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Background: asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF) are
three serious pulmonary diseases that contain common and unique characteristics. Therefore, the identification of
biomarkers that differentiate these diseases is of importance for preventing misdiagnosis. In this regard, the present
study aimed to identify the disorders at the early stages, based on lung transcriptomics data and drug-target

Methods: To this end, the differentially expressed genes were found in each disease. Then, WGCNA was utilized to
find specific and consensus gene modules among the three diseases. Finally, the disease-disease similarity was
analyzed, followed by determining candidate drug-target interactions.

Results: The results confirmed that the asthma lung transcriptome was more similar to COPD than IPF. In addition,
the biomarkers were found in each disease and thus were proposed for further clinical validations. These genes
included RBM42, STX5, and TRIM41 in asthma, CYP27A1, GM2A, LGALS9, SPI1, and NLRC4 in COPD, ATF3, PPP1R15A,
ZFP36, SOCS3, NAMPT, and GADD458B in IPF, LRRC48 and CETN2 in asthma-COPD, COL15A1, GIMAP6, and JAM2 in
asthma-IPF and LMO7, TSPAN13, LAMA3, and ANXA3 in COPD-IPF. Finally, analyzing drug-target networks
suggested anti-inflammatory candidate drugs for treating the above mentioned diseases.

Conclusion: In general, the results revealed the unique and common biomarkers among three chronic lung
diseases. Eventually, some drugs were suggested for treatment purposes.
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Introduction

Lungs are considered as vital and vulnerable parts of the
respiratory system and play critical roles in the body
(Soriano et al. 2017). Several disorders affect some parts of
the respiratory system and reduce lung functions, includ-
ing chronic lung disease, which is among the most com-
mon type of diseases. Based on previous evidence,
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hundreds of millions of people suffer from this disease
worldwide, and its prevalence is increasing among chil-
dren and the elderly (Chuchalin et al. 2014). Nowadays,
lung disease is one of the leading causes of mortality,
claiming the lives of at least four million people annually
in the world (Soriano et al. 2017; Chuchalin et al. 2014).
Some of the most common chronic lung diseases include
chronic obstructive pulmonary disease (COPD), asthma,
and idiopathic pulmonary fibrosis (IPF), which have
shared features and distinctions. The three above men-
tioned lung diseases share characteristics such as chronic,
progressive, reduced lung function, and inflammation
(Soriano et al. 2017; Vestbo et al. 2013; Duck et al. 2015;
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Garcia-Sancho et al. 2011). On the other hand, smoking,
air pollution, infection, and genetic parameters are among
the risk factors that affect the development of these dis-
eases (Postma and Rabe 2015; Nie et al. 2017; O’'Donnell
et al. 2016). In addition, cough, dyspnea, chest tightness,
shortness of breath, and mucus production are known as
some of the shared clinical symptoms in such diseases
(Vestbo et al. 2013; Postma and Rabe 2015; Reddel et al.
2015).

COPD and asthma are known by the limitations in the
airways, inflammation, airway obstruction, and bronchial
interactions (Soriano et al. 2017; Vestbo et al. 2013;
Postma and Rabe 2015) while alveoli are damaged and
injured in IPF. Therefore, asthma and COPD are consid-
ered as lung diseases that affect the airways while IPF af-
fects the interstitium (Soriano et al. 2017; Vestbo et al.
2013; O’Donnell et al. 2016). Furthermore, COPD and
IPF are among the irreversible diseases whereas asthma
is reversible (Duck et al. 2015; Garcia-Sancho et al.
2011). In addition, COPD and IPF are more common
among the elderly while asthma is prevalent in the eld-
erly and children (Soriano et al. 2017; Garcia-Sancho
et al. 2011; O’Donnell et al. 2016).

Nearly 329 million people (approximately 5% of the
world population) are struggling with COPD. The inci-
dence rate has indicated an increase of 44.2% from 1990
to 2015 (Soriano et al. 2017). According to the World
Health Organization (WHO), COPD is reported as the
third leading cause of death worldwide (Nie et al. 2017).
In 2015, about 3.2 million people died because of COPD
and mortality rates increased by 11.6% compared to
1990 (Soriano et al. 2017), representing an increase in
COPD in the world. It is noteworthy that the global
prevalence of asthma is estimated to be 300 million
(Peters et al. 2006) and between 1 and 21% among
adults (Reddel et al. 2015). Approximately, 0.4 million
people died due to this disease in 2015 (Soriano et al.
2017). Moreover, the number of people with asthma
is increasing each year, which is mostly occurs among
children (Peters et al. 2006). However, the prevalence
of IPF is approximately 23 in every 100,000 people
(Duck et al. 2015). It is worth noting that most IPF
patients have a history of smoking and the incidence
of this disease in males is higher compared to females
(O’Donnell et al. 2016).

The clinical symptoms of these diseases are similar in
the early stages, and thus they cannot be differentiated
clearly. Accordingly, the systems biology approach is es-
sential for understanding the molecular mechanisms of
these three diseases. Previous studies have only exam-
ined the overlap mechanism between the two diseases.
Therefore, the present study sought to investigate the
mechanisms of COPD, asthma, and IPF simultaneously
using systems biology approaches. To this end, disease-
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specific and consensus candidate modules were identi-
fied using the co-expression networks, and then ten hub
differentially expressed genes were introduced in each
case. Eventually, candidate drug-target interactions were
predicted for these diseases.

Methods

Dataset selection and differential gene expression
analysis

The transcriptomic datasets were retrieved from the
NCBI Gene Expression Omnibus database (GEO) (Edgar
et al. 2002), including lung tissue biopsies in COPD,
asthma, and IPF diseases (Table 1). Raw data were pre-
processed using the Limma package in R (Smyth 2005),
followed by performing the quantile normalization and
quality control, as well as identifying and removing the
noisy data and outliers by hierarchical clustering. Add-
itionally, the differentially expressed genes (DEGs) were
identified using the EBayes method in Limma (Smyth
2004). Finally, the DEGs in each disease (adjusted P
value< 0.05) were estimated based on healthy and patient
states for the samples (COPD vs. healthy, IPF vs. healthy,
and asthma vs. healthy). The mean of expression was
used for multiple probes mapping to the same gene (Liu
et al. 2016).

Disease-disease expression similarity analysis

In order to survey the common mechanisms among
three diseases, the DEGs that have identical expression
levels rather than healthy controls were identified (i.e.,
the up/down-regulated DEGs between two or among
three diseases). The gene list of shared DEGs between
the two diseases (three states) and among the three dis-
eases was used for further investigations (Fig. 1).

Co-expression network construction and disease-specific
modaule identification

According to the study by Horvath and Dong (Horvath
and Dong 2008), the signed weighted gene co-expression
network (WGCN) was firstly constructed considering
biweight midcorrelation (Song et al. 2012) between the
disease-specific DEGs (Huang et al. 2017; Chen et al.
2017; Motieghader et al. 2017). Next, the modules were
identified.

Similarly, the optimal [ parameter in the weighted
gene co-expression network analysis (WGCNA) was cal-
culated using the pickSoftThreshold function. Then,
disease-specific adjacency matrices were generated utiliz-
ing the selected P threshold and were transformed to the
Topological Overlap Matrix (TOM) using the TOMsimi-
larity function (Yip and Horvath 2007) to represent the
correlation between the overlap of the neighbors in the
constructed biological networks (Ravasz et al. 2002).
Then, the hierarchical average linkage clustering of 1-
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Table 1 Characteristics of Selected Microarray Data Series
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Datasets  Disease Grouping Sample Platform  Expression Array Ref.

Case Control

GSE47460 COPD? 71 91 Lung biopsy GPL14550 Agilent-028004 SurePrint G3 Human GE 8x60K Microarray (Peng et al. 2016)
GSE47460  IPF 122 91 Lung biopsy GPL14550 Agilent-028004 SurePrint G3 Human GE 8x60K Microarray (Peng et al. 2016)
GSE23611  asthma 27 13 Lung biopsy GPL6480  Agilent-014850 Whole Human Genome Microarray 4x44K G4112F  (Choy et al. 2011)

?GOLD stage I

TOM (dissTOM) was applied to extract the modules,
namely, a set of genes that behave in the same func-
tional manner (Liu et al. 2016). In addition, the func-
tion of cutreeDynamic (minModuleSize =10) was used
to determine the optimal cutset to identify the

functional modules for each disease. Based on their
gene expression profiles (Zhang and Horvath 2005),
similar modules were combined by the eigengene
through the moduleEigengenes function (Langfelder
and Horvath 2008).
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1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

(- — Tmmem--e--—--e-——-——————------------ — 1\
|I Microarray Expression Data ‘, I’ Data preprocessing e ‘I
1 ! ! : 1
I 1 1 [R—— 1
1 ! ! 1
! w e Asthma | 1 I Data Normalization l;l l; % !
, . H . [RRPRPR .
1 e COPD 1 1 IIl. Quality Control - |
1 ! ! 1
1 1 1 i i i
! @ o IPF | \ Il Differential Analysis . !

1 1
i i | i
1 | ! 1
\ / \ 7
S e e e e e . N e
+~ Weighted Correlation Network Analysis (WGCNA) “\

Disease-Specific Modules Consensus Modules

o
I 1
1 §D 1
1o w . o - - 1
LY
o £ g :
|2 e 8 .. e — !
1 e Ed [0 Qe |
[ & Asthma-COPD-IRF, — I
1 E a HAE E] o
o 9 an e |
- 2 ° & .. @ - !
[ < -] n I
I : Ul |
wv mams) T 1
© S -
1 -} 1
1 ,g i 1
ra U
\ /
P e e e e e e e e R E R N
/" Disease-Disease Expression Similarity Y
1
1 Asthma DEGs COPD DEGs IPF DEGs H
1
1
: AAAAA AAAAAAA ....... ... ..... | | .. u
AL A A A ° L) mEES g |
! A A FYYL X |
1 ATA 4 AA A o ®e ] 1
i AAaA anA e © 00 o | EE m i
! |
1
1
1
1 AA :
I Up-Regulated DIPs =164 PY Y '
: oo " me, .
Up-Regulated DIPs =70 i} A 1
1
1 A® | K} Up-Regulated DIPs =33 A L !
| Down-Regulated DIPs =66 A.. [ | :
H me ]
| Down-Regulated DIPs =37 e 1
1 Down-Regulated DIPs =52 [ ] /l
e g 2

Fig. 1 Workflow of data preparation and analysis
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Module eigengene (ME) is defined as the first principal
component of the gene expression in each module. In
the present study, the MEs were combined using the
mergeCloseModules function based on their similarity in
the profile of the gene expression. This function uses a
cutHeight parameter to determine the correlation
among the MEs. The parameter was set to 0.15 in this
study, and modules with a correlation >0.85 (1-
cutHeight) were merged accordingly. Finally, three sub-
sequent analyses were used to identify the most import-
ant modules for each disease as follows (Fig. 1).

a. Analysis of module-trait association: It was
performed based on the disease state to specify the
correlation between the modules and the disease
states. Modules with a correlation of >|0.5| were
then selected.

b. Analysis of module membership and gene
significance (MM-GS): The correlation between
gene expression profile in the modules and the
disease states, as well as the correlation between the
MEs and the gene expression were referred to as
Gene Significance (GS) and Module Membership
(MM), respectively. Modules with a P < 0.05 were
filtered in the MM-GS analysis for each disease.

c. Analysis of determining the genes associated with the
disease: The DisGeNET (version 5.0) online
database was used to determine the number of
genes associated with each disease within the
significant modules that were obtained in previous
steps (a and b) (Pifiero et al. 2016). This database
contains 561,119 gene-disease relationships in
humans. Eventually, the Chi-square statistical
method was utilized to assess the significance of
module-genes in each disease-gene category in Dis-
GeNET (Alaei et al. 2018).

Afterward, the top 10 hub genes were identified in
disease-specific modules among the three diseases.
Moreover, novel hub DEGs involved in the processes
and pathways associated with the diseases were extracted
through literature mining (Najafi et al. 2014). Finally, the
reported DEGs in DisGeNET and novel disease-DEGs
were illustrated in the modules.

Consensus network analysis (CNA)

Based on ref. (Langfelder and Horvath 2007), the CNA
was performed to identify Consensus Modules (CMs).
Three consensus networks (CNs) were constructed
based on the shared DEGs among the diseases. First, the
list of the shared DEGs was employed to retrieve the ex-
pression data for each disease (two datasets in each ana-
lysis). Then, six extracted expression data were fed into
the CNA, followed by separately setting the parameters
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for each of the three CNAs. TOM matrices with a preci-
sion of 0.95 were aligned, given that TOM of the two
datasets in each analysis might have different statistical
properties (Langfelder and Horvath 2007). Next, to form
a CN between the two diseases (i.e., COPD vs. IPF),
TOM-aligned matrices in two diseases were combined
using the quantile function as follows:

Consensus_TOM(i, j)
— pquantﬂe{TOMDiseasel (i, ]), TOMDiseaseZ(i7 j)vpr‘)b = 0'1}

The stringency of CN identification relies on the prob
parameter of the function. In other words, it is more
stringent when it tends to zero (Langfelder and Horvath
2007). The cutreeDynamic function uses 1-Consensus_
TOM for extracting the CMs in the CNAs. The MEs
were computed and used to combine similar CMs with a
correlation of >0.85. Afterward, the Module-Trait Asso-
ciation was used to identify the most important modules
with a correlation of 2|0.5|. Then, the top 10 hub genes
were identified in the CMs. Moreover, literature mining
was conducted to find the novel hub DEGs that were as-
sociated with the diseases (Najafi et al. 2014). Finally, the
reported DEGs in DisGeNET and novel disease-DEGs
were represented in the CMs.

The CNA among the three diseases was constructed
based on their shared DEGs as well. The CMs among
the three diseases were extracted and used for the
module-trait association analysis to determine important

CMs (Fig. 1).

Enrichment analysis

Gene enrichment analysis was applied to functionally as-
sess the identified modules in Gene Ontology (GO) and
pathway databases, including the Kyoto Encyclopedia of
Genes and Genomes (KEGG), Biocarta, and Reactome
via the Enrichr (adjusted P < 0.05) (Kuleshov et al. 2016).
Therefore, the enrichment analysis was used for func-
tional evaluation of the identified modules in each dis-
ease and the CMs among the diseases.

Identification of candidate drug-targets

Drug Gene Interaction Database (DGIdb, version 3.0 up-
dated on 25-01-2018) was utilized to identify the candi-
date drugs in the studied lung diseases (Cotto et al.
2017). The list of DEGs (i.e., disease-specific DEGs, and
the shared DEGs between two/among three diseases)
was used to retrieve drug-DEG interactions from the
DGIdb and to construct drug-target networks. Network
visualization was performed using open-source Cytos-
cape software, version 3.6.0 (Shannon et al. 2003) as well
(Fig. 1).
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Results

Dataset selection and differential gene expression
analysis

Two microarray gene expression datasets of GSE47460
(GPL14550) and GSE23611 (GPL6480) were used in this
study. After data normalization and quality control, 34
COPD samples (only GOLD stage II, Moderate COPD pa-
tients) and 32 healthy controls, as well as 118 IPF samples
and 86 healthy controls from the GSE47460 dataset were
utilized to determine the DEGs. In addition, 26 samples
from asthmatic patients and 7 healthy controls were se-
lected from GSE23611. The results of differential analyses
are displayed in Fig. 2. Totally, 2759, 3671, and 3533 were
found as the DEGs between asthma, COPD, and IPF ver-
sus healthy controls, respectively.

Analysis of disease-disease expression similarity

The DEGs with a matching up/down-regulated pattern
between two or among three diseases were nominated as
the DEGs with Identical Pattern (DIPs) to assess disease-
disease expression similarity. The results of the three
pairwise comparisons revealed 616, 615, 1452, and 304
shared DEGs between asthma-COPD, asthma-IPF,
COPD-IPF, and asthma-COPD-IPF, respectively. Table 2
presents the number of up/down-regulated DIPs and the
list of DIPs and shared DEGs are provided in Additional
file 1.
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Based on the results, there are more DIPs between
asthma and COPD compared to COPD and IPF, as well
as asthma and IPF. However, there are more DIPs be-
tween COPD and IPF compared to asthma and COPD
or asthma and IPF.

Co-expression network construction and disease-specific
module identification

Disease-specific DEGs (i.e., 1907, 1770, and 1832 DEGs
for COPD, IPF, and asthma, respectively) were used to
construct three disease-specific co-expression networks.
The optimal  parameter for obtaining a scale-free net-
work was computed as 11, 15, and 21 for COPD, IPF,
and asthma, respectively (Additional file 2). Other pa-
rameters were mentioned in Section 2.3. Each disease-
specific network was clustered in various modules,
which are specified with unique colors (Fig. 3 a, b, and
¢). The DEGs not clustered in any module were color-
coded as gray and eliminated from the networks. Then,
The MEs representing the gene expression profile in the
module were computed for each module in the three
constructed disease-specific networks (Fig. 4). Thus, a
total of 18, 25, and 33 modules were obtained for COPD,
asthma, and IPF, respectively (Additional file 3). Then,
three sequential steps including module-trait association,
MM-GS, and disease-associated gene analyses were used
to identify the most important modules for each disease

COPD

Fig. 2 Venn diagram illustrating the specific and shared DEGs and DIPs among three diseases. The red, blue, and green circles represent asthma,
COPD, and IPF DEGs, respectively. The violet and blue, as well as the violet and green squares demonstrate the asthma-COPD and asthma-IPF
DIPs, respectively. Finally, the violet and red squares represent COPD-IPF DIPs and the violet square indicates the DIPs among three diseases
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Table 2 The Number of DIPs and Shared DEGs among the Diseases
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Type asthma-COPD COPD-IPF asthma-IPF asthma-COPD-IPF
Shared DEGs 616 1452 615 304

Shared DIPs 230 107 85 44

Up-regulated DIPs 164 70 33 27
Down-regulated DIPs 66 37 52 17

(Section 2.3). One most important module as well as
two and four modules were identified in asthma (sky-
blue), IPF (black, yellow), and COPD (black, brown,
grey60, and midnightblue), respectively (Table 3).
More detailed results are provided in Additional file 4.
Next, the top 10 hub DEGs were identified in
disease-specific candidate modules among the three

diseases and the DEGs reported in DisGeNET and
novel disease-DEGs were represented in the candidate
modules (Fig. 5a, b, and c).

Consensus network analysis (CNA)
Three Consensus Networks (CNs) were constructed, in-
cluding asthma-COPD, COPD-IPF, and asthma-IPF.
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Clustering of module eigengenes in Asthma
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Fig. 4 Clustering and heatmap module eigengenes. a Clustering and heatmap module eigengenes in asthma, b Clustering and heatmap module
eigengenes in COPD, and ¢ Clustering and heatmap module eigengenes in IPF
.

Each CN was used to extract the Consensus Modules
(CMs). The plots of B parameter computation for the
constructed CNs are provided in Additional file 5. A
unique color was assigned to each CM (Fig. 3d, e,
and f) and CMs with an eigengene correlation value
of 20.85 were combined as well. Similarly, the num-
ber of CMs was 7, 2, and 4 for asthma-COPD,
asthma-IPF, and COPD-IPF, respectively. The details
of the CMs are presented in Additional file 6. Then,

the Module-Trait associations for CMs were calcu-
lated, the final results of which are summarized in
Table 4. Afterward, the top 10 hub genes were identi-
fied in the candidate CMs. Finally, the reported DEGs
in DisGeNET and novel disease-DEGs were illustrated
in the candidate CMs (Fig. 5d, e, and f).

A CN including 304 shared DEGs was reconstructed
to extract the CMs among the three diseases. However,
no CM could be extracted using the WGCNA.
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Table 3 The Final Result of MM-GS and Disease-associated Genes Analyses for Identifying the Most Important Modules in COPD, IPF,

and Asthma after Second and Third Filters

Disease Module No. MM-GS Disease-associated Genes
Genes Correlation P-value Count P-value
asthma Skyblue 18 -0.66 0.0029 4 0.01
Stellblue 16 0.5 0.049 2 0.37
Darkgreen 29 044 0.017 0 0.17
Lightyellow 101 0.26 0.0086 1 0.11
IPF Blue 593 0.86 8E—-175 24 0.10
Lightgreen 25 0.81 9.3E-07 3 0.23
Yellow 329 0.89 1.56-113 38 6E—04
Purple 51 0.87 12E-16 5 0.28
Red 129 0.85 37E-37 4 020
brown 508 0.88 1E—-165 24 0.34
Salmon 37 0.61 6.1E—-05 3 0.59
Green 202 0.84 52E-55 1 0.81
Black 121 0.68 9.7E-18 19 1E—-04
Pink 98 0.76 1.1E=-19 3 0.26
lightyellow 25 0.87 1.6E — 08 1 0.70
COPD Blue 678 0.85 24E-190 47 0.08
Pink 194 0.63 75E-23 8 0.59
Red 218 0.28 2.7E—-05 7 0.25
Purple 125 0.67 13617 7 035
Turquoise 949 0.37 37E-32 36 0.15
Tan 78 0.63 64E-10 7 0.15
Brown 397 0.53 39E-30 47 1E-04
Yellow 252 0.52 74E-19 12 0.85
Black 451 0.39 78E-18 23 3E-03
Cyan 45 04 0.0065 4 0.27
Grey60 83 043 5E-05 10 0.01
Green yellow 81 0.22 0.048 1 0.13
Midnight blue 33 038 0.029 5 0.01
Royal blue 12 0.58 0.048 0 045

Enrichment analysis

Enrichment analysis was performed to functionally evaluate
the gene sets that were involved in specific modules, CMs,
and overlapping DEGs among three diseases as follows.

Enrichment analysis of disease-specific modules

Table 5 presents some of the significant biological pathways
and GO biological processes that belong to the modules ob-
tained in each disease, the details of which are reported in
Additional file 7.

Enrichment analysis of CMs

Some of the enriched significant biological pathways and
GO biological processes of the CMs are reported in Table 6,
and related details are provided in Additional file 8.

Enrichment analysis of overlapping DEGs among three
diseases

Table 7 summarizes some of the enriched significant
biological pathways and GO biological processes of the
overlapping DEGs among three diseases and the detailed
results are reported in Additional file 9. Figure 6 is over-
all representation of functional enrichment of candidate
disease-specific, CMs, and overlapping DEGs among
three diseases.

Identification of candidate drug-target networks
Identification of diseases-specific candidate drug-target
networks

The candidate drug-target interactions were investigated
after identifying consensus and specific modules among
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degree level so that the higher degree is depicted by the larger size. a The network of the Skyblue module in asthma. In this module, 10 hub
DEGs and 8 adjacency DEGs are involved. b The network of the brown module in COPD. In this module, 10 hub DEGs and 104 adjacency DEGs
are implicated. ¢ The network of the black module in IPF. In this module, 10 hub DEGs and 37 adjacency DEGs are involved. d The network of
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just DEGs in asthma and, green circles represent just DEGs in IPF. In this module, 10 hub DEGs and 17 adjacency DEGs are involved. f The
network of the turquoise module in COPD-IPF in which red circles represent shared DEGs in COPD and IPF and, turquoise circles represent just

.

DEGs in COPD and, green circles represent just DEGs in IPF. In this module, 10 hub DEGs and 61 adjacency DEGs are involved
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Table 4 Module-trait Association Analysis Modules, Consensus
Modules Derived from COPD, IPF, and asthma

Consensus Module Correlation  P-value  Number of Genes
asthma-COPD  Pink 062 1E-04 35
Purple -0.5 0.004 27
Turquoise =05 0.003 124
Blue -0.53 3E-04 97
asthma-IPF Yellow 0.52 0.003 57
Purple 0.57 7E-04 37
COPD-IPF Blue -0.67 2610 103
Brown -0.52 4E-06 94
Green 0.55 1E-06 38

three diseases. Figure 7a, b, and c illustrates the candi-
date drug-target networks that were constructed based
on specific DEGs (three diseases) from the DGIdb data-
base. The number of interactions, the number of genes,
and the number of targets in asthma, COPD, and IPF
candidate drug-target networks were 335, 285, and 192,
as well as 114,100, and 83, and finally, 150, 137, and 60,
respectively. The low-level interactions were removed to
simplify the illustration. The detailed results of drug-
target interactions in Fig. 7a, b, and c are reported in
Additional file 10.

Identification of candidate consensus drug-target networks
Figure 8a, b, and ¢ displays the candidate consensus
drug-target networks constructed based on common
DEGs between two diseases. The number of interactions
was 62, 69, and 134 in the asthma-COPD, asthma-IPF,
and COPD-IPF candidate consensus drug-target net-
works. Furthermore, the number of genes and the num-
ber of targets were 24, 30, and 63, as well as 33, 42, and
53 in asthma-COPD, asthma-IPF, and COPD-IPF candi-
date consensus drug-target networks, respectively. The
low-level interactions were removed to simplify the illus-
tration as well. The detailed results of drug-target inter-
actions are reported in Additional file 11.

Identification of candidate shared drug-target networks
Figure 8 d depicts the candidate shared drug-target net-
work constructed based on common DEGs among three
diseases (Additional file 12). The numbers of, genes, tar-
gets and their interactions in this network were 8, 23,
and 30, respectively.

Discussion

Progressive chronic respiratory diseases are associated
with a persistent and progressive decline in lung func-
tion and exacerbations, which require smart diagnosis
and treatment. Decreasing the rate of progression, sta-
ging, and exacerbations in chronic respiratory diseases
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such as asthma, COPD, and IPF is critically vital in con-
trolling mortality (Murray et al. 2017). The present
paper employed a systems biology approach to deter-
mine specific and shared biological biomarkers of
COPD, asthma, and IPF, along with the candidate drugs,
followed by analyzing the lung transcriptomic similarity
among three diseases. The disease-specific, consensus,
and shared DEGs among the three diseases were ex-
tracted after transcriptomic data analysis. The identified
DEGs in each comparison were used for constructing
co-expression networks and identifying the functional
modules. Based on the results, one module (Skyblue) in
asthma, two modules in IPF (black and yellow), and four
modules in COPD (brown, gray60, black, and midnight-
blue) were identified.

The analysis of biological pathways suggested that the
genes of the Skyblue module in the asthma-specific are
significantly associated with NF-kB, Wnt, Toll-like re-
ceptor, and transforming growth factor (TGF)-beta sig-
naling pathways. These pathways are involved in the
inflammation of the respiratory tract, immune system,
and chronic inflammatory diseases (Li et al. 2018; Zhang
et al. 2018; Dai et al. 2018). In the Skyblue module, eight
hub DEGs including STX5, SLC35B2, RNPEPLI,
RBM42, PPP6R2, MED22, EML3, and TRIM41 are novel
for asthma. In addition, RBM42 in this module is the
component of stress granules (Han et al. 2010) which
appear when the cell is under the stress. STX5 is another
hub DEG that exists in the nicotine pathway. TRIM41 is
another proposed hub DEG, which is an intrinsic im-
mune factor that inhibits influenza A virus infection and
is expressed in lung epithelial cells (Patil et al. 2018). Ac-
cording to the results, RBM42, STX5, and TRIM41 may
have critical functions in asthma.

The biological pathways enriched for the COPD-specific
module genes suggest inflammatory pathways, infections,
and remodeling pathways. For example, the genes of the
brown module are significantly associated with the bio-
logical pathways of Tuberculosis, Staphylococcus aureus
infection, Leishmaniasis, Pertussis, and Legionellosis. All
these pathways play critical roles in infections and remod-
eling in COPD (Carette et al. 2018; Tsenova et al. 2014;
Ziesemer et al. 2018; Sabulski et al. 2017). In the brown
module, eight hub DEGs including CYp27A1, GM2A,
LGAL59, SPI1, PARVG, LOC644189, NLRC4, CD300LF
are considered as the novel genes in the COPD. Further-
more, the CYP27A1 in this module is an initiating enzyme
in the acidic pathway to bile acids (Beck et al. 2019). In
macrophages, 27-hydroxycholesterol is generated by this
enzyme and may be helpful against the production of in-
flammatory factors associated with cardiovascular diseases
(Taylor et al. 2010). Moreover, GM2A is a lipid transfer
protein that stimulates the enzymatic processing of gangli-
osides and activates T-cell through lipid presentation.
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Table 5 Results of the Pathway and GO Biological Process Enrichment Analysis for Several Important Modules

Disease Module Pathway/BP Term Adjusted P-value
IPF Black Pathway TNF signaling pathway 201E-014
Cytokine Signaling in Immune system 1.31E-05
Salmonella infection 449E-09
Legionellosis 1.81E—04
Inflammatory bowel disease 339E-05
p53 signaling pathway 4.69F — 03
Apoptosis 7.32E-03
Epithelial cell signaling in Helicobacter pylori infection 2.86E—-02
BP chronic inflammatory response 2.83E-07
inflammatory response to wounding 2.83E-07
cellular response to cytokine stimulus 1.57E—-06
response to interleukin-1 1.74E - 05
positive regulation of cell death 2.26E - 05
fat cell differentiation 1.35E-04
asthma Skyblue Pathway TGF beta signaling pathway 319E-02
NF-kB Signaling Pathway 3.19E-02
WNT Signaling Pathway 3.19E-02
Toll-Like Receptor Pathway 3.19E-02
Signal transduction through IL1R 3.19E-02
BP No Significant -
COPD Brown Pathway Tuberculosis 6.85E —09
Staphylococcus aureus infection 52E-05
Leishmaniasis 8.33E-06
Pertussis 53E-04
Legionellosis 463E-03
ROS, RNS production in response to bacteria 361E-04
Cell surface interactions at the vascular wall 4.26F — 04
Innate immune system 433E-03
BP Neutrophil degranulation 3.84E-023
Regulation of inflammatory response to antigenic stimulus 5.28E-05
Regulation of innate immune response 9.80F — 05
positive regulation of interleukin-6 secretion 252E-04
Chronic inflammatory response 7.24E-03
Inflammatory response to wounding 7.24E-03
Positive regulation of tumor necrosis factor secretion 5.28E - 05

Additionally, it significantly correlates with alcohol de-
pendence and nicotine dependence (Xiang et al. 2019).
Similarly, LGALS9 encodes human galectin-9, which is
expressed in various tumor cells. The expression of TNE-
a, IL-1P, and IL-6 increases significantly in monocytes that
are stimulated with Galectin-9 (Wang et al. 2019a). More-
over, the interaction of Galectin-9 with CD40 on T-cells
induces their proliferation inhibition and cell death (Vai-
taitis and Wagner Jr 2012). Likewise, SPI1 is a transcrip-
tion factor that is involved in the development of several

different types of immune lineage precursor cells, includ-
ing T-cells, B-cells, dendritic cells (DCs), and monocytes
(Merad et al. 2013; Yashiro et al. 2019). In addition, SPI1
knockdown decreases the expression of C-C chemokine
receptor type 7 (CCR7) which is crucial for the migration
of DCs to draining lymph nodes (Yashiro et al. 2019). Fur-
thermore, NLRC4 is involved in the formation of inflam-
masome and is also crucial for the production and
secretion of IL-1B. Therefore, the production of the in-
flammatory cytokine IL-1p increases in tissue damage,
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Table 6 Results of the Pathway and GO Biological Process Enrichment Analysis of Several Important Consensus Modules

Consensus Module Pathway/BP Term Adjusted P-value
asthma-IPF Purple Pathway Extracellular matrix organization 6.81£-06
Degradation of the extracellular matrix 2.84E-02
Collagen biosynthesis and modifying enzymes 148E—-02
Integrin cell surface interactions 257E-04
Collagen formation 2.14E-02
Syndecan interactions 2.14E-02
Non-integrin membrane-ECM interactions 591E-02
BP extracellular matrix disassembly 247E-05
biofilm matrix organization 247E-05
basement membrane organization 247E-05
negative regulation of wound healing, spreading of epidermal cells 349F-02
extracellular matrix organization 247E-05
regulation of blood vessel branching 5.56E —02
asthma-COPD Turquoise Pathway Assembly of the primary cilium 421E-02
BP cilium assembly 1.30E-04
cilium organization 1.30E-04
plasma membrane bounded cell projection assembly 6.81F - 04
cilium-dependent cell motility 237E-03
regulation of cilium movement 237E-03
COPD-IPF Blue Pathway Focal adhesion 7.89E - 05
Regulators of Bone Mineralization 233E-04
VEGF, Hypoxia, and Angiogenesis 267E-03
ECM-receptor interaction 1.7E-03
Actions of Nitric Oxide in the heart 482E-03
Cell junction organization 5.75E-02
Basal cell carcinoma 2.03E-02
Bacterial invasion of epithelial cells 4.96F — 02
Small cell lung cancer 597E-02
Integrin cell surface interactions 542E-02
VEGF binds to VEGFR leading to receptor dimerization 542E-02
VEGF ligand-receptor interactions 542E-02
Cell junction organization 5.75E-02
BP sprouting angiogenesis 2.66E - 02
activation of Janus kinase activity 234E-02
extracellular matrix assembly 2.66F —02
endothelial stalk cell fate specification 2.66F —02
lung vasculature development 3.60F - 02
positive regulation of focal adhesion assembly 248E-02
positive regulation of endothelial cell chemotaxis 7.16E—03
collagen fibril organization 2.66E —02
positive regulation of endothelial cell proliferation 481FE-02
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Table 7 Results of the Pathway and GO Biological Process Enrichment Analysis of Overlapping DEGs among Three Diseases

Pathway/BP Term Adjusted P-value

Pathway No Significant -

BP Cilium movement 7.18E-05
Plasma membrane bounded cell projection assembly 1.39E-02
Positive regulation of positive chemotaxis 342E-02
Flagellated sperm motility 431E-02
Cilium organization 431E-02
Regulation of positive chemotaxis 4.39E-02

environmental stress, infection, or chronic inflammation
(Wang et al. 2019b). Thus, CYP27A1, GM2A, LGALS9,
SPI1, and NLRC4 may provide a novel therapeutic strat-
egy and are suggested as the candidates in COPD.

The results of the biological process analysis for IPF-
specific genes demonstrate that the genes of the black mod-
ule are enriched in chronic inflammatory responses, as well
as cell proliferation, cell death, neutrophil processes, and
wound healing. In this module, seven genes including
FOSB, ATF3, PPPIR5A, ZFP36, SOCS3, NAMPT, and
GADD45B are novel in IPF., ATF3 is a candidate hub DEG
that changes the expression of a subset of inflammatory
genes downstream of IFN signaling and has a prominent
role in macrophages. Furthermore, cytokines and IFNs are
considered as the downstream of innate immune pathways
and play a critical role in the immune response to microbial
infection, leading to chronic inflammatory conditions and
autoimmune diseases (Labzin et al. 2015). The PPP1R15A

is another hub DEG which encodes the human growth ar-
rest and DNA damage-inducible protein (GADD34). More-
over, the overexpression of GADD34 facilitates apoptosis in
mammalian cells following DNA damage and other cell
stresses (Brush et al. 2003). Additionally, the overexpression
of GADD34 and ATF4 induces CHOP expression, inhibits
Bcl-2 expression, and causes damage to oxygen free radi-
cals, inducing apoptosis and endoplasmic reticulum stress
(Wang et al. 2019c). Similarly, ZFP36 is another identified
hub DEG which is associated with innate immunity, includ-
ing type I interferon signaling pathway, viral response, and
inflammation (Mahmoud et al. 2019). Moreover, ZFP36
regulates the positive regulation of the I-kB/NF-«B cascade
and the TRIF-dependent toll-like receptor, as well as
MAPK, TNF, and T-cell receptor signaling pathways (Tu
et al. 2019). SOCS3 in the black module is known as the
suppressor of cytokine signaling and is a master negative
regulator of toll-like receptor 4 as well (Bae et al. 2019).
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Fig. 7 Candidate disease-specific drug-target networks. Label targets and drugs are colored with black and turquoise, respectively. The size of
drug letters reveals the degree of drug. a Candidate drug-target network of asthma, b Candidate drug-target network of COPD, and ¢ Candidate

Furthermore, TGF-B2 could strongly inhibit IL-6-induced
STAT3 activation and synergy with IL-6, resulting in en-
hanced SOCS3 expression (Du et al. 2019). In addition,
NAMPT promotes B-cell maturation while inhibiting neu-
trophil apoptosis (Revollo et al. 2007). Likewise, GADD45B
is induced by genotoxic stress and implicated in genotoxic
stress-induced responses, cell cycle arrest, inducing apop-
tosis, and DNA damage repair (Gupta et al. 2006). There-
fore, genes like ATEF3, PPP1R15A, ZFP36, SOCS3,
NAMPT, and GADD45B may provide a novel therapeutic
strategy for IPF.

The consensus modules between all disease pairs (i.e.,
asthma-COPD, asthma-IPD, and COPD-IPF) were inves-
tigated after evaluating the disease-specific modules.
Also, two modules (Turquoise and Pink) for asthma-
COPD, one module (Purple) for asthma-IPF, and three
modules (Brown, Green, and Blue) for COPD-IPF pairs
were identified after the module-trait analysis. Biological
pathways and GO analysis conducted for the genes, are
involved in each significant consensus module.

Based on the results of the biological process analysis
for the asthma-COPD, the genes of the turquoise
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module were mainly enriched in cilium assembly, cilium
organization, cilium movement, and plasma membrane-
bounded cell projection assembly. These processes were
due to the dysfunction of the bronchial epithelial and
the disruption of cilia function as the important features
of asthma and COPD diseases (Wan et al. 2016; Yaghi
and Dolovich 2016). Among ten hub DEGs identified for
the asthma-COPD, nine DEGs including SPAGS,
C7orf57, SYTL3, LRRC48, TEKT3, CCDC146, CETN2,
CCDC19, and Cl4orf45 were identified as the novel
genes. The phenotypic abnormalities and mutations in
LRRC48 cause defects in the motile cilia function (Ha

et al. 2016). Furthermore, the lack of CETN2 leads to ol-
factory cilia loss and the impaired ciliary trafficking of
olfactory signaling proteins (Ying et al. 2014). Therefore,
LRRC48 and CETN2 can be considered as candidate
predictive biomarkers for the asthma-COPD.

The results of the biological process analysis for asthma-
IPF showed that the genes of the purple module were
enriched in extracellular matrix disassembly, biofilm
matrix organization, cellulose microfibril organization,
and collagen fibril organization. Five novel hub DEGs (i.e.,
JAM2, SIGLECP3, C140rf186, COL15A1, and GIMAP6)
were identified in asthma-IPF among ten hub DEGs. In
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the purple module, COL15A1 is involved in the smooth
muscle cell (SMC) phenotype that is controlled by the epi-
genetic state, so that the hypomethylation of COL15A1
transpires during SMC proliferation and the consequent
increased gene expression may affect the SMC phenotype
(Connelly et al. 2013). Moreover, GIMAP6 is another pro-
posed DEG in this module, which is strongly expressed in
the adaptive immune system and T-cell lines. Similarly, it
plays a role in changing the immune function by control-
ling cell death and T-cell activation (Ho and Tsai 2017).
Additionally, JAM?2 acts as an adhesive ligand for interact-
ing with a variety of immune cell types. Likewise, it is a
member of junctional adhesion molecules (JAMs). JAMs,
located at the tight junctions of epithelial and endothelial
cells, are variably expressed by SMCs, platelets, erythro-
cytes, and leukocytes in humans. In addition, JAMs are in-
volved in the regulation of diverse functions like cell
permeability, polarity, and proliferation, metastasis, or
leukocyte transmigration during tissue inflammation
(Hintermann et al. 2018). Accordingly, COL15A1,
GIMAP6, and JAM2 may present a novel therapeutic
strategy for the asthma-IPF.

The results of the biological process analysis for COPD-
IPF represented that the genes of the blue module are
enriched in immune processes, inflammation, and remod-
eling. Nine novel hub DEGs were specified in COPD-IPF,
including GPM6A, ARHGEF26, ANKRD29, LMO?7,
TSPAN13, LAMA3, ST6GALNAC5, ANXA3, and CLIC5.
In the blue module, LMO7 is known as a negative feed-
back regulator of TGF-p signaling and extracellular matrix
deposition (Xie et al. 2019). Moreover, the cytokine TGF-
[ has a critical role in remodeling, wound healing, and fi-
brotic diseases (Xie et al. 2019). Also, TSPAN13 in this
module belongs to the Tetraspanin family, which is in-
volved in a variety of biological processes including differ-
entiation, cell development, activation, growth factor,
motility, proliferation, and metastasis (Wang et al. 2019d).
LAMAS3 is another proposed hub DEG which is induced
by hypoxia in macrophages (Gang et al. 2017). Moreover,
recessive mutations in the LAMA3 that encode lam-
inin332 (LM332) affect epithelial adhesion (Condorelli
et al. 2018). Additionally, ANXA3 is a part of the Annexin
family and binds to the phospholipids in a Ca**-
dependent manner. It also plays a vital role as a mediator
in cellular growth, signal transduction pathways, cancer
proliferation, invasion, and migration (Wang et al. 2019e).
Therefore, LMO7, TSPAN13, LAMA3, and ANXA3 are
suggested as the candidates in COPD-IPF.

Previous studies have only evaluated the overlap
mechanism between two diseases whereas the present
study considered three diseases together and could iden-
tify the focal biological processes for all three diseases.
These results were not observed due to the presence of
other genes available in the top rank between two
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diseases, and the statistical analysis led to these pro-
cesses that were not shared in the overlap of two dis-
eases. Likewise, the processes observed in COPD and
IPF confirmed the irreversibility of these diseases
whereas a cure is suggested in asthma.

Based on the data in Tables 2, 230 shared DIPs were
found in the asthma-COPD. This may be due to the pres-
ence of inflammation, airway remodeling, and obstruction
in both diseases (Soriano et al. 2017; Postma and Rabe
2015). One-hundred seven shared DIPs presented in
COPD-IPF may suggest less transcriptional similarity be-
tween these two diseases compared to asthma-COPD.
Nevertheless, overlapping genes and pathways exist be-
tween two diseases due to inflammation and the reduction
of oxygenation in different tissues (O’'Donnell et al. 2016).
Furthermore, the presence of 85 shared DIPs in asthma-
IPF indicates the least transcriptional similarity between
these two diseases due to the presence of inflammation
and shared inflammatory pathways in both diseases (Sor-
iano et al. 2017; Vestbo et al. 2013).

Drug-target identification for consensus and common
DEGs in three diseases revealed that based on specific
DEGs, tretinoin as a retinoid drug is recommended for
all three diseases. Retinoids are involved in many essen-
tial functions of the body such as the immune system,
cell proliferation, and differentiation, bone growth, the
activation of tumor suppressor genes, as well as natural
and malignant epithelial cell growth in various tissues
(Buckley et al. 2006; Schultze et al. 2014). Moreover,
they may be useful in the treatment of the studied lung
diseases due to their anticoagulant, antimicrobial, and
anti-inflammatory effects, along with their impact on the
immune system (Buckley et al. 2006). According to ref.
(Jiang et al. 2017), dexamethasone is a candidate drug
for COPD and asthma and is considered as the gluco-
corticoid that is among the most effective drugs for con-
trolling airway inflammation. Additionally, this drug
inhibits the inflammation of asthma and COPD by sup-
pressing the cytokine expression (i.e., IL-4 and IL-13).
Tamoxifen is considered as another drug candidate for
asthma that can improve this disease by preventing cell
growth, inducing apoptosis in neoplastic cells, and redu-
cing inflammation in the lung (Perez et al. 2016).

Bevacizumab is one of the VEGF inhibitors that can be
identified as a candidate for COPD (Papaioannou et al.
2006). Similarly, verapamil is another drug candidate for
COPD and is a calcium channel blocker which attaches
to the alpha-subunits of L-type calcium channels and
thus inhibits the pathway of calmodulin and CaM kinase
from the mucin genes. In addition, it is a useful drug for
reducing mucus production while improving bronchial
inflammation (Khakzad et al. 2012).

Low-dose paclitaxel is one of the TGF-f1/Smad3 pathways
suppressing drugs, and in this study, it was identified as a
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candidate drug for IPF. TGF-P1 is responsible for creating a
cascade of incidents leading to fibrosis, and the abnormal ac-
tivation of TGF-B1 plays a vital role in the pathogenesis of
IPF (Wang et al. 2013). Therefore, the use of paclitaxel can
be suggested as one of the most effective medications for this
disease. Prednisone is another useful drug in the treatment
of IPF. It is predicted as a candidate in this study as well.
This drug increases caveolin-1 while decreasing TNF-q,
TGF-B1, and PDGF (Yu et al. 2017). Furthermore, it has
anti-inflammatory properties and suppressive effects on the
immune system and thus is used to treat IPF (Li et al. 2017).

Likewise, sirolimus as an immunosuppressant drug is
suggested as a candidate for the asthma-COPD therapy.
This drug inhibits the activation of T and B-cells by inhibit-
ing mTOR and plays an essential role in the biogenesis of
the ribosome, cell cycle progression, lipid synthesis, mito-
chondrial biogenesis, and autophagy of COPD (Mitkowska-
Dymanowska et al. 2017; Mukherjee and Mukherjee 2009).
Moreover, it inhibits IL-5 cytokine, which plays an import-
ant role in regulating asthma severity (Powell et al. 2001).
Therefore, sirolimus can be proposed as a shared drug in
the treatment of COPD and asthma. Similarly, gemcitabine
is another candidate drug in the asthma-COPD and its in-
tranasal administration significantly reduces viruses and the
inflammation of lungs and the anti-inflammatory cytokines
including TNF-a and IL-1b. Therefore, it is effective in re-
ducing the severity of asthma and COPD (Song et al. 2017).

Tacrolimus is one of the candidate medicines in
asthma-IPF as well. This drug inhibits the transcrip-
tion of IL-2 and several other cytokines, especially in
T-helper lymphocytes (Horita et al. 2011). Addition-
ally, combining this drug with methylprednisolone re-
duces the severity of the IPF (Horita et al. 2011).
Tacrolimus also reduces inflammatory cells in the
lung tissue and prevents asthma (Qiao et al. 2017).
Sunitinib is considered as another candidate drug in
asthma-IPF, which is known as one of the inhibitors
of tyrosine kinases. Tyrosine kinases play an essential
role in the pathogenesis of the IPF. Furthermore, this
drug can block the process of Epithelial to Mesenchy-
mal Transition (EMT) by TGF-B, and EMT plays a
vital role in the development of IPF (Huang et al.
2016). Sunitinib also reduces mucus and inflammation
and repairs remodeling in asthmatic patients (Huang
et al. 2009). Therefore, it can be proposed as an ef-
fective treatment for asthma and IPF.

In addition, cyclophosphamide is regarded as one of the
candidate drugs for COPD-IPF. The combination of this
drug with corticosteroids is used to reduce the severity of
IPF (Emura and Usuda 2016; Novelli et al. 2016). It should
be noted that sunitinib, sirolimus, and tacrolimus drugs,
can be applied as an effective treatment for asthma, COPD,
and IPF due to the inhibitory effect of the tyrosine kinase
and immune system.
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The current study proposed unique and common bio-
markers and drugs among the three diseases. Moreover,
it was confirmed that asthma lung transcriptome is more
similar to COPD than IPF. These findings could help the
researchers to differentiate the mentioned diseases.
However, this study has some limitations including ig-
noring the side effects of the drugs. Additionally, novel
biomarkers were proposed computationally. Therefore,
the clinical studies are recommended to confirm the val-
idity and reliability of the results of this study, as well as
those of similar studies in the future.

Conclusions

The findings indicated that the proposed biomarkers in
chronic lung diseases might serve as predictive targets
among the three diseases. They include RBM42, STXS5,
and TRIM41 in asthma, CYP27A1, GM2A, LGALS9,
SPI1, and NLRC4 in COPD, as well as ATF3, PPP1R15A,
ZFP36, SOCS3, NAMPT, and GADD45B in IPF. In
addition, other identified genes were LRRC48 and CETN2
in asthma-COPD, COL15A1, GIMAP6, and JAM2 in
asthma-IPF, along with LMO7, TSPAN13, LAMA3, and
ANXA3 in COPD-IPFE. Finally, anti-inflammatory drugs
such as corticosteroids were proposed for treating the
three diseases.
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