing data mechanism that produces data that are missing at random
is one that depends on the observed cortical thinning measures, CTi,(1).
We specify a rather simple MAAR mechanism that generates the
probability of dropping out after each wave to depend on, in part, the
measure of cortical thickness at that wave. That is, the measure of
cortical thickness collected at time k influences whether or not that
participant will return at the next wave.

= =
+ + +

d k d k( | ) 1
1 exp( ( WAVE WAVE CT ))i i

1 2 2 3 3 ik

(18)

The MNAAR mechanism is setup just as the MAAR mechanism, only
instead of specifying the probability of dropping out after wave k to
depend on CTik, we use +CTi k, 1, or the measure that would have been
collected at the following wave. This formulation results in missing data
due to the cortical thinning measures we do not have.

= =
+ + + +

d k d k( | ) 1
1 exp( ( WAVE WAVE CT ))i i

i k1 2 2 3 3 , 1

(19)

This model describes the probability of dropping out after wave k
(given that the participant did not drop out prior to wave k) as in-
creasing due to growth in cortical thickness after CTik is collected. In
order to enhance our understanding of the impact of ignorable and non-
ignorable mechanisms on parameter estimates, both the MAAR and
MNAAR simulations were setup differently than the simulations in
Sections 3.2.1 and 3.2.2. The generating values for α1 and α2 in both
models were −2.197 and −1.735, respectively, whereas the generating
value for α3 in both models was randomly sampled from a uniform
distribution between 0 and 1.25 over 5000 replications. This strategy
enables us to understand the impact of +CTi k, 1 on parameter estimates
as a smooth function rather than at select discrete values.

As was done for the examples above, the data was analyzed using
(a) only the participants who had complete cases and (b) the available
data from every subject. Fig. 2 plots a Loess curve of the bias for six
parameters of the growth model estimated using complete-cases and
available data when missing data are MAR and MNAR. Lines that depart
from zero bias as the odds of dropout increase indicates that the
parameter estimate under the given analysis is biased. Bias is present
for five of the six parameters when the missing data are MAR and data
from those participants who completed the study was used (orange
lines). Fig. 2a and d indicate that for this particular simulation, the
intercept, β1 and the intercept variance, ψ11, are most biased when only
the complete cases are used and the missing data are MAR. All six

Table 3
Misspecified ADHD-dropout model simulation results, average point estimates 1000 re-
plications.

β1 β2 β3 ψ11 ψ22 ρ21

Average point estimate
Generating value 5.50 −1.75 0.75 1.25 0.50 −0.30
M1, α3= 0.201 5.50 −1.38 – 1.24 0.62 −0.22
M2, α3= 0.620 5.51 −1.40 – 1.24 0.62 −0.22
M3, α3= 1.100 5.50 −1.44 – 1.25 0.61 −0.22

Table 4
SIB-dropout simulation results for α3= 1.1, average point estimates and 95% coverage
rates over 1000 replications.

β1 β2 β3 ψ11 ψ22 ρ21

Average point estimate
Generating value 5.50 −1.75 0.75 1.25 0.50 −0.30
Complete-cases 5.50 −1.75 0.75 1.24 0.48 −0.26
Available data 5.50 −1.75 0.75 1.24 0.48 −0.27

95% Coverage rate
Complete-cases 0.96 0.95 0.94 – – –
Available data 0.95 0.96 0.94 – – –
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parameters are unbiased when the missing data are MAR and the
available data are used (green lines), even as α3 increases. When
missing data are MNAR, however, both the complete-case analysis (blue
lines) and the available data analysis (purple lines) result in biased
parameter estimates. Fig. 2e shows that the linear growth variance
component was unbiased for all missing data mechanisms and analysis
types. Average parameter estimates for certain values of α3 are avail-
able in the supplemental information.

4. Longitudinal neuroimaging illustrations

The previous section analyzed simulated data from known missing
data mechanisms to demonstrate some of the issues that arise when
analyzing incomplete data. Whereas simulations rely on known missing
data mechanisms, we can never be sure of the missing data mechanism
that underlies data collected during a study. Therefore, we transition to
the reanalysis of two existing longitudinal neuroimaging datasets, one

Fig. 2. Loess curves fit to the bias of growth model para-
meters subject to MAR and MNAR missing data using com-
plete-case analysis (CC) and available data analysis (AV).
Odds= eα3. (For interpretation of the references to color in
text near the reference citation, the reader is referred to the
web version of this article.)
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functional and one structural. Specifically, we focus on the sensitivity of
parameter estimates under various missing data assumptions. For both
datasets, the first analysis exploited the available measures from all
participants, an operationalization of the MAR assumption, while the
second analysis employed the data from only those participants who
were measured at all waves, an operationalization of the MCAR as-
sumption. Our aim was to compare the sensitivity of estimates between
available and complete data, which has not yet been done with long-
itudinal neuroimaging data. This is critical at this stage of the field
because illustrating these differences may have a profound impact on
how developmental cognitive neuroscientists analyze and interpret
longitudinal neuroimaging data. For both datasets, we assessed the
sensitivity of the parameter estimates to missing data assumptions by
examining the number and extent of statistically significant clusters in
the first example, and the number of statistically significant parcels in
the second example. Because we are focused on the difference between
available and complete-case data analyses, we are assessing the sensi-
tivity of potential ignorable missing data mechanisms. Recall that
MCAR is a special case of MAR, and complete-case analysis is only valid
when missing data are MCAR. That is, if the missing data are MCAR,
both analysis of the available data and analysis of the complete cases
will produce similar point estimates while the available data analysis is
sure to have greater statistical power. The difference in statistical power
may result in different findings under null hypothesis significance
testing. If, however, the missing data are not MCAR, the estimates
produced by the two approaches will show substantial differences. It is
important to emphasize that the analyses within this paper do not assess
the sensitivity of parameter estimates to nonignorable missing data
mechanisms, which will be taken up in the discussion.

4.1. Task-based functional MRI

4.1.1. Study design
The first example is from a study of the development of self-refer-

ential processing between the ages of 10 and 16. Study participants
(N=81) underwent functional magnetic resonance imaging (fMRI)
while thinking about trait words related to the self, or a familiar other,
in either a social, or an academic context over three waves (ages 10, 13,
and 16). Further details of the study design and findings can be found in
previously published work (Pfeifer et al., 2013, 2007). Table 5 provides
counts for each available data pattern where the data was unavailable
for two possible reasons: a) a study participant did not arrive for a scan
at a given wave, referred to as missing, or b) the scan was collected but
later excluded due to data quality exclusion criteria, referred to as ex-
cluded. The first row (1, 1, 1), indicates the number of participants with
data at all three time points. Of the 81 study participants, only 30
participants were present for all three waves. Regarding dropout, 30
participants dropped out after the first wave (1, 0, 0) and 16 partici-
pants dropped out after the second wave (1, 1, 0). Furthermore, three
participants missed only the first wave (0, 1, 1) and two participants
missed only the second wave (1, 0, 1). When data exclusion criteria are
incorporated, only 22 participants ended up with three waves of usable

data (complete cases) and 12 participants provided two waves of usable
data — 10 of whom provided data for waves 1 and 2 and two who
provided data for waves 1 and 3. In all, there were 58 observations at
wave 1, 46 observations at wave 2, and 34 observations at wave 3.

For this example, we need to consider two missing data mechan-
isms, one that governs whether or not a study participant arrives for a
scan, the missing data; and one that governs whether or not the scan
meets the quality criteria, the excluded data. If the missing data are
assumed MCAR, participant i's blood-oxygen level dependent response
has no relationship to their missing a scan. In other words, to assume
MCAR, is to assume that the participant's BOLD responses, past, present,
or future, during a social processing task is unrelated to whether or not
a participant will miss a scan. The same consideration holds for the
probability of excluding participant i's scan due to quality issues. This is
the assumption we make when we use the complete-case analysis.
Formalizing assumptions for missing BOLD responses that are MAR and
MNAR are less straightforward as the causal relationship between BOLD
responses and behavior is less well developed. If the missing data are
assumed MAR, we assume that participant i's probability of missing a
scan is related to those BOLD responses that have been collected. If the
missing data are assumed MNAR, we assume that participant i's prob-
ability of missing a scan is related to those BOLD responses that went
uncollected. The distinction between the two assumptions is whether or
not those scans that went uncollected are systematically different from
those scans that were collected. Although there is currently not enough
evidence to suggest one assumption is more valid than another, and
because modeling MNAR mechanisms is theory dependent, we only
consider that the missing data may be MAR. Importantly, it is quite
plausible that the probability of missing a scan, or having a scan ex-
cluded, is related to the BOLD response. Consider that the purpose of a
developmentally focused analysis such as those in this section is to
measure a maturation effect in neural correlates that we hope, a priori,
are related to developing cognitive and behavioral capacities. It is not
difficult to imagine that the maturational causes of missing or excluded
data, e.g., inability to remain still for long periods of time, or increased
involvement in extracurricular school activities, could be correlated
with the maturation of those capacities (in this case, self-referential
processing) that are the focus of the observation. If we take this cor-
relation as a strong possibility, the assumption of MCAR in this example
is nearly unsupportable — that is, it seems very possible that those
participants excluded for excessive motion would have also evinced a
less developmentally progressed pattern of BOLD signal in response to
self-referential stimuli. As the field continues to grow and more evi-
dence becomes available, future research may need to re-consider this
assumption.2 The model used for both the available data and the
complete-case data was specified as

= + + + + + + +
+ + +

+ +
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where BOLDi is participant i's vector of blood-oxygen level dependent
responses for a particular voxel for each level of target (self or other)
and domain (academic or social) at each wave. AGEi and AGEi

2 are
corresponding vectors of participant i's age and squared age (centered
at 13). DOMi and TARi are contrast-coded vectors for the levels of the
domain and target factors at which the BOLDi responses had been
measured. The random effect terms for the intercept and age effect
( , )i i1 2 are assumed to be distributed multivariate normal with zero
mean and unstructured covariance matrix Psi. The residual term ϵi is

Table 5
Available data patterns.

Missing data pattern Missing Missing+ Exclusion

(1, 1, 1) 30 22
(1, 0, 0) 30 24
(1, 1, 0) 16 10
(1, 0, 1) 2 2
(0, 1, 1) 3 7
(0, 1, 0) – 7
(0, 0, 1) – 3
(0, 0, 0) – 6

1 indicates available data and 0 indicates unavailable data.

2 Not directly relevant to the current applied example, other research studies must
consider that anxiety or externalizing symptoms directly related to brain activity during
fear-processing or attention-based tasks, respectively, may cause movement artifact and
exclusion of those scans from the dataset (Fair et al., 2012).
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assumed to be normally distributed with zero mean and constant var-
iance σ The data were analyzed using 3dLME in AFNI (Chen et al.,
2013, version 17.0.16;][) and cluster-level significance (pc < .05) was
determined using spatial smoothness estimates across all ϵ calculated
by 3dFWHMx (using the acf flag) and Monte-Carlo simulation as im-
plemented in 3dClustSim. Whereas the model for the available data
uses all 138 observations across three waves, only 66 observations from
the 22 complete cases were used for the complete-case analysis. The
results below focus on the sensitivity of β4, the difference in BOLD while
thinking about one's self verses a familiar other at age 13, at the average
of the domain effect. Although this parameter carries an age-specific
interpretation, its estimate is influenced by the longitudinal data. Fur-
thermore, this estimate would be used for calculations of the average
and subject-specific BOLD responses across the entire time horizon, so
its sensitivity to missing data is just as important as those parameters
that characterize, or interact with, time-specific variables.

4.1.2. Results
Regarding the number and extent of clusters in the two analyses,

α= .05 was the probability that one or more clusters as big or bigger
than the cut-off would be produced by random spatial noise. For both
the complete-case analysis and the available data analysis, the cluster-
defining threshold was p < 0.005. To be considered a significant
finding (i.e., pc < α) under the complete-case analysis, a cluster had to
comprise 270 or more contiguous voxels. For the available data, a
cluster had to comprise 274 or more contiguous voxels.

Table 6 indicates that analysis of the available data resulted in the
identification of three clusters, with extents of 1043 voxels (cluster 1),
696 voxels (cluster 2), and 280 voxels (cluster 3). In the complete-case
analysis, we reject the null hypothesis for a single, 312-voxel cluster.
The single complete-case cluster shared 274 voxels with cluster 1 from
the available data analysis. The two remaining clusters identified by the
available data analysis, one consisting of 696 voxels and the other
consisting of 280 voxels, went unidentified in the complete-case ana-
lysis. Fig. 3 visualizes those significant clusters pertaining to where β4
was statistically significant for the available data analysis and the
complete-case analysis.

Fig. 4 contains six plots. The first column of plots plot the pairs of
point estimates, ( ˆ , ˆ )v v4 ,(CC) 4 ,(AV) for those voxels that contributed to the
significant clusters based on (a) the available data only, (c) the com-
plete-cases only, and (e) both the available data and complete-cases.
The second column of plots plot the pairs of standard errors,
(se( ˆ ), se( ˆ ))v v4 ,(CC) 4 ,(AV) for those voxels that contributed to the sig-
nificant clusters in the (b) available data analysis only, (d) complete-
case analysis only, and (f) both analyses. Along the y-axis for each plot
are the estimates from the complete-case analysis and along the x-axis
are the estimates from the available data analysis. A point that fall on
the 45-degree line indicates no difference in a voxel's estimate between
the two analyses; a point that falls above the line indicates that the
voxel's estimate was larger for the complete-case analysis; and a point
that falls below the line indicates that the voxel's estimate was be larger
for the available data analysis.

Fig. 4a shows that there was an increase in the available data esti-
mates ˆ

v4 ,(CC), compared to the complete-case estimates, ˆ
v4 ,(CC), for a

majority of the voxels the comprised cluster 1 as identified by the

available data analysis. Furthermore, Fig. 4b shows that the standard
errors for those voxels under the complete-case analysis were, in total,
larger than the standard errors produced by the available data analysis.
Fig. 4a further indicates that many of the voxel identified in cluster 2
were similar in size for the complete-case analysis and available data
analysis. The standard errors for the cluster 2 voxels were larger under
the complete-case analysis, likely being the reason the cluster went
unidentified in the complete-case analysis. The third cluster under the
available data had similar characteristics as the first cluster, many of
the point estimates were larger under the available data analysis and
the available data standard errors were smaller. Fig. 4c indicates that
those 38 voxels identified by the complete case analysis had larger
point estimates and Fig. 4d indicates they also had larger standard er-
rors. The increase in the standard error was not great enough to counter
the increase in the point estimates. Similarly, Fig. 4c shows that the
point estimates of the voxels that were contributed to cluster 1 for the
available data and the complete-case analysis, were similar in size or
larger in size for the complete-case analysis while Fig. 4d indicates the
standard errors were larger for the complete case-analysis. Because
these were the voxels with the largest cluster 1 point estimates, the
increased standard error, even when there was no change between
analyses, enabled them to be identified by the complete-case analysis.

4.2. Surface-based structural MRI

4.2.1. Study design
The enhanced Nathan Kline Institute-Rockland Sample (NKI-RS) is

an ongoing study with the goal of creating a large-scale, community
lifespan sample (details specified by Nooner et al., 2012). The study
employs a cohort-sequential design where the repeated measures from
multiple age cohorts are linked to create a common developmental
trend. The present analysis utilizes those subjects that make up a de-
velopmental trend from ages 6 through 22, inclusive. The resulting data
pattern can be seen in Fig. 5. Since this study is an accelerated long-
itudinal design, we compared the available date analysis (using all
data) to an analysis that discards any participant with fewer than two
measurements taken at least 30 days apart, which mimics the mis-
conception that participants with data at just a single wave do not
meaningfully contribute to estimates in longitudinal designs. For con-
sistency, we refer to this reduced sample again as the complete-case
analysis.

For this example, the missing data mechanism governs the prob-
ability that a participant will contribute fewer than two measurements
taken at least 30 days apart. In many respects, these subjects may have
entered the study later than the other participants, and can be con-
sidered “missing by design.” While such a process would typically be
the result of an MACAR mechanism, the nature of an accelerated
longitudinal design complicates this. Here, because participants from
different age-cohorts are entering the study at differing rates, and be-
cause each cohort provides weight to different portions of the devel-
opmental trend, including or excluding these participants will likely
alter the estimates. If the missing data mechanism is MACAR, we should
expect the estimates from the complete-case analysis to be similar to the
available data analysis. For each participant, at each wave, cortical
thickness measures were extracted using the ‘Destrieux’ cortical atlas
(Fischl et al., 2004). To extract reliable cortical thickness estimates,
images were processed with the longitudinal stream (Reuter et al.,
2012) in FreeSurfer as implemented by the Freesurfer recon-all BIDS
app (https://github.com/BIDS-Apps/freesurfer). Specifically an un-
biased within-subject template space and image (Reuter and Fischl,
2011) is created using robust, inverse consistent registration (Reuter
et al., 2010). Several processing steps are then initialized with common
information from the within-subject template, significantly increasing
reliability and statistical power (Reuter et al., 2012). To understand the
functional form of change in cortical thickness, a series of nested
models were fit for each parcel. The first model was a random intercepts

Table 6
Number of voxels contributing to each cluster estimated from the available data and
complete-case analyses.

Cluster Available data Complete-cases Both

1 1043 312 274
2 696 0 0
3 280 0 0

Both indicate the number of voxels that were part of a given cluster for both the available
data analysis and the complete-case analysis.

T.H. Matta, et al. Developmental Cognitive Neuroscience 33 (2018) 83–98

92

https://github.com/BIDS-Apps/freesurfer


model, followed by the inclusion of a linear slope, with the third step
including a quadratic slope,

= + +CTM1: i i i1 1 (21)

= + + +CT AGEM2: i i i i1 1 2 (22)

= + + + +CT AGE AGEM3: i i i i i1 1 2 3
2 (23)

where CTi is a vector of cortical thickness measures for participant i,
AGEi and AGEi

2 are the vectors of participant i's age and squared age at
each wave. The fixed effects β1, β2, and β3 describe the intercept, linear
growth, and quadratic growth, respectively. The random intercept ζ1i is
the participant-specific deviation from the average intercept β1, and is
assumed to be normally distributed with zero mean and variance ψ. The
residual term ϵi is assumed to be normally distributed with zero mean
and constant variance σ. The model for each parcel was estimated using
the lme4 package version 1.1.12 (Bates et al., 2015) in R version 3.3.2
(R Core Team, 2016). The step-wise model building procedure enabled
single-parameter tests of statistical significance using likelihood-ratio
tests. After each step, a likelihood-ratio test was performed, comparing
the change in deviance values to a χ2 distribution with degrees of
freedom equal to the number number of additional parameters. The
FWER was set equal to.05 resulting in a Bonferroni correction of.05/
108 = 0.0046. Furthermore, the p-values were divided by 2 as the
likelihood ratio test is known to be conservative (Berkhof and Snijders,
2001).

4.2.2. Results
Table 7 provides the counts of parcels with statistically significant

parameters by analysis type as determine by the likelihood-ratio tests.
Of the 108 linear change parameters estimated, 47 were statistically
significant under the available data analysis while 40 were statistically
significant under the complete-case analysis. Of the 40 parcels with
significant linear change parameters under the complete-case analysis,
35 were statistically significant for the available data analysis as well.
There was no evidence of quadratic change in any of the 108 parcels for
either the complete-case analysis or the available data analysis.

The AIC was also used to aid model selection, with a smaller AIC
being suggestive of better model fit. Fig. 6 plots the change in AIC for
two models using the complete-cases and change in AIC using the
available data for β2 and β3. Because smaller AICs suggest better model
fit, points with the greater (absolute) changes in AIC provide stronger

evidence for the least restrictive model (e.g., the quadratic model is less
restrictive than the linear). Points that fall above the diagonal line in-
dicate the change in AIC was greater for the available data analyses
while the points below the diagonal indicate the change in AIC was
greater for the complete-cases analyses. The points are colored to in-
dicate which parameters were found to be statistically significant based
on Table 7.

5. Discussion

Missing data will always be a factor in longitudinal studies. While
the analysis of longitudinal neuroimaging data is relatively new, it is
built upon decades of methodological developments in longitudinal
data analysis. One area that is particularly important in longitudinal
studies is the analysis of longitudinal data when some outcome mea-
sures for some participants go uncollected. This article reviewed the
taxonomy of missing data mechanisms and their relationship to like-
lihood-based statistics, a review that is necessary not just for likelihood-
based methods, but also for multiple-imputation methods. Next, a series
of simulations were analyzed to help make statistical concepts more
concrete. Simulations prove effective for illustrating concepts of
missing data because the missing data mechanism and missing data are
known. Finally, two longitudinal neuroimaging datasets, one fMRI and
one sMRI, were re-analyzed to demonstrate the sensitivity of inferences
based on using the complete-case analysis and available data analysis
— the former an operationalization of MCAR and the latter an oper-
ationalization of MAR.

5.1. Simulations

Simulation studies provide a valuable tool for understanding the
impact of various missing data mechanisms on parameter estimation as
the missing data mechanisms are known. The simulations presented in
this paper were designed to be expository, illustrating many of the
statistical concepts introduced in Section 2. The examples were divided
into two parts, independent missing data mechanisms and non-in-
dependent mechanisms. The simulations focused on the limitations of
both complete-case analysis and available data analysis as well as the
non-issues related to covariate- and auxiliary variable-dependent
missingness. The fact that many neuroimaging studies are based on only
those participants who complete the study suggests that there is a fear

Fig. 3. Significant clusters identified in both available data and complete case analysis is indicated in blue, while significant clusters identified in the available data analysis only are
indicated in green. Slice labels indicate the MNI coordinate along which the slice was acquired. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of the article.)
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that those participants with missing data will somehow corrupt their
findings. In fact, we designed two simulations to show the opposite to
be true! Basing one's analysis on the available data, including those
subject who have incomplete data, will produce valid results for more
types of missing data. We didn’t want readers to develop any unrealistic
exceptions of available data analysis, that it will rescue their inferences
from all types of missing data. As we showed with the MNAR example,
using only the available data when data are missing based on the

measures that went uncollected will result in biased estimates. The si-
mulations were also designed to help researchers understand what
missing not at random means from a statistical perspective. Often is the
case that a researcher will claim that data is missing not at random
because missing data is related to one or more variables in their dataset.
The simulations in Section 3.2.1 were designed to show that if a cov-
ariate is associated with both the outcome of interest and the missing
data indicator, by including that covariate in the model absolves the

Fig. 4. Pairs of complete-case and available data point esti-
mates and pairs of complete-case and available data standard
errors of v4 for those voxels that corresponded to significant
clusters for the available data analysis, complete-case ana-
lysis, and both.
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analysis of any problem. Leaving such a variable out of the model, we
went on to show, will result in two sources of bias, bias due to missing
data and omitted variable bias, the later having a potentially greater
impact on the parameter estimates. Furthermore, we demonstrated the
non-issue of missingness associated with an auxiliary variable — a
variable that is not related to the outcome of interest.

5.2. Applied examples

The simulations were designed to be quite general, and did not
address issues specific to longitudinal neuroimaging data. To make
these issues relevant for longitudinal neuroimaging data, we presented
the re-analysis of two datasets, one fMRI and one sMRI. These long-
itudinal neuroimaging illustrations demonstrated how neuroimaging
findings can be sensitive to the assumptions we make about missing
data. Although we are unable to empirically determine the true missing
data mechanism, we can evaluate the extent to which inferences are
sensitive to different assumptions about the missing data mechanism. In
this paper, we only considered ignorable missing data mechanisms
(MCAR and MAR), and stressed how sensitivity the parameter estimates
were to these assumptions. The fMRI example demonstrated that the
number of, and size of clusters identified can differ considerably based
on one's missing data assumptions. Assuming that the missing data are
MCAR, operationalized by using only the complete-cases, resulted in

Fig. 5. Age at which data was collected from each of 54 participants. Close or overlapping points indicate reliability acquisitions closely spaced in time.

Table 7
Counts of statistically significant parameters.

Available data Complete-cases Both

β2 47 40 35
β3 0 0 0

Parameter significance was tested using deviance tests with a Bonferroni correction for
FWER=0.05.

Fig. 6. Difference in AIC from complete-case analysis and available data analysis for β2 and β3. ΔAICMj,Mk=AICMj−AICMk, is the difference in AICs between two models. Here, k is
considered the restricted model and k is nested within j. M1 is Eq. (21), M2 is Eq. (22), M3 is Eq. (23). The leftmost plot describes the test of the linear versus the intercept-only model; the
rightmost describes the test of the quadratic versus the linear model. Individual points are coded by color and shape to indicate if a given parameter was statistically significant using a
likelihood ratio test.
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the identification of only one, relatively small cluster where there were
differences in levels of activity in self vs. other social cognition. The less
restrictive assumption of MAR, operationalized by using all the avail-
able data, resulted in the identification of three clusters, one of which
completely subsumed the cluster identified using the complete cases. It
is likely a combination of the smaller standard errors and the general
increase in point estimates that enabled the available data analysis to
identify 769 additional voxels as part of cluster 1. Overall, the voxel-
specific change in this fMRI study was not negligible and was sensitive
to missing data treatment. Therefore, because using the available data
covers both MACAR and MAAR missing data mechanisms, as long as
the missing data were not MNAR, the inferences drawn from the
available data analysis had greater validity. These findings from the
fMRI example are especially relevant for future research because they
provide a more realistic idea of missing data in developmental long-
itudinal samples especially, where the data goes missing for two rea-
sons: due to participants not arriving for their scan at a given time, or
due to data quality issues (e.g., movement during the scan).
Theoretically, these sources of missing data may be driven by different
missing data mechanisms. If, however, both mechanisms are considered
ignorable, as we assumed in our analyses, researchers can move for-
ward with analysis using the available outcomes they have collected. In
the sMRI example, the functional form of cortical thinning was esti-
mated over a developmental period of age 6 through 22 using an ac-
celerated longitudinal design. We considered the sensitivity of in-
ferences when those participants who contributed only one measure (or
two measures less than 30 days apart) were removed from the study,
compared to using their data in the estimation. For both the complete-
case analysis and the available data analysis, 35 parcels were found to
show linear decline in cortical thickness between the ages of 6 and 22.
The available data analysis resulted in an additional 12 parcels that
showed significant decline while the complete-case analysis resulted in
5 additional parcels that showed significant decline. Those parcels that
differed between the available data analysis and the complete-cases
analysis did so because those participants who were removed were not
a random subset of the sample. Like the sMRI example, because the
available data are suitable for all ignorable mechanisms — the in-
ferences from the available data were more valid than the complete-
case analysis. In our two applied examples, it was clear that limiting
data to only the complete cases restricted the findings. Of course, the
specter of an MNAAR mechanism means that we cannot guarantee that
our MAR assumption is more valid than the mcar assumption. Recall
Fig. 2, where the estimated slope using the available data had greater
bias when the missing data were MNAR than the estimated slope using
the complete cases. The simulated findings were a product of the spe-
cific missing data mechanisms, and they should not suggest that had the
missing data mechanisms in the applied examples been MNAAR that
the complete-case analysis would be more accurate. Instead, we are
saying that under the assumption that the missing data mechanism is
ignorable, the available data analysis will be more valid. Furthermore,
these examples demonstrate how critical it is for research teams in this
field to be transparent about how they treat missing longitudinal neu-
roimaging data, as inconsistencies can adversely affect reproducibility
efforts.

5.3. Guidelines

As more developmental neuroimaging studies adopt longitudinal
designs, the field's understanding of the issues associated with ana-
lyzing incomplete data is paramount for fostering quality, reproducible
research. Such an understanding is evident based on one's ability to
theorize why the missing data went uncollected and relating those

theories to an appropriate missing data mechanism. Furthermore, when
the missing data mechanism is assumed to be ignorable, understanding
is evident through one's use of the available data rather than just those
study participants with complete data. Finally, understanding is evident
by acknowledging that a missing data mechanism based on factors
other than the outcome is largely benign. Given this, we have come up
with three guidelines that should enable developmental neuroscientists
to demonstrate understanding of the issues related to missing data.

5.3.1. Consider the missing data mechanism
While MCAR mechanisms can be explicitly tested, they are tested

against the assumption that the data are MAR, an assumption that
cannot be verified. Thus, even tests for MCAR rest on unverifiable as-
sumptions. Given this, we believe part of the neurodevelopment re-
search enterprise should consist of time spent considering why some
participants in a particular study miss one or more waves of data col-
lection, why others participants drop out altogether, and why some
measures do not meet quality criteria. As we did in the applied ex-
ample, researchers should fit multiple models that vary these assump-
tions about the missing data mechanism to understand how sensitive
estimates are to a given assumption. For example, if an MCAR me-
chanism is assumed, the available data analysis and the complete-case
analysis should result in very similar estimates.

5.3.2. Exploit the available data
A missing data mechanism that produces data that are MCAR is the

only mechanism where using the subset of subjects who complete the
study result in valid inferences. However, the use of the available data
produces valid (and more precise) estimates when missing data are
MCAR or MAR. Thus, removing participants from the analysis because
they have missing data is only going to hurt the analysis, if not because
of bias, because of the loss of information resulting in larger standard
errors. Although the available data is insufficient when assumptions
about the missing data tend toward non-ignorability, it provides the
best solution without specifying a model for the joint distribution of the
available repeated measures outcome and the observed data indicator.
Furthermore, including all participants’ data in analyses is the most
responsible research practice, given the cost and effort of participant
and researcher time during data collection.

5.3.3. Focus on the analysis model
Intuition might lead us to think that estimates will be biased if

missing data are related to one or more participant characteristics. As
we saw in the simulations, however, if those characteristics are related
to our outcome, we can indeed obtain unbiased estimates if we include
those variables it in our analytical model. The threat of omitted variable
bias should make us keen on including those variables just as much as
any threat stemming from covariate-dependent missingness. If the
variables related to the missing data process do not also relate to the
outcome, it does not help our estimates to include them in the analy-
tical model. Reasoning that one or more variables have been included
in the analytical model purely because they may be related to miss-
ingness in the outcome is a misguided decision.

5.3.4. One mechanism for all voxels
Operating within the massively univariate framework, that is, fitting

the same statistical model to each voxel/parcel, means we also must
specify one missing data mechanism for all voxels/parcels. For ex-
ample, in the context of sMRI, some parcels may show evidence of one
missing data mechanism (e.g., MCAR) while others show evidence of
another (e.g., MAR). It would be advantageous to specify the model to
include the least conservative missing data assumption. For example,
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Fig. 6a shows the change in AIC for some parcels to be equal for the
complete-case analysis and the available data analysis, while for other
parcels, the change in AIC based on the complete-cases and available
data suggest different substantive results. If a single model must be
chosen, it would be advantageous to choose the model the makes the
least restrictive assumption (in this case, MAR, the available data
analysis).

5.4. Limitations and future directions

It is important to note that this article has not covered the entire
field of missing data. Although we covered the general missing data
hierarchy, we placed a majority of emphasis on likelihood-based
methods for ignorable missing data mechanisms. As a result, we only
touched on the issues related to data that are missing not at random.
This leads to two topics worthy of future study, (a) the fitting of
longitudinal neuroimaging models for non-ignorable missing data (e.g.,
Little, 1995 and (b) conducting sensitivity analyses for missing not at
random assumptions within a massively univariate framework. Finally,
a note on why we chose to focus on likelihood-based methods for
missing data. Our first consideration was pedagogical, likelihood-based
methods have an unambiguous relationship to the missing data hier-
archy. Second, multiple imputation was originally developed for
missing data problems in survey research where missing data exists on
many variables (Andridge and Little, 2010; Belin and Song, 2014). In
lab settings with tight protocols, where neuroimaging data is being
originated, it is more likely to encounter a person with missing data for
an entire wave rather than partial missing data at a given wave. Thus,
although multiple imputation has proven effective for missing data
problems outside of survey research, any advantage over maximum
likelihood in such settings would be negligible. Third, although mul-
tiple imputation has become a popular tool for handling missing data,
longitudinal neuroimaging data in a massively univariate framework
creates many complexities. The first complexity is computational, with
hundreds of thousands of models being estimated, using, say 10 im-
puted datasets would mean estimating ten times an already huge
number of models. The second complexity is statistical, that is, a valid
imputation model must considers the this structure of the longitudinal
data — something not so straight forward (Goldstein and Carpenter,
2014). That said, we recommend the review by Harel and Zhou (2007)
to those readers interested in multiple imputation as a general frame-
work for handling missing data.

6. Conclusion

While the guidelines are not exhaustive, we believe adherence to
them will elevate the quality of research in the field. That is, if future
longitudinal neuroimaging studies exploit all of the available data and
focus on properly specifying their analytical model, they will have fit a
model that provides valid inferences under MCAR and MAR missing
data processes. Reporting these practices transparently will result in
higher rates of reproducibility and overall greater understanding of
brain development. We hope that as longitudinal studies in develop-
mental neuroscience continues to grow, the field does not stop here, but
embraces the study of missing data as it relates to neuroimaging data.
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